• Nenhum resultado encontrado

Low distortion embeddings between C(K) spaces

N/A
N/A
Protected

Academic year: 2022

Share "Low distortion embeddings between C(K) spaces"

Copied!
43
0
0

Texto

(1)

Low distortion

embeddings between C (K ) spaces

joint work with Luis Sánchez González

Tony Procházka

Université de Franche-Comté

25-29 August 2014

First Brazilian Workshop in Geometry of Banach Spaces Maresias

(2)

Introduction

IfK andLare homeomorphic, thenC(K)andC(L)are isometrically isomorphic.

IfC(K)andC(L)are isometrically isomorphic, thenKand Lare homeomorphic. (Banach-Stone, 1937).

If there is a linear isomorphismf :C(K)→C(L)such that kfk

f−1

<2, thenKandLare homeomorphic (Amir-Cambern, 1965).

If there is a Lipschitz homeomorphismf :C(K)→C(L) such thatkfkLip

f−1

Lip <, thenKandLare homeomorphic ().

Definition (Lipschitz embedding/homeomorphism)

Let(M, d)be a metric space and(X,k·k)a Banach space. We denotef :M ,

D Xif

d(x, y)≤ kf(x)f(y)k ≤Dd(x, y). Equivalent tokfkLip

f−1

LipDup to a scalar multiple off.

(3)

Introduction

IfK andLare homeomorphic, thenC(K)andC(L)are isometrically isomorphic.

IfC(K)andC(L)are isometrically isomorphic, thenKand Lare homeomorphic. (Banach-Stone, 1937).

If there is a linear isomorphismf :C(K)→C(L)such that kfk

f−1

<2, thenKandLare homeomorphic (Amir-Cambern, 1965).

If there is a Lipschitz homeomorphismf :C(K)→C(L) such thatkfkLip

f−1

Lip <, thenKandLare homeomorphic ().

Definition (Lipschitz embedding/homeomorphism)

Let(M, d)be a metric space and(X,k·k)a Banach space. We denotef :M ,

D Xif

d(x, y)≤ kf(x)f(y)k ≤Dd(x, y). Equivalent tokfkLip

f−1

LipDup to a scalar multiple off.

(4)

Introduction

IfK andLare homeomorphic, thenC(K)andC(L)are isometrically isomorphic.

IfC(K)andC(L)are isometrically isomorphic, thenKand Lare homeomorphic. (Banach-Stone, 1937).

If there is a linear isomorphismf :C(K)→C(L)such that kfk

f−1

<2, thenKandLare homeomorphic (Amir-Cambern, 1965).

If there is a Lipschitz homeomorphismf :C(K)→C(L) such thatkfkLip

f−1

Lip <, thenKandLare homeomorphic ().

Definition (Lipschitz embedding/homeomorphism)

Let(M, d)be a metric space and(X,k·k)a Banach space. We denotef :M ,

D Xif

d(x, y)≤ kf(x)f(y)k ≤Dd(x, y). Equivalent tokfkLip

f−1

LipDup to a scalar multiple off.

(5)

Introduction

IfK andLare homeomorphic, thenC(K)andC(L)are isometrically isomorphic.

IfC(K)andC(L)are isometrically isomorphic, thenKand Lare homeomorphic. (Banach-Stone, 1937).

If there is a linear isomorphismf :C(K)→C(L)such that kfk

f−1

<2, thenKandLare homeomorphic (Amir-Cambern, 1965).

If there is a Lipschitz homeomorphismf :C(K)→C(L) such thatkfkLip

f−1

Lip <1 +ε, thenK andLare homeomorphic (Jarosz, 1989).

Definition (Lipschitz embedding/homeomorphism)

Let(M, d)be a metric space and(X,k·k)a Banach space. We denotef :M ,

D Xif

d(x, y)≤ kf(x)f(y)k ≤Dd(x, y). Equivalent tokfkLip

f−1

LipDup to a scalar multiple off.

(6)

Introduction

IfK andLare homeomorphic, thenC(K)andC(L)are isometrically isomorphic.

IfC(K)andC(L)are isometrically isomorphic, thenKand Lare homeomorphic. (Banach-Stone, 1937).

If there is a linear isomorphismf :C(K)→C(L)such that kfk

f−1

<2, thenKandLare homeomorphic (Amir-Cambern, 1965).

If there is a Lipschitz homeomorphismf :C(K)→C(L) such thatkfkLip

f−1

Lip <1 +ε, thenK andLare homeomorphic (Jarosz, 1989).

Definition (Lipschitz embedding/homeomorphism)

Let(M, d)be a metric space and(X,k·k)a Banach space. We denotef :M ,

DX if

d(x, y)≤ kf(x)f(y)k ≤Dd(x, y).

Equivalent tokfkLip

f−1

LipDup to a scalar multiple off.

(7)

Introduction

IfK andLare homeomorphic, thenC(K)andC(L)are isometrically isomorphic.

IfC(K)andC(L)are isometrically isomorphic, thenKand Lare homeomorphic. (Banach-Stone, 1937).

If there is a linear isomorphismf :C(K)→C(L)such that kfk

f−1

<2, thenKandLare homeomorphic (Amir-Cambern, 1965).

If there is a Lipschitz homeomorphismf :C(K)→C(L) such thatkfkLip

f−1

Lip < 1716, thenKandLare homeomorphic (Dutrieux, Kalton, 2005).

Definition (Lipschitz embedding/homeomorphism)

Let(M, d)be a metric space and(X,k·k)a Banach space. We denotef :M ,

DX if

d(x, y)≤ kf(x)f(y)k ≤Dd(x, y).

Equivalent tokfkLip

f−1

LipDup to a scalar multiple off.

(8)

Introduction

IfK andLare homeomorphic, thenC(K)andC(L)are isometrically isomorphic.

IfC(K)andC(L)are isometrically isomorphic, thenKand Lare homeomorphic. (Banach-Stone, 1937).

If there is a linear isomorphismf :C(K)→C(L)such that kfk

f−1

<2, thenKandLare homeomorphic (Amir-Cambern, 1965).

If there is a Lipschitz homeomorphismf :C(K)→C(L) such thatkfkLip

f−1

Lip < 65, thenK andLare homeomorphic (Górak, 2011).

Definition (Lipschitz embedding/homeomorphism)

Let(M, d)be a metric space and(X,k·k)a Banach space. We denotef :M ,

DX if

d(x, y)≤ kf(x)f(y)k ≤Dd(x, y).

Equivalent tokfkLip

f−1

LipDup to a scalar multiple off.

(9)

A countable compactK is always homeomorphic to [0, ωα·n]whereK(α+1)=∅and1≤n=

K(α) (Mazurkiewicz-Sierpi ´nski).

Górak for countable compacts: Ifα6=β orn6=m, then there is no Lipschitz homeomorphism

f :C([0, ωα·n])→C([0, ωβ·m])such that kfkLip

f−1

Lip < 65.

Theorem

Letα < ω1 andβ < ωα. Then there is no Lipschitz embedding f :C([0, ωα])→C([0, β])such thatkfkLip

f−1

Lip <2.

In particular ifα6=β < ω1 then, for anyn, m∈N, there is no Lipschitz homeomorphismf :C([0, ωα·m])→C([0, ωβ·n]) such thatkfkLip

f−1

Lip <2.

(10)

A countable compactK is always homeomorphic to [0, ωα·n]whereK(α+1)=∅and1≤n=

K(α) (Mazurkiewicz-Sierpi ´nski).

Górak for countable compacts: Ifα6=β orn6=m, then there is no Lipschitz homeomorphism

f :C([0, ωα·n])→C([0, ωβ·m])such that kfkLip

f−1

Lip < 65.

Theorem

Letα < ω1 andβ < ωα. Then there is no Lipschitz embedding f :C([0, ωα])→C([0, β])such thatkfkLip

f−1

Lip <2.

In particular ifα6=β < ω1 then, for anyn, m∈N, there is no Lipschitz homeomorphismf :C([0, ωα·m])→C([0, ωβ·n]) such thatkfkLip

f−1

Lip <2.

(11)

A countable compactK is always homeomorphic to [0, ωα·n]whereK(α+1)=∅and1≤n=

K(α) (Mazurkiewicz-Sierpi ´nski).

Górak for countable compacts: Ifα6=β orn6=m, then there is no Lipschitz homeomorphism

f :C([0, ωα·n])→C([0, ωβ·m])such that kfkLip

f−1

Lip < 65.

Theorem

Letα < ω1 andβ < ωα. Then there is no Lipschitz embedding f :C([0, ωα])→C([0, β])such thatkfkLip

f−1

Lip <2.

In particular ifα6=β < ω1 then, for anyn, m∈N, there is no Lipschitz homeomorphismf :C([0, ωα·m])→C([0, ωβ ·n]) such thatkfkLip

f−1

Lip <2.

(12)

Another angle

Aharoni (1974),∃D≥2∀M separable metric sp.: M ,→

D c0.

Kalton-Lancien (2008)D= 2.

Baudier (2013): what if we replacec0byC(K)?

A.P., L. Sánchez (2013): ∃M countable metric sp. s.t. M ,→

D X,D <2⇒Xnot Asplund.

Where doesM live?

Proposition

Forα < ω1∃Mα ⊂C([0, ωα])countable uniformly discrete s.t. M ,→

D C(K),D <2⇒K(α)6=∅. Corollary

IfMωα,→

D X,D <2, thenSz(X)≥ωα+1.

(13)

Another angle

Aharoni (1974),∃D≥2∀M separable metric sp.: M ,→

D c0.

Kalton-Lancien (2008)D= 2.

Baudier (2013): what if we replacec0byC(K)?

A.P., L. Sánchez (2013): ∃M countable metric sp. s.t. M ,→

D X,D <2⇒Xnot Asplund.

Where doesM live?

Proposition

Forα < ω1∃Mα ⊂C([0, ωα])countable uniformly discrete s.t. M ,→

D C(K),D <2⇒K(α)6=∅. Corollary

IfMωα,→

D X,D <2, thenSz(X)≥ωα+1.

(14)

Another angle

Aharoni (1974),∃D≥2∀M separable metric sp.: M ,→

D c0.

Kalton-Lancien (2008)D= 2.

Baudier (2013): what if we replacec0byC(K)?

A.P., L. Sánchez (2013): ∃M countable metric sp. s.t. M ,→

D X,D <2⇒Xnot Asplund.

Where doesM live?

Proposition

Forα < ω1∃Mα ⊂C([0, ωα])countable uniformly discrete s.t. M ,→

D C(K),D <2⇒K(α)6=∅. Corollary

IfMωα,→

D X,D <2, thenSz(X)≥ωα+1.

(15)

Another angle

Aharoni (1974),∃D≥2∀M separable metric sp.: M ,→

D c0.

Kalton-Lancien (2008)D= 2.

Baudier (2013): what if we replacec0byC(K)?

A.P., L. Sánchez (2013): ∃M countable metric sp. s.t.

M ,→

D X,D <2⇒Xnot Asplund.

Where doesM live?

Proposition

Forα < ω1∃Mα ⊂C([0, ωα])countable uniformly discrete s.t. M ,→

D C(K),D <2⇒K(α)6=∅. Corollary

IfMωα,→

D X,D <2, thenSz(X)≥ωα+1.

(16)

Another angle

Aharoni (1974),∃D≥2∀M separable metric sp.: M ,→

D c0.

Kalton-Lancien (2008)D= 2.

Baudier (2013): what if we replacec0byC(K)?

A.P., L. Sánchez (2013): ∃M countable metric sp. s.t.

M ,→

D X,D <2⇒Xnot Asplund.

Where doesM live?

Proposition

Forα < ω1∃Mα ⊂C([0, ωα])countable uniformly discrete s.t. M ,→

D C(K),D <2⇒K(α)6=∅. Corollary

IfMωα,→

D X,D <2, thenSz(X)≥ωα+1.

(17)

Another angle

Aharoni (1974),∃D≥2∀M separable metric sp.: M ,→

D c0.

Kalton-Lancien (2008)D= 2.

Baudier (2013): what if we replacec0byC(K)?

A.P., L. Sánchez (2013): ∃M countable metric sp. s.t.

M ,→

D X,D <2⇒Xnot Asplund.

Where doesM live?

Proposition

Forα < ω1∃Mα ⊂C([0, ωα])countable uniformly discrete s.t.

M ,→

D C(K),D <2⇒K(α)6=∅.

Corollary IfMωα,→

D X,D <2, thenSz(X)≥ωα+1.

(18)

Another angle

Aharoni (1974),∃D≥2∀M separable metric sp.: M ,→

D c0.

Kalton-Lancien (2008)D= 2.

Baudier (2013): what if we replacec0byC(K)?

A.P., L. Sánchez (2013): ∃M countable metric sp. s.t.

M ,→

D X,D <2⇒Xnot Asplund.

Where doesM live?

Proposition

Forα < ω1∃Mα ⊂C([0, ωα])countable uniformly discrete s.t.

M ,→

D C(K),D <2⇒K(α)6=∅.

Corollary IfMωα,→

D X,D <2, thenSz(X)≥ωα+1.

(19)

More about M

Theorem

There exists a countable metric spaceM such that ifM ,→

D X, D <2, then`1 ⊂X.

Also, ifM ,→

D `1, thenD≥2.

But...

there is an equivalent norm|·|on`1 such thatM ,→

1 (`1,|·|).

(20)

More about M

Theorem

There exists a countable metric spaceM such that ifM ,→

D X, D <2, then`1⊂X.

Also, ifM ,→

D `1, thenD≥2.

But...

there is an equivalent norm|·|on`1 such thatM ,→

1 (`1,|·|).

(21)

More about M

Theorem

There exists a countable metric spaceM such that ifM ,→

D X, D <2, then`1⊂X.

Also, ifM ,→

D `1, thenD≥2.

But...

there is an equivalent norm|·|on`1 such thatM ,→

1 (`1,|·|).

(22)

More about M

Theorem

There exists a countable metric spaceM such that ifM ,→

D X, D <2, then`1⊂X.

Also, ifM ,→

D `1, thenD≥2.

But...

there is an equivalent norm|·|on`1 such thatM ,→

1 (`1,|·|).

(23)

More about M

Theorem

There exists a countable metric spaceM such that ifM ,→

D X, D <2, then`1⊂X.

Also, ifM ,→

D `1, thenD≥2.

But...

there is an equivalent norm|·|on`1 such thatM ,→

1 (`1,|·|).

(24)

The unwieldy metric space M

1 2 3 4

{3,4} {2,4}

{3,2}

{3,2,4} {1,4}

{1,3}

{1,3,4}

{1,2}

{1,2,4} {1,3,2}

{1,3,2,4}

M ={∅} ∪N∪F whereF ={A⊂N: 2≤ |A|<∞}

(a, b)is an edge iffa=∅andb∈N

ora∈N,b∈F anda∈b

(25)

The unwieldy metric graph M

1 2 3 4

{3,4} {2,4}

{3,2}

{3,2,4} {1,4}

{1,3}

{1,3,4}

{1,2}

{1,2,4} {1,3,2}

{1,3,2,4}

M ={∅} ∪N∪F whereF ={A⊂N: 2≤ |A|<∞}

(a, b)is an edge iffa=∅andb∈N

ora∈N,b∈F anda∈b

(26)

The unwieldy metric graph M

1 2 3 4

{3,4}

{2,4}

{3,2}

{3,2,4}

{1,4}

{1,3}

{1,3,4}

{1,2}

{1,2,4}

{1,3,2}

{1,3,2,4}

M ={∅} ∪N∪F whereF ={A⊂N: 2≤ |A|<∞}

(a, b)is an edge iffa=∅andb∈N

ora∈N,b∈F anda∈b

(27)

The unwieldy metric graph M

1 2 3 4

{3,4}

{2,4}

{3,2}

{3,2,4}

{1,4}

{1,3}

{1,3,4}

{1,2}

{1,2,4}

{1,3,2}

{1,3,2,4}

M ={∅} ∪N∪F whereF ={A⊂N: 2≤ |A|<∞}

(a, b)is an edge iffa=∅andb∈N

ora∈N,b∈F anda∈b

(28)

The unwieldy metric graph M

1 2 3 4

{3,4}

{2,4}

{3,2}

{3,2,4}

{1,4}

{1,3}

{1,3,4}

{1,2}

{1,2,4}

{1,3,2}

{1,3,2,4}

M ={∅} ∪N∪F whereF ={A⊂N: 2≤ |A|<∞}

(a, b)is an edge iffa=∅andb∈Nora∈N,b∈F anda∈b

(29)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2. Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy. Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(30)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy. Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(31)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy. Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(32)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(33)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(34)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N.

Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(35)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}.

Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(36)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(37)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(38)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(39)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(40)

Proof of M , →

D X, D < 2 ⇒ ` 1 ⊂ X

Assumef :M ,→

D X,D <2.

Putxk:=f(k)∀k∈N

Claim: No subsequence of(xk)is weakly Cauchy.

Indeed, let(kn)⊂Nbe given.

PutAN ={k2n:n≤N}andBN ={k2n−1 :n≤N} ∀N ∈N. Put

Xa,b={x∈BX :hx, f(a)−f(b)i ≥4−2D}. Then∀n∈N

Kn:= \

a∈An,b∈Bn

Xa,b6=∅.

(Kn)is a decreasing sequence of non-emptyw-compacts

⇒ ∃x ∈T n=1Kn

x, xk2n−xk2n+1

≥4−2D

(xkn)nis not weakly Cauchy+Rosenthal’s theorem⇒`1⊂X

(41)

Left open

Fully non-linear Amir-Cambern? At least for scattered compacta?

Is it true that`1,→

D X,D <2, implies that`1⊂X?

(42)

Left open

Fully non-linear Amir-Cambern? At least for scattered compacta?

Is it true that`1,→

D X,D <2, implies that`1⊂X?

(43)

Autumn 2014: Thematic trimester at the Université de Franche-Comté

“Geometric and noncommutative methods in

functional analysis”

Referências

Documentos relacionados

Resumo: Este artigo tem como objetivo evidenciar os elementos rítmicos e melódicos da música dos cabocolinhos, empregados na peça A Inúbia do Cabocolinho, de

The alfalfa leaf, stem and total dry matter yield (kg ha -1 ) for spring 2013, summer, autumn, winter and spring 2014, and summer 2015 in.. a field experiment conducted at

No presente estudo de caso, analisamos ação civil pública em que o Ministério Público pretende obter a tutela jurisdicional apenas para compelir os entes federativos Município de

Em suma, apesar do teste do qui-quadrado corrigido (S-ʖϸͿĞƐƚĄĂƐƐŽĐŝĂĚŽĂƵŵǀĂůŽƌ de p significativo e de não terem sido alcançados os valores de corte

Foram georreferenciados 19 pontos, 02 na barragem do rio da Prata, 02 nascentes e 14 poços tubulares e uma cacimba, para coleta de amostras no período seco e no período chuvoso

The relation between deer and cattle in the use of space at Los Ajos varies seasonally; we observed a greater spatial overlap in Autumn and Spring, while in winter and summer

As formas de autorização ou reconhecimento de Curso Superior de Formação de Professores para o exercício da função em ER e a aprovação de Projetos contendo as respectivas

a) Obter um estudo significativo, relativo à condição de saúde oral, numa amostra propositadamente não fraccionada, eventualmente devido à sua condição física