• Nenhum resultado encontrado

Parasite control and skeletal myositis in Trypanosoma cruzi-infected and exercised rats.

N/A
N/A
Protected

Academic year: 2021

Share "Parasite control and skeletal myositis in Trypanosoma cruzi-infected and exercised rats."

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Acta

Tropica

j ourna l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a c t a t r o p i c a

Parasite

control

and

skeletal

myositis

in

Trypanosoma

cruzi-infected

and

exercised

rats

Rômulo

D.

Novaes

a,∗

,

Reggiani

V.

Gonc¸

alves

b

,

Arlete

R.

Penitente

c

,

Marli

C.

Cupertino

d

,

Izabel

R.S.C.

Maldonado

d

,

André

Talvani

e

,

Antônio

J.

Natali

f

aInstituteofBiomedicalSciences,DepartmentofStructuralBiology,FederalUniversityofAlfenas,37130-000,MG,Brazil bDepartmentofAnimalBiology,FederalUniversityofVic¸osa,36570-000,MG,Brazil

cSchoolofMedicine,FederalUniversityofOuroPreto,35400-000,MG,Brazil dDepartmentofGeneralBiology,FederalUniversityofVic¸osa,36570-000,MG,Brazil

eDepartmentofBiologicalScienceandNUPEB,FederalUniversityofOuroPreto,35400-000,MG,Brazil fDepartmentofPhysicalEducation,FederalUniversityofVic¸osa,36570-000,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5December2016

Receivedinrevisedform17January2017 Accepted10February2017

Availableonline20February2017

Keywords: Exercisetraining Oxidativestress Pathology Skeletalmuscle

a

b

s

t

r

a

c

t

Non-pharmacologicalstrategieshavebeenrarelydescribedinthetreatmentofinfectiousdiseases. AlthoughexercisetraininghasbeenrecentlyincorporatedintheclinicalmanagementofChagasdisease, therationalebasisthatsupportsthisindicationispoorlyunderstood.Thus,weinvestigatedtheeffect ofanaerobicexerciseontheparasitism,inflammationandoxidativetissuedamageinamurinemodel ofTrypanosomacruzi-inducedskeletalmyositis.Wistarratswererandomizedintofourgroups:trained notinfected(TNI)andinfected(TI),sedentarynotinfected(SNI)andinfected(SI).Arunningtraining programwasadministered5days/weekfor9weeks.Then,infectedanimalswereinoculatedwithT.cruzi andfollowedupforanother9weeks.Exercisetraininginducedbeneficialadaptationsbyincreasingtime tofatigueandlactatethresholdinTNIandTIanimals.SIanimalspresentedhigherparasitemia, skele-talmuscleparasitism,cellnecrosis,leukocyteinfiltration,cytokineslevels,reactiveoxygenspeciesand nitricoxideproduction,thiobarbituricacidreactivesubstances,carbonylproteins,myosinheavychainI depletion,andincreasedcatalase(CAT)andsuperoxidedismutase(SOD)activities.Beyondattenuation inallthesevariables,TIanimalsshowedreducedTNF-␣,CCL-2/MCP-1andCX3CL1,andincreasedIL-10 musclelevels.Furthermore,theseanimalspresentedhigherCATandSODactivitiesandreducedlipid andproteinoxidation.Takentogether,ourfindingsindicatedthatexercisetraininginducedaprotective phenotypeinT.cruzi-infectedmice,enhancinghostdefensesagainsttheparasiteandattenuatingthe pathologicalremodelingassociatedwithskeletalmyositis,aspectspotentiallyassociatedtoanimproved immunologicalandredoxbalanceininfectedanimals.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Chagasdiseaseisaneglectedinfectiousdiseasecausedbythe intracellularprotozoanTrypanosoma cruzi(Santoset al.,2015a; WHO, 2015). Due to high tropism by muscle tissues, skeletal musclesareintenselyparasitizedbyT.cruzi,generatingmyositis, atrophyandnecrosisinanimals(Maldonadoetal.,2004; Vizcaíno-Castilloetal.,2014;Báezetal.,2015)andhumans(MontesdeOca etal.,2004;Torresetal.,2004).Despitethescarceevidence,

skele-∗ Correspondingauthorat:InstituteofBiomedicalSciences,Departmentof Struc-turalBiology,FederalUniversityofAlfenas,RuaGabrielMonteirodaSilva,700, Alfenas,37130−000,MinasGerais,Brazil.

E-mailaddress:romuonovaes@yahoo.com.br(R.D.Novaes).

talmuscledamagehasbeenassociatedwithdirectcellparasitism (i.e.myocytolysis)andunspecificimmune-mediatedmechanisms, in which exacerbated Th1 inflammatory response (Zhang and Tarleton,1999;Vizcaíno-Castilloetal.,2014)andregional over-production ofreactivemetabolites(i.e.free radicals)havebeen implicatedaspivotalmechanismsinvolvedinthepathogenesisof Chagasicmyopathy(Paivaetal.,2012;Báezetal.,2015).

Asexacerbatedimmunologicalandpro-oxidantresponses trig-gered by T. cruzi are coupledmechanisms directly involved in theworseningofChagasdisease,ithasbeenproposedthat anti-inflammatoryandantioxidantagentscouldexertprotectiveeffects againsttissuedamage(Mac¸aoetal.,2007;Novaesetal.,2016a). Furthermore, there is evidence that exercise training induces intensemodulationof theimmunologicalsystemand enhances endogenousantioxidantdefensesincardiacand skeletalmuscle http://dx.doi.org/10.1016/j.actatropica.2017.02.012

(2)

inanimals(Niessetal.,1999;Powersetal.,2002;Malm,2004)and humans(Niessetal.,1999;Gleeson2007).Inresponsetoinfections, physicaltrainingprovedtobeeffectiveininducingaTh1 immuno-logical phenotype (Lowder et al., 2005) essential topromoting cell-mediatedimmunityandresistanceagainstT.cruzi(Teixeira et al.,2002; Santoset al.,2015a).Although exercisetraining is effectivein attenuating the severityof myopathies with differ-entetiologies(Bacurauetal.,2016;Hedermannetal.,2016),the applicabilityofexerciseinthetreatmentofinfectiousmyopathies remainsunknown.

Recently, exercise training has emerged as a non-pharmacological strategy for Chagas disease treatment (Lima etal.,2010,2013;Novaesetal.,2016b).Althoughinvestigations inthis areaarescarce, arecent studyindicatedthata 12-week aerobicexercisetraining improvesmaximum oxygen consump-tion,peakheartrate,chronotropicresponseandexercisetolerance in Chagasic patients(Limaet al., 2010,2013). Furthermore,an 8-week pre-infection treadmill training program proved to be effectiveinreducingparasitemiaandweightlossinducedbythe infectioninmice(Schebeleski-Soaresetal.,2009).Whileallefforts havebeendirectedtothecardiovascularsystem,theinfluenceof exercisetrainingoninfectedskeletalmusclesremainsunexplored. Thisstudy wasdesigned toinvestigatetheeffect of anaerobic runningtrainingonparasitism,inflammationandoxidativetissue damageinamurinemodelofT.cruzi-inducedskeletalmyositis.

2. Materialsandmethods

2.1. Experimentaldesign

FortymaleWistarrats(16-weeksold)wererandomizedinto fourgroupscontaining10animalseach.Twogroupsweresubjected totreadmillrunningtraining,andtheothersremainedsedentary. Afterthetrainingperiod,animalsfromonetrainedandone seden-tarygroupwereinfectedwithT.cruzi.Thefourgroupswere:trained not infected (TNI), trained infected (TI),sedentary not infected (SNI),andsedentaryinfected(SI).Theanimalsweremaintainedina controlledenvironment(temperature22±2◦C,humidity60–70%, and12/12hdark/lightinvertedcycles)withfreeaccesstochow andwater.ThestudywasapprovedbytheAnimalResearchEthics Commissionof theFederalUniversityofVic¸osa,Brazil(protocol 30/2009).

2.2. Runningtrainingandmetabolicadaptationinducedby exercise

All animals in the TNI and TI groups were subjected to an incrementalrunningtraining programona motor-driven tread-mill(InsightInstruments®,RibeirãoPreto,Brazil),5days/week,for 9weeksaspreviouslydescribed(Novaesetal.,2016b).Exercise trainingwasinitiated24hafterdeterminingthebasalindexesof physicalperformance.Toevaluatetheeffectofexercisetraining andinactivityonphysicalperformance,allanimalsweresubjected toatreadmillprogressiverunningprotocoluntilfatigue(Novaes etal.,2011).Thefatiguewasestablishedasthemomentatwhich theanimalswereunabletomaintaintherunningcadenceand inter-ruptedtheracebyover10s.Every3min,peripheralblood(5␮l) wascollectedbytailpuncturetomeasurelactatelevels(Accutrend Lactate®,Roche,Basel,Switzerland).Thetransitionpointbetween theaerobicmetabolismandanaerobicmetabolismwasdetermined byassessingthelactatethreshold(LT).Theprotocolwasrepeated threetimesonalternatingdaysbeforeandaftertheexercise pro-gram.Theresultswereconsideredastheaveragevaluesobtained fromthreeindependentphysicalperformancetests(Novaesetal., 2011).

2.3. Infectionandparasitemia

InfectedanimalswereintraperitoneallyinoculatedwithT.cruzi (150,000trypomastigotes[Ystrain]/100gbodyweight)obtained fromthebloodofinfectedmice(Novaesetal.,2011).Theanimals wereinoculated72hafterthelastphysicalperformanceevaluation. Confirmationofinfection,prepatentperiod, patentperiod,peak and meanparasitemiaweredetermined usingperipheralblood accordingtoBrener’sprotocol(1962).Nineweeksafter inocula-tion,theanimalswereeuthanizedunderanesthesiawithxylazine (2mg/kg,i.p.)andketamine(10mg/kg,i.p.)andthetibialisanterior skeletalmusclesweredissectedandanalyzed.

2.4. Cytokinesimmunoassay

Thecytokinelevelsinmuscletissueweremeasuredby enzyme-linked immunosorbent assay (ELISA).Briefly, musclefragments (100mg)werehomogenizedinphosphatebuffer(pH7.2)and cen-trifugedat10,000gat4◦Cfor10min.ThecytokinesTNF-␣,IFN-␥, IL-6, IL-10andthe chemokinesCCL-2/MCP-1and CX3CL1 were assayedinthehomogenatefollowingthemanufacturer’s instruc-tions(Promega,Madison,WI,USA).Thereactionwasrevealedusing peroxidase-conjugatedstreptavidin(VectorLab.,CA,USA)andthe substratecontaining3,3,5,5”-tetramethylbenzidine(Promega,WI, USA).Thereactionswerereadinspectrophotometerat450nm,and thelevelsofcytokineswerecalculatedbyextrapolatingthe opti-caldensitiesobtainedfromastandard curveusingrecombinant cytokines(Novaesetal.,2016b).

2.5. Histopathologyandstereology

Skeletal muscle fragments were fixed for 48h (10% w/v formaldehydein0.1Mphosphatebuffer,pH7.2).Thefragments wereembeddedin paraffin,verticallysectionedat 4-␮m thick-nessandstainedbyhematoxylin-eosin(H&E).Histologicalsections wereanalyzedbybrightfieldmicroscopy(OlympusBX-60,Tokyo, Japan). Fiftyhistological fields (×400 magnification) were ran-domlysampledandthemuscle(totalarea=1.12×106␮m2)was microscopically analyzed in each group (Novaes et al., 2011). Thestereologicalmethodwasusedtoassessthedistributionof skeletal myocytes, tissue necrosis, amastigote nests and inten-sityoftheinflammatoryinfiltrateininfectedanimals.Atestarea (AT)of 3.15×103␮m2 wasused,containing42 test points (Pt) appliedin histological imagesobtainedat×1000magnification acrossfiverandommicroscopicfieldsofeachanimalinatotalof 160×103␮m2ofmuscletissueforeachgroup.Thevolumedensity ofskeletalmyocytes(VvMY)andnecroticareas(VvNA)were esti-matedas:VvMY/NA=MY/NA/PT,wherePMY/NAisthenumberoftest pointshittingonskeletalmyocytesornecroticareas,andPTisthe totalnumberoftestpoints.Thenumberdensityofinflammatory cells(QAIC)andamastigotenestsofT.cruzi(QATC)wasestimated as:QAIC/TC=(IC/TC)/AT;whereIC/TCisthetotalnumberof inflam-matorycellsorT.cruzinestscountedinthetestarea(AT)(Novaes etal.,2013).

2.6. Oxidative/nitrosativestressmarkers

Insituproductionofreactiveoxygenspecies(ROS)was eval-uated in unfixed5␮m thick muscle cryosections incubated at roomtemperaturewithdihydroethidium(DHE,10␮mol/lin0.01% dimethylsulfoxide) for30min.Sectionswereexaminedby flu-orescencemicroscopy (OlympusBX-60,Olympus, Tokyo,Japan) andtheimagewascapturedat400×magnification.Fiverandom microscopicfieldswereanalyzedforeachanimal.Redfluorescence produced by DHEoxidation to hydroxyethidiumwasevaluated

(3)

byusingImagePro-Plus4.5 software(MediaCybernetics,Silver Spring,MD,USA)(Santosetal.,2015a,b).

Thesamemusclehomogenateusedinthecytokine immunoas-sayswereusedfor assessingoxidativeand nitrosativemarkers. Thiobarbituricacid-reactive substances(TBARS)werequantified todeterminelipidperoxidationinmuscletissue(Gutteridgeand Halliwel,1990).Proteinoxidationwasverifiedbythequantification ofproteincarbonyls(PCN)usingthe2,4-dinitrophenylhydrazine (DNPH)procedure(Levineetal.,1990).Nitricoxide(NO)was indi-rectlydetermined by the quantification of nitrite/nitrate levels usingtheGriessmethod(Ricart-Janéetal.,2002).

2.7. Endogenousantioxidantenzymes

Catalase(CAT)activitywasevaluatedbymeasuringtherateof decompositionofhydrogenperoxide(H2O2)(Aebi,1984). Superox-idedismutase(SOD)activitywasestimatedbyaxanthineoxidase method(Sarbanetal.,2005).Glutathione-s-transferase(GST) activ-itywasestimatedspectrophotometricallyat340nm,asdescribed byHabigetal.(1974),andcalculatedfromtherateofnicotinamide adeninedinucleotidephosphate(NADPH)oxidation.

2.8. Myosinheavychainanalysis

Biochemicalanalysisof myosin heavy chainI (MyHCI) was performedusingsodiumdodecylsulfate-polyacrylamidegel elec-trophoresis(BärandPette,1988).Musclesampleswereplacedin anextractionsolution(10%glycerol,5%2-mercaptoethanol, and 2.3%sodiumdodecylsulfatein a0.9% Tris-HClbuffer[pH 6.8]). Forelectrophoreticseparation,muscleextractswereloadedontoa 7%–10%sodiumdodecylsulfate–polyacrylamidegel electrophore-sisgradientgeloveraperiodof26hat185V.Thegelswerestained withcoomassiebluetoidentifytheMyHCisoformsaccordingto theirmolecularweights.TherelativeMyHCIcontentwasidentified accordingtothemolecularmassandquantifiedbydensitometry usingImageJSoftware(USNationalInstitutesofHealth,USA). 2.9. Statisticalanalysis

Data were reported as mean and standard deviation (mean±S.D.). Data distribution was verified by D’Agostino-Pearsontest. Parametersof exercisetolerance, biochemical and immunological data werecompared using one-way analysis of varianceANOVAfollowedbyTukey’sposthoctest.Parasitological parameterswerecompared usingtheMann–Whitney–Wilcoxon test.MorphologicaldatawerecomparedusingtheKruskal–Wallis test.Aprobabilityofp<0.05wasconsideredstatisticallysignificant.

3. Results

As indicated in Fig. 1, trained animals presented increased exercisetolerance,whichwasevidencedbyprolongationin lac-tatethresholdandtimetofatiguecomparedtosedentaryanimals (p<0.05).

Infectedandtrained(TI)animalspresentedincreasedprepatent period, as wellas reduced patent period, peak and mean par-asitemiacomparedtosedentaryinfected animals(SI)(p<0.05), Table1.

Tissuelevelsofallcytokinesinvestigated(INF-␥,TNF-␣,IL-6, IL-10,andCCL2/MCP-1)weresimilarintheTNIandSNIgroups (p>0.05),exceptCX3CL1,whichpresentedlowlevelsintheSNI group(p<0.05).Ingeneral,bothinfectedgroups(SIandTI) pre-sented increased levels of all cytokines investigated compared touninfectedanimals (SNIand TNI)(p<0.05). WhileIL-10was increased,TNF-␣,CCL2/MCP-1andCX3CL1levelswerereducedin theTIgroupcomparedtotheSIgroup(p<0.05),Fig.2.

Fig.1.Lactatethreshold(LT)andtotaltimetofatigue(TTF)insedentaryandtrained miceprevioustoT.cruziinoculation.TNI,trainednotinfected;TI,trainedinfected; SNI,sedentarynotinfected;SI,sedentaryinfected.Dataareexpressedasmeanand standarddeviation.

SkeletalmusclefromanimalsintheSNIandTNIgroups pre-sentedanormalmicroscopicstructure,whichpresentedmyocytes withwell-definedcross-striation,surroundedbyscarce connec-tivetissue presenting low interstitialcellularity.Both SI andTI animalspresentedevidentskeletalmyositis,tissuenecrosis, con-nectiveexpansionanddiffusedistributionofamastigotenestsofT. cruzi(Fig.3).

StereologicalanalysisindicatedthatbothSIandTIanimals pre-sentedmarkedtissuenecrosis,reducedmyocytedistributionand intense inflammatory infiltration compared tothe SNIand TNI groups(p<0.05).AlltheseparameterswerereducedintheTIgroup comparedtotheSIgroup(p<0.05),Table2.

AnimalsintheSIand TIgroupsshowedintensemuscle pro-ductionofROSandreducedMyHCIlevelscomparedtotheSNI and TNIgroups (p<0.05). Skeletalmusclefrom TIanimals pre-sentedreducedROSandincreasedMyHCIlevelscomparedtothe SIanimals(p<0.05),Fig.4.

TBARS,PCnyandNOmusclelevelsweredrasticallyincreasedin bothSIandTIgroupscomparedtotheSNIandTNIgroups(p<0.05). TheseparametersweremarkedlyattenuatedinTIcomparedtoSI animals(p<0.05),Fig.5.

TheantioxidantenzymesCAT,SODandGSTshowedincreased activitiesinskeletalmusclefrombothSIandTIcomparedtothe SNIandTNIgroups(p<0.05).CATandSOD,butnotGSTactivities, wereincreasedinTIcomparedtoSIanimals(p<0.05),Fig.6.

4. Discussion

While studies withhumans (Limaet al., 2010,2013; Fialho etal.,2012)andanimals(Pretoetal.,2015;Novaesetal.,2016b) are mainly focused on the cardiovascular system, the impact of exercisetherapy on skeletalmuscle duringT. cruzi-infection remains neglected. Corroborating the assumption that skeletal musclesareprimarytargetsofexercisetherapy(Goldspink,2003; Hedermannetal.,2016),ourresultsindicatedthatrunningtraining inducedmetabolicadaptations,improvedparasitologicalcontrol andreducedskeletalmyositisininfectedanimals,aspects poten-tiallyrelatedtomodulationofcytokineproduction,reducedROS production,improvedredoxbalance,attenuationofskeletalmuscle pathologicalremodelingandreductionofMyHCIdepletion.

Consideringthattheparasiticloadiscloselycorrelatedto tis-sueparasitismanddamage,parasitologicalcontrolplaysapivotal roleinthetreatmentofChagasdisease(ZhangandTarleton,1999; Velosoetal.,2008).Parasitologicalcontrolobservedinourstudy hasbeenpotentiallylinkedtotheimmunomodulatory effectof exercisetraining(Novaesetal.,2016b).AsTh1cytokines(especially IFN-␥andTNF-␣)weremarkedlyincreasedininfectedanimals,

(4)

Table1

EffectofexercisetrainingonparasitologicalparametersofTrypanosomacruzi-infectedmice.

Prepatentperiod(days) Patentperiod(days) Peakofparasitemia(parasites/0.1mL×103) Meanparasitemia(parasites/0.1mL×103)

SI 4.2±0.42 9.7±0.95 21.59±2.84×103 3.82±1.48

TI 5.5±0.53* 7.4±1.16* 20.58±2.63×103 1.92±0.63*

SI,sedentaryinfected;TI,trainedinfected.Dataareexpressedasmeanandstandarddeviation.

Fig.2. CytokineandchemokinelevelsintheskeletalmusclefromT.cruzi-infectedmice.TNI,trainednotinfected;TI,trainedinfected;SNI,sedentarynotinfected;SI, sedentaryinfected.Dataareexpressedasmeanandstandarddeviation.*†§Statisticaldifferencesamongthegroups(p<0.05);*vs.TNI,†vs.TI,§vs.SNI.

Table2

EffectofexercisetrainingonskeletalmusclestructureinT.cruzi-infectedmice.

Vvmyocytes(%) Vvnecrosis(%) QAIC(cells/mm2) QATC(nests/mm2)

TNI 92.17±3.68 ND 824.39±236.41 ND

TI 72.26±6.19* 4.28±1.05 1808.11±415.74* 11.38±5.08

SNI 90.52±4.41 ND 958.41±253.60 ND

SI 55.70±7.11*†§ 9.65±3.21§ 2951.80±617.25*†§ 20.25±7.41

Vv,volumedensity;QA,numberdensity;IC,interstitial/inflammatorycells;TC,T.cruzinests;ND,notdetected.TNI,trainednotinfected;TI,trainedinfected;SNI,sedentary

notinfected;SI,sedentaryinfected.Dataareexpressedasmeanandstandarddeviation.*†§Statisticaldifferencesamongthegroups(p<0.05);*vs.TNI,†vs.TI,§vs.SNI.

exercisetrainingdoesnotimpairthepolarizationofthe immuno-logicalresponse,anaspectthatcouldattenuatetheparasitological control and amplify muscle damage. This immunomodulatory effectwasalsoclearlyobservedininfectedtrainedanimals,which presentedsimilarIFN-␥andIL-6levels,reductioninTNF-␣,

CCL-2/MCP-1 and CX3CL1, as well as increased IL-10 tissue levels comparedtoinfectedsedentaryanimals.Asregulatorymolecules, theTh1/Th2cytokinebalanceiscrucialtotheestablishmentofan adjustedinflammatoryprocess,which isabletoensureparasite controlwithoutdeterminingintensesecondaryimmune-mediated

(5)

Fig.3. RepresentativephotomicrographsoftheskeletalmusclefromuninfectedcontrolandTrypanosomacruzi-infectedmice(H&Estaining,brightfieldmicroscopy).Trained andsedentaryuninfectedanimalspresentedscarceconnectivestroma(arrow),lowtissuecellularityandevidentmyocytes(asterisk)cross-striation.Trainedandsedentary infectedmiceshowedintenseskeletalmyositis,connectivetissueexpansion(arrow)andintracellularT.cruziamastigotenests(arrowheads).

Fig.4.Reactiveoxygenspecies(ROS)andmyosinheavychainI(MyHCI)levelsintheskeletalmusclefromT.cruzi-infectedmice.TNI,trainednotinfected;TI,trained infected;SNI,sedentarynotinfected;SI,sedentaryinfected.Theimageswereobtainedbyfluorescencemicroscopy.BrighterimagesindicatehighROSproduction,which wasindirectlyquantifiedinA.MyHCIexpressionwasdeterminedopticaldensitometryfrompolyacrylamidegelelectrophoresis.(AandB)Dataareexpressedasmeanand standarddeviation.*†§Statisticaldifferencesamongthegroups(p<0.05);*vs.TNI,†vs.TI,§vs.SNI.

(6)

Fig.5. MarkersofreactivestressintheskeletalmusclefromT.cruzi-infectedmice.TBARS,Thiobarbituricacidreactivesubstances;PCN,proteincarbonyl.Nitricoxidewas expressedasnitrite/nitrate(NO2−/NO3−).TNI,trainednotinfected;TI,trainedinfected;SNI,sedentarynotinfected;SI,sedentaryinfected.Dataareexpressedasmeanand

standarddeviation.*†§Statisticaldifferencesamongthegroups(p<0.05);*vs.TNI,†vs.TI,§vs.SNI.

Fig.6.ActivityofendogenousantioxidantenzymesintheskeletalmusclefromT.cruzi-infectedmice.CAT,catalase;GST,glutathione-s-transferase;SOD,superoxide dismutase.TNI,trainednotinfected;TI,trainedinfected;SNI,sedentarynotinfected;SI,sedentaryinfected.Dataareexpressedasmeanandstandarddeviation.*†§Statistical differencesamongthegroups(p<0.05);*vs.TNI,†vs.TI,§vs.SNI.

tissue damage caused byan exacerbatedTh1response (Gomes etal.,2003;Novaesetal.,2016a,b).Takentogetherwiththe para-sitological,histopathologicalandstereologicalresults,ourfindings indicatedthatreductionintypicalTh1molecules(i.e.TNF-␣, CCL-2/MCP-1) do not determine increased host susceptibility to T. cruziinfection.Conversely,thisreductionwaspotentiallyachieved from the improved immunological control and attenuation of skeletalmuscleinflammation.Thispropositionis coherentwith CCL-2/MCP-1reduction,amoleculedirectlyinvolvedinleukocyte chemoattractiontoinfectedorgans(Teixeiraetal.,2002;Yamauchi etal.,2007).Furthermore,asapotentanti-inflammatorycytokine, increasedIL-10levelsalsoreinforcedtheinflammatorycontroland reductioninskeletalmyositisseverity.

Becauseoftheimprovedimmunologicalcontrol,attenuationin theskeletalmusclepathologicalremodelingwasexpected.Beyond directmyocytolysis and necrosisinducedbydirect intracellular parasite proliferation, tissue damage is secondarily determined byexacerbatedregionalinflammatoryprocessdirectedtoT.cruzi (Gomesetal.,2003;Novaesetal.,2016a).Ascytotoxins, includ-ingradical(i.e.O2•−,OH−,ONOO−)andnon-radical(i.e.NO,H2O2, HClO,HNO2)reactivemolecules,producedbyinflammatorycells recruitedtotheinfectedtissuesactindiscriminatelyonparasites andhostcells,theinflammationintensityisdirectlyrelatedto tis-suedamageseverityinChagasdisease(Paivaetal.,2012;Novaes et al.,2015).Thus, reduced cell necrosis,inflammatory infiltra-tionandhigherdistributionofintactmyocytesareconsistentwith reducedtissueparasitism(i.e.tissueamastigotenests)observed in trained animals.Taking into account that skeletal myocytes present limited regenerativepotential (Maldonado etal., 2004; Souzaetal.,2014),thiseffectseemstoberelevantinprotecting thehostagainsttheprogressiveimmunomediatedtissuedamage typicallyobservedinChagasdisease(ZhangandTarleton,1999; Torresetal.,2004).

ExercisetrainingalsopresentedbeneficialeffectsagainstMyHC Idepletionininfectedskeletalmuscle,afindingpotentiallyrelated tothehigherpreservationofintactmyocytes.Conversely, seden-taryanimalspresentedincreasedparenchymadamage(i.e.necrotic

myocytes) and connective expansion, which couldbe partially responsibleforthereducedMyHCIlevelswhenadjustedby mus-clemassortotalmuscleprotein.However,increasedMyHCIlevels couldalsoberelatedtotheabilityofexercisetrainingtoinduce MyHCIgeneexpressionbymechanic-transduction mechanisms (BärandPette,1988;Goldspink,2003).Althoughthismechanism is more relevant in explaining higher MyHC I levels in unin-fectedandtrainedanimals,furtherstudiesarerequiredtoconfirm ifthesepropositionsis coherentininfected animals.Protection againstMyHCIdepletionrepresentsaremarkablefindingin skele-talmyopathies,sincethismoleculeisdirectlyassociatedwiththe productionofenergy,forceandvelocityofcontractionbymyocytes, aspectswithmarkedinfluenceonmusclefunction(BärandPette, 1988;Goldspink,2003).

Theimprovedredoxbalancealsoindicatedtheprotectiveroleof exercisetrainingininfectedanimalscomparedtosedentaryones. ThiseffectwasmediatedbyreducedROSandNOproduction,which wasrelatedtoreducedlipid(i.e.TBARS)andprotein(PCny) oxi-dationinskeletalmusclefromtrainedanimals.Althoughreactive stresshasbeendirectlyimplicatedinheartmorphofunctional dam-ageandChagascardiomyopathyprogression(Mac¸aoetal.,2007; Guptaetal.,2009),theimpactofthisprocessonskeletal myosi-tisispoorlyunderstood.Apparently,mitochondrialdysfunctionin parasitizedskeletalmyocytesisanintrinsicsourceofROSandRNS (Báezetal.,2015).However,theinflammatoryprocessand “res-piratoryburst”ofrecruitedleucocyteshasbeenproposedasthe mainsourceofreactivemediators,especiallyNO,H2O2,O2•−,and OH−(Paivaetal.,2012;Santosetal.,2015b).Thispropositionis supportedgiven thatanti-inflammatorystrategies are accompa-niedbyamarkedreductioninROSandRNSproductioninChagas disease(Novaesetal.,2016a,b).Thus,byreducingleucocyte migra-tionandinflammationseverity,exercisetrainingregulatesapivotal sourceofreactivemetabolites,reducingROSandRNStissuelevels andsecondaryreactivetissuedamage.Althoughthismechanism seemstobesimilartothoseobservedinChagascardiomyopathy (Novaesetal.,2016b),theROSandRNSproductionpathwaysand

(7)

theroleofthesemoleculestothedevelopmentofskeletalmyositis wasnotcompletelyelucidated,requiringfurtherstudies.

Inthepresentstudy,reducedlipidandproteinoxidationcannot beexclusivelyattributedtotheattenuationinmuscle inflamma-tionandreducedreactivemetaboliteproduction.Thus,increased antioxidantenzymeactivity(i.e.CATandSOD)observedininfected and trained animals is also a remarkable adaptation that con-tributes to counteract ROS and RNS, restricting reactivetissue damage.Improvementsinredoxmetabolismhavebeen systemati-callydescribedinanimalsandhumans,anadaptationthattogether withimmunologicalmodulationhasprovidedtherationalebasis that supports the indication of exercise training to treat sev-eralhealthconditions,includingmetabolic(Bacurauetal.,2016; Hedermannet al.,2016)and infectious diseases(Lowderet al., 2005;Schebeleski-Soaresetal.,2009).

Takentogether, ourfindings indicatedthat exercise training inducedaprotectivephenotypeinT.cruzi-infectedmice,enhancing thehostdefensesagainsttheparasiteandattenuatingtheextent ofpathologicalremodelingassociatedwithskeletalmyositis. Tak-ingintoaccountthatthereductionofskeletalmuscledamagewas accompaniedbyanattenuationoftheinflammatoryprocess,ROS andNOproductionandreactivetissuedamage,aswellasthe upreg-ulationofantioxidantenzymeactivity,thebeneficialadaptations inducedbyexercisewerepotentiallyassociatedwithanimproved immunologicalandredoxbalanceininfectedanimals.

Conflictofintereststatements

Therearenoconflictsofinterest.Allauthorscontributedtodata collectionandanalysis,articlepreparationandhaveapprovedthe finalmanuscript.

Acknowledgments

ThisworkwassupportedbytheBrazilianfundingagencies Con-selhoNacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq) (454901/2014-3)andFundac¸ãodeAmparoàPesquisadoEstadode MinasGerais(FAPEMIG)(APQ-02309-14).TheauthorsAndré Tal-vaniandAntônioJ.NatalihaveresearchfellowshipsfromConselho Nacional deDesenvolvimento Científico e Tecnológico (CNP-q), Brazil.

References

Aebi,H.,1984.Catalaseinvitro.MethodsEnzymol.105,121–126.

Báez,A.L.,Reynoso,M.N.,LoPresti,M.S.,Bazán,P.C.,Strauss,M.,Miler,N.,Pons,P., Rivarola,H.W.,Paglini-Oliva,P.,2015.Mitochondrialdysfunctioninskeletal muscleduringexperimentalChagasdisease.Exp.Mol.Pathol.98,467–475.

Bär,A.,Pette,D.,1988.Threefastmyosinheavychainsinadultratskeletalmuscle. FEBSLett.235,153–155.

Bacurau,A.V.,Cunha,T.F.,Souza,R.W.,Voltarelli,V.A.,Gabriel-Costa,D.,Brum,P.C., 2016.Aerobicexerciseandpharmacologicaltherapiesforskeletalmyopathyin heartfailure:similaritiesanddifferences.Oxid.Med.CellLongev.2016, 4374671.

Brener,Z.,1962.Therapeuticactivityandcriterionofcureonmiceexperimentally infectedwithTrypanosomacruzi.Rev.Inst.Med.Trop.SãoPaulo4,389–396.

Fialho,P.H.,Tura,B.R.,Sousa,A.S.,Oliveira,C.R.,Soares,C.C.,Oliveira,J.R.,Souza, M.V.,Coelho,M.P.,Souza,F.C.,Cunha,A.B.,Kopiler,D.A.,2012.Effectsofan exerciseprogramonthefunctionalcapacityofpatientswithchronicChagas’ heartdisease,evaluatedbycardiopulmonarytesting.Rev.Soc.Bras.Med.Trop. 45,220–224.

Gleeson,M.,2007.Immunefunctioninsportandexercise.J.Appl.Physiol.103, 693–699.

Goldspink,G.,2003.Geneexpressioninmuscleinresponsetoexercise.J.Muscle Res.Cell.Motil.24,121–126.

Gomes,J.A.,Bahia-Oliveira,L.M.,Rocha,M.O.,Martins-Filho,O.A.,Gazzinelli,G., Correa-Oliveira,R.,2003.Evidencethatdevelopmentofsevere

cardiomyopathyinhumanChagas’diseaseisduetoaTh1-specificimmune response.Infect.Immun.71,1185–1193.

Gupta,S.,Wen,J.-J.,Garg,N.J.,2009.OxidativestressinChagasdisease.Inter. Perspect.Infect.Dis.ID190354,1–8.

Gutteridge,J.M.C.,Halliwel,B.,1990.Themeasurementandmechanismoflipid peroxidationinphysiologicalsystems.TrendsBiochem.15,129–135.

Habig,W.H.,Pabst,M.J.,Jakoby,W.B.,1974.GlutathioneS-transferases:thefirst enzymaticstepinmercapturicacidformation.J.Biol.Chem.249,7130–7139.

Hedermann,G.,Vissing,C.R.,Heje,K.,Preisler,N.,Witting,N.,Vissing,J.,2016.

Aerobictraininginpatientswithcongenitalmyopathy.PLoSOne11,e0146036.

Levine,R.L.,Garland,D.,Oliver,C.N.,Amici,A.,Climent,I.,Lenz,A.G.,Ahn,B.W., Shaltiel,S.,Stadtman,E.R.,1990.Determinationofcarbonylcontentin oxidativelymodifiedproteins.MethodsEnzymol.186,464–478.

Lima,M.M.,Rocha,M.O.,Nunes,M.C.,Sousa,L.,Costa,H.S.,Alencar,M.C.,Britto, R.R.,Ribeiro,A.L.,2010.Arandomizedtrialoftheeffectsofexercisetrainingin Chagascardiomyopathy.Eur.J.HeartFail.12,866–873.

Lima,M.M.,Nunes,M.C.,Nascimento,B.,Costa,H.S.,Sousa,L.A.,Teixeira,A.L., Rocha,M.O.,Ribeiro,A.L.,2013.Improvementofthefunctionalcapacityis associatedwithBDNFandautonomicmodulationinChagasdisease.Int.J. Cardiol.167,2363–2366.

Lowder,T.,Padgett,D.A.,Woods,J.A.,2005.Moderateexerciseprotectsmicefrom deathduetoinfluenzavirus.Brain.Behav.Immun.19,377–380.

Mac¸ao,L.B.,WilhelmFilho,D.,Pedrosa,R.C.,Pereira,A.,Backes,P.,Torres,M.A., Fröde,T.S.,2007.Antioxidanttherapyattenuatesoxidativestressinchronic cardiopathyassociatedwithChagas’disease.Int.J.Cardiol.123,43–49.

Maldonado,I.R.,Ferreira,M.L.,Camargos,E.R.,Chiari,E.,Machado,C.R.,2004.

SkeletalmuscleregenerationandTrypanosomacruzi-inducedmyositisinrats. Histol.Histopathol.19,85–93.

Malm,C.,2004.Exerciseimmunology:thecurrentstateofmanandmouse.Sports Med.34,555–566.

MontesdeOca,M.,Torres,S.H.,Loyo,J.G.,Vazquez,F.,Hernández,N.,Anchustegui, B.,Puigbó,J.J.,2004.Exerciseperformanceandskeletalmusclesinpatients withadvancedChagasdisease.Chest125,1306–1314.

Niess,A.M.,Dickhuth,H.H.,Northoff,H.,Fehrenbach,E.,1999.Freeradicalsand oxidativestressinexercise?immunologicalaspects.Exerc.Immunol.Rev.5, 22–56.

Novaes,R.D.,Penitente,A.R.,Gonc¸alves,R.V.,Talvani,A.,Neves,C.A.,Maldonado, I.R.,Natali,A.J.,2011.EffectsofTrypanosomacruziinfectiononmyocardial morphology,singlecardiomyocytecontractilefunctionandexercisetolerance inrats.Int.J.Exp.Pathol.92,299–307.

Novaes,R.D.,Penitente,A.R.,Gonc¸alves,R.V.,Talvani,A.,Peluzio,M.C.G.,Neves, C.A.,Natali,A.J.,Maldonado,I.R.S.C.,2013.Trypanosomacruziinfectioninduces morphologicalreorganizationofthemyocardiumparenchymaandstroma, andmodifiesthemechanicalpropertiesofatrialandventricular

cardiomyocytesinrats.Cardiovasc.Pathol.22,270–279.

Novaes,R.D.,Santos,E.C.,Cupertino,M.C.,Bastos,D.S.,Oliveira,J.M.,Carvalho,T.V., Neves,M.M.,Oliveira,L.L.,Talvani,A.,2015.Trypanosomacruziinfectionand benznidazoletherapyindependentlystimulateoxidativestatusandstructural pathologicalremodelingofthelivertissueinmice.Parasitol.Res.114, 2873–2881.

Novaes,R.D.,Sartini,M.V.,Rodrigues,J.P.,Gonc¸alves,R.V.,Santos,E.C.,Souza,R.L., Caldas,I.S.,2016a.Curcuminenhancestheanti-Trypanosomacruziactivityof benznidazole-basedchemotherapyinacuteexperimentalChagasdisease. Antimicrob.AgentsChemother.60,3355–3364.

Novaes,R.D.,Goncalves,R.V.,Penitente,A.R.,Bozi,L.H.M.,Neves,C.A.,Maldonado, I.R.S.C.,Natali,A.J.,Talvani,A.,2016b.Modulationofinflammatoryand oxidativestatusbyexerciseattenuatescardiacmorphofunctionalremodeling inexperimentalChagascardiomyopathy.LifeSci.150,210–219.

Paiva,C.N.,Feijó,D.F.,Dutra,F.F.,Carneiro,V.C.,Freitas,G.B.,Alves,L.S.,Mesquita,J., Fortes,G.B.,Figueiredo,R.T.,Souza,H.S.,Fantappié,M.R.,Lannes-Vieira,J., Bozza,M.T.,2012.OxidativestressfuelsTrypanosomacruziinfectioninmice.J. Clin.Invest.122,2531–2542.

Powers,S.K.,Lennon,S.L.,Quindry,J.,Mehta,J.L.,2002.Exerciseand cardioprotection.Curr.Opin.Cardiol.17,495–502.

Preto,E.,Lima,N.E.,Simardi,L.,Fonseca,F.L.,Filho,A.A.,Maifrino,L.B.,2015.Effect ofmildaerobictrainingonthemyocardiumofmicewithchronicChagas disease.Biologics23(9),87–92.

Ricart-Jané,D.,Llobera,M.,López-Tejero,M.D.,2002.Anticoagulantsandother preanalyticalfactorsinterfereinplasmanitrate/nitritequantificationbythe Griessmethod.NitricOxide6,178–185.

Santos,E.C.,Novaes,R.D.,Cupertino,M.C.,Bastos,D.S.,Klein,R.C.,Silva,E.A.,Fietto, J.L.,Talvani,A.,Bahia,M.T.,Oliveira,L.L.,2015a.Concomitantbenznidazoleand suraminchemotherapyinmiceinfectedwithavirulentstrainofTrypanosoma cruzi.Antimicrob.AgentsChemother.59,5999–6006.

Santos,E.C.,Novaes,R.D.,Bastos,D.S.,Oliveira,J.M.,Penitente,A.R.,Gonc¸alves, W.G.,Cardoso,S.A.,Talvani,A.,Oliveira,L.L.,2015b.Modulationofoxidative andinflammatorycardiacresponsebynonselective1-and2-cyclooxygenase inhibitorandbenznidazoleinmice.J.Pharm.Pharmacol.67,1556–1566.

Sarban,S.,Kocyigit,A.,Yazar,M.,Isikan,U.E.,2005.Plasmatotalantioxidant capacity,lipidperoxidation,anderythrocyteantioxidantenzymeactivitiesin patientswithrheumatoidarthritisandosteoarthritis.Clin.Biochem.38, 981–986.

Schebeleski-Soares,C.,Occhi-Soares,R.C.,Franzói-de-Moraes,S.M.,deOliveira Dalálio,M.M.,Almeida,F.N.,deOrnelasToledo,M.J.,deAraújo,S.M.,2009.

Preinfectionaerobictreadmilltrainingimprovesresistanceagainst Trypanosomacruziinfectioninmice.Appl.Physiol.Nutr.Metab.34,659–665.

Souza,B.S.,Azevedo,C.M.,dLima,R.S.,Kaneto,C.M.,Vasconcelos,J.F.,Guimarães, E.T.,dosSantos,R.R.,Soares,M.B.,2014.Bonemarrowcellsmigratetothe heartandskeletalmuscleandparticipateintissuerepairafterTrypanosoma cruziinfectioninmice.Int.J.Exp.Pathol.95,321–329.

(8)

Teixeira,M.M.,Gazzinelli,R.T.,Silva,J.S.,2002.Chemokines,inflammationand Trypanosomacruziinfection.TrendsParasitol.18,262–265.

Torres,S.H.,Finol,H.J.,MontesdeOca,M.,Vásquez,F.,Puigbó,J.J.,Loyo,J.G.,2004.

CapillarydamageinskeletalmuscleinadvancedChagas’diseasepatients. Parasitol.Res.93,364–368.

Veloso,V.M.,Guedes,P.M.,Andrade,I.M.,Caldas,I.S.,Martins,H.R.,Carneiro,C.M., Machado-Coelho,G.L.,deLana,M.,Galvão,L.M.,Bahia,M.T.,Chiari,E.,2008.

Trypanosomacruzi:bloodparasitismkineticsandtheircorrelationwithheart parasitismintensityduringlong-terminfectionofBeagledogs.Mem.Inst. OswaldoCruz103,528–534.

Vizcaíno-Castillo,A.,Jiménez-Marín,A.,Espinoza,B.,2014.Exacerbatedskeletal muscleinflammationandcalcificationintheacutephaseofinfectionby mexicanTrypanosomacruziDTUIstrain.Biomed.Res.Int.2014,ID450389.

WorldHealthOrganization,2015.Chagasdiseaseamericantrypanosomiasis.Fact sheet,340.

Yamauchi,L.M.,Aliberti,J.C.,Baruffi,M.D.,Portela,R.W.,Rossi,M.A.,Gazzinelli,R.T., Mineo,J.R.,Silva,J.S.,2007.ThebindingofCCL2tothesurfaceofTrypanosoma cruziinduceschemo-attractionandmorphogenesis.MicrobesInfect.9, 111–118.

Zhang,L.,Tarleton,R.L.,1999.Parasitepersistencecorrelateswithdiseaseseverity andlocalizationinchronicChagas’disease.J.Infect.Dis.180,480–486.

Referências

Documentos relacionados

adequadas para os usuários internos, porém têm sua credibilidade afetada para os usuários externos, por acarretar maiores dificuldades em conceder uma visão integrada do desempenho

Our results showed that ginsenoside Rg1 activated IR and the AMPK pathway in skeletal muscle and liver of HFD mice as well as increased GLUT4 translocation to the plasma membrane

Exercise- based rehabilitation improves skeletal muscle capacity, exercise tolerance, and quality of life in both women and men with chronic heart failure. Aerobic training involving

observar que a amplitude de mudança da probabilidade de escolha pelo transporte rodoviário é maior com o aumento da diferença tarifária entre os modais do que quando há

In this review, we describe the effects of aerobic exercise training on sympathetic hyperactivity, skeletal myopathy, as well as cardiac function and remodeling in human and

5: morphometric evaluation of the collagen deposits in the heart and skeletal muscle of Calomys callosus infected with the Colombian strain of Trypanosoma cruzi : A: heart

Heart and skeletal muscle showed in the early (15th and 20th days) and advanced phases (35th to 45th days) of infection, TGF- β was detected in the myocardium in the cytoplasm

Tendo apenas em consideração a crítica musical de Berlioz e de Schumann publicada até 1840, assinalo desde já três aspectos comuns aos expressos por Wagner em De l’Ouverture: