• Nenhum resultado encontrado

Urban fire risk: Evaluation and emergency planning

N/A
N/A
Protected

Academic year: 2021

Share "Urban fire risk: Evaluation and emergency planning"

Copied!
7
0
0

Texto

(1)

Available

online

at

ScienceDirect

www.sciencedirect.com

Cultural

HELP

2014

Special

Issue

Urban

fire

risk:

Evaluation

and

emergency

planning

Tiago

Miguel

Ferreira

a,∗

,

Romeu

Vicente

a,1

,

Jos ´e

Ant ´onio

Raimundo

Mendes

da

Silva

b,2

,

Humberto

Varum

c,3

,

Aníbal

Costa

a

,

Rui

Maio

a,4

aRISCO-DepartmentofCivilEngineering,UniversityofAveiro,CampusUniversit´ariodeSantiago,3810-193Aveiro,Portugal

bLAETA-DepartmentofCivilEngineering,UniversityofCoimbra,RuaLu´ısReisSantos-oloIIdaUniversidade,3030-788Coimbra,Portugal cCONSTRUCT-DepartmentofCivilEngineering-StructuralDivision,FacultyofEngineeringoftheUniversityofPorto,RuaDr.RobertoFrias,4200-465 Porto,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26November2014 Accepted21January2016 Availableonline7July2016 Keywords:

Oldcitycentres Firerisk ARICAmethod Emergencyplanning Oldbuildings

a

b

s

t

r

a

c

t

Themanagement,preventionandmitigationofurbanrisksareassumedaspriorityactionswithinthe frameworkofanyrehabilitationandrequalificationprocessattheurbanscale,particularlyinthecase oftherehabilitationandrefurbishmentofoldcitycentres.Inthemostspecificdomainofurbansafety, seismicandfirerisk,whichcancauseseriousconsequences,arepartofthecollectivememoryofseveral communitiesandmustbeinevitablyhighlighted.Theseverityoftheresultingdamagesisamorethan validreasontostronglyvalueprevention,planningandmitigationstrategies,limitingtheirconsequences andguaranteeingpermanentimprovementactions.Intheviewoftheabovementioned,andinthescope ofaresearchprojectcarriedout,anewurbanfireriskassessmentmethodologywasdevelopedand appliedtotheoldcitycentreofSeixal.Thissimplifiedmethodologyisbasedonapreestablishedmethod designatedARICA.Over500buildingswereassessedusingthismethodology,andtheresultswere spa-tiallyanalysedusinganintegratedgeographicalinformationsystemtool(GIS).Itisworthnotingthatthe integrationoftheriskresultsintoaGISplatformisavaluablesteptowardstheriskmitigationataurban scale,allowingcitycouncilsorregionalauthoritiestoplaninterventionsonthebasisofaglobalspatial viewofthesiteunderanalysisleadingtomoreaccurateandcomprehensiveriskmitigationstrategies thatsupporttherequirementsofsafetyandemergencyplanningincaseofurbanfire.

©2016ElsevierMassonSAS.Allrightsreserved.

1. Introduction

1.1. Framework

Oldcitycentresareparticularareasofvitalimportancedueto

theirvaluablehistorical,architectural,culturalandsocialheritage,

whichshouldbepreservedandconstantlyvalued.Inthissense,it

isessentialthatinstitutionsresponsibleforsafeguardingthis

her-itageandthepopulationwhobenefitfromit,joinforcesandwork

togetheronthepreventionoffireriskwithintheseareas[1].

Theuniquefeaturesofoldcitycentresanditsbuildingstock

areclearlydistinctfromrecenturbanareas,favouringtheignition

∗ Correspondingauthor.Tel.:+0035123437004;fax:+00351234370094. E-mailaddresses:tmferreira@ua.pt(T.M.Ferreira),romvic@ua.pt(R.Vicente),

raimundo@dec.uc.pt(J.A.RaimundoMendesdaSilva),hvarum@fe.up.pt(H.Varum),

agc@ua.pt(A.Costa),ruiamaio@ua.pt(R.Maio). 1Tel.:+0035123437004;fax:+00351234370094. 2Tel.:+00351239797206;fax:+00351239832969. 3Tel.:+00351220414882;fax:+1446.

4Tel.:+0035123437004;fax:+00351234370094.

andpropagationofafire.Severalfactorshavebeenidentifiedas

potentialcontributorsforincreasingfireriskintheseareas:

com-bustiblematerialspresentintraditionalbuildings,thehighdensity

ofbuildingsinoldcitycentreswithnarrowunobstructedstreet

widths, the wallsharingbetween adjacentbuildings, the

inad-equate adaptationof buildingstonon-residential purposes, the

proliferationofunoccupiedorderelictbuildingsfrequentlystoring

largeamountsofcombustiblematerialsandmainly,theexistence

ofoldelectricalinstallationswithlackofmaintenance,whichisone

ofthemaincausesoffireriskofoldbuildingstock[2].

Throughoutworldhistory,therearemultipledevastatingfire

exampleswithcatastrophic consequencesinboth economyand

heritage.The1666greatfireofLondon,andthe1871fireofChicago,

aretwoofthemostsignificanturbanfireevents,leadingtothe

nearlycollapseofbothcitiesandtohumanlossscalewithno

prece-dentsinhistory.InPortugal,the1988Chiadofire,affectingthis

importantwarehouseandcommercialareaofLisbon(seeFig.1),

remainsasoneofthemostmarkingfireeventinthecountry,

lead-inginclusivelytothecreationofthefirstPortugueseMinisterial

OrderNo.426/89of6thDecember,entirelydedicatedtothismatter

[3].Although,noothersimilarorcomparableeventhasoccurred,

http://dx.doi.org/10.1016/j.culher.2016.01.011

(2)

Fig.1. Chiadofireduringbothpropagationandextinctionphase[8,9].

fireriskinoldcitycentresisrecognisedbycitizensand

responsi-bleentitiesasaseriousproblem.In2010,Coelhohasdevelopeda

comprehensiveworkonbuildingconservationandrehabilitation

fromthepointofviewoffiresafety,identifyingthemostcommon

issuesfoundinourbuildingstockandsuggestingsomesolution

toovercomethosedeficiencies[4].Althoughfireriskassessment

methodologiescontinueatanearlystageofdevelopmentinrespect

tolarge-scaleassessmentanimportantcontributionwasrecently

givenbyMagalhães[5]whichmayenhancedevelopmentandbring

attentiontofiresafetyinbuildingswithinurbanareas,throughthe

developmentofanITtooldesignatedFIREcheck,gearedtowards

theorganisation,planninganddatastorageoffiresurveyingand

inspectionworkofbuildings. Moreover,a handbookcontaining

guidelinesandprocedurestocarryoutduringfiresafetysurveying

work has also been developed by [5]. This tool was

compre-hensivelyreviewed and optimisedby Barral [6] toincorporate

theself-protectionpracticesand measuresdefinedinthelatest

nationalfiresafetycode[7].

1.2. Researchaims

Themain goalof this researchwork is focusedon

develop-ingalarge-scalesupportingtoolforemergencyplanningdirected

mainlytowardstooldcitycentres.Inafirstphase,theSeixalcase

studyallowedtoidentifyandcollectthemainfireriskvulnerability

sourcesandthen,inasecondphase,tousethesedataasinputfor

thedevelopmentandapplicationofthenewmethodologytoassess

urbanfirerisk.Thefirstphaseofidentificationanddatacollection

wasperformedthroughagroupofcoordinatedfieldinspections

identifyingtheprincipalsafetyfactorsagainstfireriskinhistorical

buildings,whichwerestoredinalinkeddatabaseusedinaGIStool

environment.

2. Methodofresearch:fireriskindex

Fire risk assessment methodologies currently available are

scarceandthegreatmajorityofthemweredevelopedexclusively

fortheevaluationofsingleandrecently-builtbuildings,therefore

beingunsuitablefor application tooldmasonry buildingsor at

larger scales. Even though, four different existing

methodolo-giesshouldbelisteddue totheir characteristics,which canbe

in a broad sense approximatedto the old city centres reality:

the Gretener method; the FRAME method; the FRIM method

and the ARICA method [10]. All the referred methodologies

havetheirapplicabilityscaleasa commondenominator, which

is directed to single buildings or at most to building

aggre-gate assessment. Nevertheless, ARICA method presents a clear

advantagewhencomparedwiththeremainingones,itismuch

moreflexible interms ofmethodologicalformulationsallowing

that, with some modifications, it can be used to assess either

old or recent buildings. This is the wholepoint of developing

an expeditious methodology on the same base as the scoring

Table1

Globalfactors,sub-factorsandpartialfactorsdefinition.

Globalfactors Sub-factors Partialfactors,PFij

Globalrisk factor,FGR

Fireignition,SFI Buildingconservationstate

(A1)

Electricinstallations(A2) Gasinstallations(A3) Fireloadnature(A4) Firepropagation,SFP Gapbetweenaligned

openings(B1)

Safetyandsecurityteams (B2)

Firedetection,alertand alarm(B3)

Firecompartmentalisation (B4)

Fireloads(B5) Evacuation,SFE Evacuationandescape

routes(C1) Buildingproperties(C2) Evacuationcorrection factors(C3) Globalefficiency factor,FGE

Firecombat,SFC Buildingexternalfire

combatfactors(D1) Buildinginternalfire combatfactors(D2) Securityteams(D3)

methodologydevelopedbyVicentefortheseismicvulnerability

assessment of old masonry buildings at the urban scale [11],

which is essentially based in qualitative criteria. Aiming the

mentionedgoals,anewsimplifiedproposalhasbeendeveloped

withbasisonthesameprinciplesoftheoriginalARICAmethod,

butthistimeadaptedtothealreadyidentifiedneeds.

By exploiting information and researchcollected duringthe

extensiveinspectionphase,itwaspossibletodeterminethefire

riskindex,FRIamongotherindicators.Pleasenotethatwiththis

new proposal the authorsdo not want to disregard the

origi-nalARICA method,butassumeit asalarge-scalereworkedand

redefinedassessmenttool,performinganinitialandreliable

esti-mation, and highlighting constraints in need of more detailed

assessmentmethodologies.Thus, astheoriginalARICA method,

thenewfirerisksimplified methodologyis basedontwo main

factors:theglobalriskfactor,FGR,andtheglobalefficiency

fac-tor, FGE(see Table1).The first is divided in three sub-factors

devoted to evaluating the fire ignition phase, the propagation

phase and the buildingevacuation phase. The globalefficiency

factor, FGE, is associated just to one sub-factor evaluating the

firecombatphase.Thefoursub-factorshavethesamenumerical

weightinthecalculationoftheFireRiskIndex(FRI).However,the

mentioned sub-factors approach the generality of the aspects

relatedtofirepreventioninoldmasonrybuildings,followingthe

wholeeventfromthefire ignition,propagationand evacuation

capacity,tofirecombatandextinguishing.Thesub-factors

(3)

Table2

ValuesofthegasinstallationconditionsforpartialfactorPFA3.

Gassupplyingtypeandsiteconditions PFA3

Pipedgas – – 1.00

Gasreservoir – – 1.10

Gascontainers External installation – 1.20 Internal installation Well-ventilated compartment 1.50 Non-ventilated compartment 1.80 Table3

Valuesofthedetection,alertandalarmfiresystempartialfactorPFB3.

Firedetection,alertandalarmsystems Codecompliance

Equipment/devicetype PFB3

Doesnotrequire Thereisanautomaticfire detectionsystem(automatic detectors)

0.50

Thereisamanualfiredetection system(alarmoperatorbuttons)

0.90 Require

Equipmentinaccordancewith firecoderequirements

1.00 Thereisnomanualfiredetection

systemwithalarmoperator buttons

1.20

Thereisonlyamanualfire detectionsystem,whenfirecode requiresanautomaticfire detectionsystemaswell

1.80

Thereisnoautomaticfire detectionsystem

2.00

functionoftheinspectioncriteriaandweredefinedbasedon

ana-lyticalhierarchyprocess.Asinterventionsinoldcitycentresshould

betargetedatreducingboththelikelihoodoffireoccurrenceand

propagation,thesetwo sub-factors,SFI and SFP,are affectedby

aggravatingcoefficients1.20and1.10,respectively.Thevalueof

eachsub-factorisobtainedasthesumofallthepartialfactor

val-ues.Inturn,thesefactorsevaluatedetailedfeaturesassociatedto

eachsub-factor,suchasthestateofpreservationofthebuilding,

electricalandgasinstallationsandthefireloadnature,relativeto thefireignitionsub-factor,SFI.

Belowisprovidedthedefinitionofthreeofthepartialfactors

specifiedinTable1–PFA3,PFB3,PFC1andPFD1–,corresponding

todifferentsub-factors.Thevaluesassociatedtothepartial

fac-torPFA3,concerninggasinstallationandsupply,arepresentedin

thefollowingTable2.Furtherinformationregardingthe

defini-tionandcorrespondingvaluesofalltheotherpartialfactorscanbe

consultedin[12].

ThepartialfactorPFB3relatedtodetection,alertandalarmfire

systemshasagreatinfluenceoverthedevelopmentand

propaga-tionoffireevents.Thepresentfirenationalcode[13]establishes

twodifferentalarmfireequipment/devices,automaticdetectors

andalarmoperatorbuttons(manualdetectors),beingthelast

nat-urallyfarlessefficient.ThefollowingvaluesinTable3weredefined

toassignthepartialfactorPFB3.Wheneverthesedetection,alert

andalarmequipmentisnotdemandedbythepresentfirecode,one

mustfollowtheoriginalARICAmethodologyprinciples[14].

More-over,thevalueofthispartialfactorshouldbeconsideredequalto

1.00,havingthereforenoinfluenceoverthefirerisk,wheneverthe

existingsafetymeasuresmeetthefirecoderequirements.

ThepartialfactorPFC1considersallfeaturesconcerning

build-ingevacuationconditionsandescapingroutes,fromclearwidthsof

bothhorizontalandverticalevacuationandescaperoutes,to

win-dowsanddoorswidths,numberofavailableexits,slopeofvertical

Table4

CoefficientvaluesoftheevacuationandescaperoutespartialfactorPFC1.

Conditionsofevacuationandescaperoutes PFC1

Widthsofcorridors/pathsandopeningslowerthan 0.90m

0.25 Numberofexitslowerthantheminimumregulatory

required

0.25 Slopeofverticalescaperouteshigherthan45◦ 0.25

Nonexistenceoflight-signallingemergencysystems whenrequired

0.25

Table5

Featuresandvaluesfortheaccessibilityparameter. Accessibilityandevacuationrouteconditions Height [m] Width [m] Clearheight [m] Slope[%] Accessibility parameter value ≤9.00 ≥3.50 ≥4.00 ≤15.00 1.00 ≥3.50 ≥4.00 >15.00 1.50 >9.00 ≥6.00 ≥5.00 ≤10.00 1.00 ≥6.00 ≥5.00 >10.00 1.50 Table6

Featuresandvaluesfortheexternalfirehydrantsparameter. Conditions

Distancefromthefirehydrant Existenceofwall hydrants Firehydrants parametervalue ≤100m No 1.00 >100m Yes 1.50 No 2.00

escaperoutesandemergencylightsignagesystems,whenrequired.

Onceagain,incomparisontotheARICAmethodology[14],the

def-initionofthispartialfactorcomprisesamoresimplifiedapproach.

Thus,topartialfactorPFC1isassignedaninitiallowerlimitvalue

equalto1.00,towhicheventuallyaddedoneormoreofthe

follow-ingcoefficientsrelatedtoevacuationandescaperoutes’inherent

conditions(inTable4).Itisworthnotingthat,alsointhiscase,the

conditionspresentedinTable4weredefinedinaccordancewith

thePortuguesefirecode[13].

Fromthelastgroupofpartialfactorsassociatedtoglobal

effi-ciency, FGE, the definitionof the buildingexternal fire combat

partialfactorPFD1comprisesthearithmeticaverageofthe

follow-ingthreeparameters:buildingsaccessibility;externalfirehydrants

andwatersupplyreliability.Accessibilitiesareofgreatimportance

forfirebrigadesintacklingfires,sinceitgivesadecisive

contribu-tiontofiredevelopmentandpropagation,asalreadymentioned.

Inthissense,Table5bellowpresentsthefeaturesandconditions

neededtoevaluatethisparameter.Inthecaseofroutewidthsor

clearheightsbelowtherangedvalueslistedinTable5,this

acces-sibility parametermust beassigned equal to2.00, astheseare

consideredtwopreponderantassessmentconditions.

Inrespecttohydrantsassessmentparameter,thenationalfire

codedemandstheexistenceoffirehydrantsatamaximum

dis-tanceof30metersfromeverybuildingexit.Consideringhistorical

city centre mesh one can easily understand that this

require-mentisunreasonableand thus,thereferred maximumdistance

wasassumedinlinewiththisreality,setas100metersforthe

proposednewmethodology.Thefollowing Table6outlines the

admissiblevaluesreferringtoexternalfirehydrantsparameter.If

firstinterventionwallhydrantsaremadeavailable,thevalueof

thisparameterisreducedonlyinthecaseofdistancesfromfire

(4)

Table7

Referenceriskfactor,FRR,determinationfordifferentbuildingusetype.

Referenceriskfactor Residential Serviceorindustrial spaces,librariesand archives

FRR 0.915+0.25×FCa 1.10+0.25×FCa aF

Cisthecorrectionfactorandcanassumethevaluesof1.10,1.20or1.30,for buildingswithupto3,upto7ormorethan7floors,respectively.

Thewatersupplyreliabilityparameterisconsideredequalto

1.00,asthereisnovaliddataorinformationallowingdetermining

itsreliabilityatthenecessarymoment.

Havingexplainedthepreviousfactorsandtheirdefinitions,the

fireriskindex,FRI,rangesfrom0to4,isgivenbyEq.(1)thatdepicts

theratiobetweentheweightedaverageofallthesub-factorsand

thereferenceriskfactor,FRR,on.Thisreferenceriskfactor,FRR,is

determinedtakingintoaccountthetypeofbuildinguse,sincethe

partialfactorrelativetothefireloadnature(PFB5)variesfromcase

tocase,asshowninTable7.

FRI= (1.20×SGI+1.10FR×SFP+SFE+SFC)/4

R (1)

AsintheARICA originalmethodology,theobtainedfire risk

index,FRI,assumestheunitvalueasthereferencevalueforsafety

verification.Thus,ontheonehand,afireriskindexvaluehigher

thanthereferencevalue(equalto1.00)suggeststhatfurther

inter-ventionsarerequiredinordertomitigateitsfirerisk.Ontheother

hand,afireriskindexvaluelowerthan1.00meansthatthe

build-ingfulfilsthePortuguesefirecoderequiredminimumconditions,

howeverthereisstillroomfortheimprovementofsomefeatures

[13,15].Finally,thenormalisedfireriskvalue,FRI*,wasobtained

throughthenormalisationofthepreviousFRIvalue,between0and

100,simplifyingthevisualinterpretationofthisoutput,particularly

inaGISenvironment.Notethatfireriskassessmentisa

determi-nisticbasedapproachasafunctionoftheempiricaldetermination

ofpartialfactors.

3. CasestudyoftheoldcitycentreofSeixal,Portugal

UnderthefireriskassessmentoftheoldcitycentreofSeixal,504

oldmasonrybuildingswereevaluated,spreadovera166,000m2

area [16]. Trying to optimise both field inspections and data

processingtime,thecasestudyareawasdividedintofivedifferent

zones,accordingtothetypologicalcharacteristicsofthebuildings

(seeFig.2).Withrespecttothesetypologicalcharacteristics,the

buildingstockwasmainlyconstitutedbyrammedearthandpoor

stonemasonryofirregularfabric,howeverinsomecasessimple

brick masonry walls were also found. Horizontal diaphragms

and roofing structure systems are mostly composedby timber

elements, although occasionally, slender reinforced concrete

slabswerefound.Duetodifficultiesencounteredinaccessingthe

interior of all thebuildings and time constraints, two types of

inspectionswithtwodifferentlevelsofdetailweredefined.Thus,

the504buildingsweredividedinto threegroups basedonthe

detailoftheavailableinformation:thefirstgroupcomposedof

the99buildingsforwhichitwaspossibletoperformadetailed

inspection,werestudiedbyfillingindetailedchecklistsdeveloped

aspartofthescopeofthisresearch.Asisfullydiscussedin[16],

theinspectionanddiagnosischecklistswerestructuredaccording

tothebuildingcriteria, which weredefinedahead oftime in a

hierarchical manner. The second group was composed of 197

buildingsforwhichonlya non-detailedexteriorinspectionwas

possible.Athirdgroupcomposedof208buildingswasnotincluded

in this study due to thebuildings’ construction characteristics

(R.Cbuildings),actualconservationstates(rehabilitated,inruinor

demolished)andcurrentoccupationstate(unoccupied).

4. Resultsanddiscussion

Withtheapplicationofthissimplifiedmethodologyintegrated

inaGIStoolenvironment,itwaspossibletoplotaspatial

map-pingofurbanscaleoutputs.TheGISapplicationsoftwareArcGis®

10.2[17]adoptedinthisstudycombinesgeo-referencedgraphical

information,inwhichpolygonsrepresentbuildings,withseveral

featuresand attributes,allowingfor theirdisplay,selection and

search.Althoughthismappingprocessingwasperformedforthe

parishes of Seixal, Arrentela,Amora and Paio Pires, only those

relatedtotheoldcitycentreofSeixalarehereinpresented.

Thefirstresultregardsthemappingofthenormalisedfirerisk

indexvalues,FRI*(seeFig.3).Thisindicatorallowsinabroadand

spatialmannertoidentifymoreunsafeandcriticalbuildingstock.

Buildingsclassifiedasmostvulnerablegenerallycombineagroup

ofthefollowingsituations:derelictandobsoleteelectrical

instal-lations;structuralsafetyproblems;significantfireloadingdueto

activitiesdevelopedinthosebuildings;lackorinoperabilityoffire

detectionmeans,alertandalarmsystems,constrainedoreven

inac-cessibleevacuationroutes.

Firerisk indexvalues under 20,mean that buildingsdo not

presentsignificantproblems,orcompromisefire risksafety

sit-uations, being satisfied in general the fire safety code pillar

requirements. On theotherhand, buildingspresenting fire risk

indexvaluesover40requirethoroughanalysesandthedefinition

ofpreventivemeasurestoimprovetheirsafetyconditions.Finally,

afirerisk indexvaluebetween20and40 meansthatbuildings

donotcomplywithallthefirecoderequirements,being

neces-sarytoadapt and implement furtherimprovingmeasures.It is

worthnotingthat,althoughtheyhavebeendefinedfrom

compar-ativeanalyseswiththeoriginalARICAapproach,thisboundaries

are indicative and therefore they should not be interpreted

rigidly.

InzonesZ1,Z2andZ3,onecanobservethatseveralbuildings

showFRI*valuesover40,whichgenerallypresentcharacteristics

andfeaturesthatpotentiallyaggravatefirerisks.Criticalbuildings

wereidentifiedandconsideredforFRI*valuesover60,normally

correspondingtocommercialandservicebuildings,whichoften

possessextremelyhighfireloadmaterials,exponentially

increas-ing the vulnerability to fire. In zones Z4 and Z5, due to their

predominantandpronouncedresidentialuse,thisscenarioismore

encouraging,withsmallnumberofbuildingsshowingFRI*values

above40.

Withrespecttothefireignitionsub-factorvalues,SFI,whichis

afunctionoffourpartialfactorsfromPFA1toPFA4(seeTable1),itis

possibletogloballypointoutthatthemajorityofthebuildingstock

hasamoderateignitionrisk,beingthesebuildingslessvulnerable

tofireevents,sincetheysomehowshowcharacteristicsthatreduce

theriskoffireignition.However,asmallnumberofbuildingswere

classifiedwithhightoextremelyhighvaluesoffireignition

sub-factorvalues,duetotheirfunctiontypeandpredominantmaterial

nature,butalsoduetotheirgasandelectricalinstallations

ren-deringhigherprobabilitiesoffireignition.Thisfactwasonlytrue

forzonesZ1,Z2andZ3,correspondingtotheurbanareaswhereas

small-scaledindustryprevails.

Fig.4showsthemappingof thefire propagationsub-factor,

SFP,whichdependsinitsdefinition,onfivepartialfactors

deter-mination,fromPFB1toPFB5[12].Themajorityofthebuildingstock

wasevaluatedwithlowpropagationrisk,correspondingmainlyto

residentialbuildingswithlowfireload.Buildingsclassifiedwith

moderatepropagationriskareinmostcasesnon-residential

(5)

Fig.2. Casestudyareaofandzonedelimitation,fromZ1toZ5.

Fig.3.Normalisedfirerisk,FRI∗,mappingforzones(a)Z1,Z2,Z3and(b)Z4andZ5.

Fig.4. Fireignitionsub-factor,SFI,mappingforzones(a)Z1,Z2,Z3and(b)Z4andZ5.

withinsufficientlyspacedalignedopenings,increasingtheirfire

riskuptoamoderatelevel,withfocusinzonesZ1,Z2andZ3,

cor-respondingtotradeandserviceareas.Nightlyentertainmentareas

ofSeixalalsoshowlowvaluesoffireriskpropagation,reflecting

theveryfavourableimpactofcompliancewithcoderequirements

andmonitoringmeasuresobligedbyresponsibleentities.Onlytwo

buildingswereevaluatedwithextremelyhighvaluesoffirerisk

propagation,whichcorrespondtomixedresidentialand

commer-cialusebuildings,whereasbothstoredmaterialsandcarriedout

(6)

Fig.5. Accessibilitymapforzones(a)Z1,Z2,Z3and(b)Z4andZ5.

Fig.6.Firehydrantsmappingavailableinzones(a)Z1,Z2,Z3and(b)Z4andZ5.

The resultsobtained for the building evacuationsub-factor,

SFE,havedistinguishedcommercialand servicesbuildingswith

the mostunfavourable values in terms of fire risk evacuation.

Although building evacuation can be conducted with more or

less difficulty amongst the old building stock, several reasons

canbepointedoutasresponsibleforincreasingevacuationtime.

Excludingthoserelatedwithbehaviouralaspects,whichare

com-prehensivelydiscussedin[18],deficientevacuationescaperoutes

andtheconfigurationandefficiencyofdetection,alertandalarm

systems,canbepointedoutasthemostsignificantones.

Externalfirefactorsareavitalandconstrainingaspectofthe

firefightinginoldcitycenters,inparticularlythefirehydrant

loca-tionand operabilityandexternalaccessibilityconditions,which

typicallyaredifficultduetonarrowstreetsandsteepslopes.In

zoneZ1,thepresenceofnarrowstreets,oftenobstructedbyillegal

anddisorganisedparking,raisedbythepresenceofurban

equip-ment(benches,busstops,telephonebooths)installedinstrategic

locations,makesthisa problematicissueintermsof

accessibil-ity,affectingthefire combatresponse. Furthermore,inside this

areatherearepedestrianpathways,whichmakescombatusing

firevehiclespracticallyimpossible.Intheremainingzones,thefire

combatresponseingeneralwasclassifiedasefficient,although

smallurbanpocketsneedgreaterattention.Intermsofexternal

firehydrants,theoldcitycentreiswellserved,despitethefactof

notbeingentirelycompliantwiththefiresafetycode.

Incaseofanurbanfire,theaccessibilityconditionsofcompetent

civilprotectioninstitutions(firebrigade)areofgreatimportance.

The spatial mapping of partialfactor PFD1, allows plotting out

theextremelyimportantaccessibilityroutingmap(widthofthe

streets,avenuesand alleys),which ispresentedina categorised

manneronFig.5.

Thisaccessibilityroutelayoutwasbasedontwocriteria:clear

widthand height,and slope. Forthe clearwidthand heightof

the street,it wasconsidered as the minimumreference value,

3.5 and 4.0 metersrespectively (values defined in thenational

fire code), taking into account obstacles, foot pathways, urban

equipment.Tocategoriseaccessibilityconditions,threelevelswere

defined:

• inaccessibleorpossiblyblockedwithawidthlowerthan3.5m,

oronlyaccessiblebyfoot(redcoloured);

• partiallyconditionedroutes(yellowcoloured);

• unobstructed routesthat do not offeraccessibilitylimitations

(greencoloured).

Itshouldbenotedthatthismappingisconsideredconservative

andadjustabledependingonthetypeoffirefightingvehiclesfor

useinurbanfirecombat.

Aimingtoevaluatethestateofconservationandoperabilityof

firehydrants,netregisterswereassessedbyaddingsome

miss-ingorunregisteredwaterservicehydrantsandverifyingtheexact

locationoftheremainingones.Fromthiseffort,itwaspossibleto

mapSeixal’sactualfirehydrantsnetwork(seeFig.6),distinguishing

(7)

Thefiresafetycodecurrentlyineffectrequires,ontheonehand,

theexistenceofone firehydrant ata maximumdistanceof 30

metersofeachmainbuildingexit,andontheotherhand,the

exist-enceofonewallhydrantsatevery15metersofwall.Inoldcity

centres,theserequirementsarenotmet.For thisreason,inthis

simplifiedmethodology,itwasconsideredreasonabletoextend

theexistenceoffirehydrantsatamaximumdistanceof100meters,

independentlyofitstype.Morethantherequirementsintermsof

thenumberoffirehydrants,itisfundamentalthatalltheexisting

onesareworkingproperlywithadequatepressureandflowrate,

whichwasnotalwaysassured.

5. Conclusions

Asmentionedabove,thevulnerabilitytofireriskinoldurban

areasdependsonvariousfactors,aspresentedasdiscussed

previ-ously.Themethoddevelopedfortheassessmentofurbanfirerisk

isbasedonthesimplifiedmethodARICAandwasdevelopedfor

large-scaleassessmentandoperationscale,sincetheapplication

ofthementionedoriginalmethodtoallbuildingswithinthearea

studiedisnotpossibleduetotimeconstraintsissuesandtothe

limitedaccessconditionsoftheinteriorofbuildingsoron

consul-tingdrawingsanddetails.

Theresultswerefoundreliable,takingintoaccountthescaleand

aimofthisstudy,allowingtheidentificationofthemostvulnerable

buildingsinrespecttofirerisk.Fromtheassessmentcarriedout,it

waspossibletoidentifythemainfireprotectionandcontrol

meas-uresthatshouldbeimplementedinthenearfuture.Theprincipal

concernsandfiresafetyneedsforoldcitycentersarediscussed

below.

Electricalandgasinstallationsareoneofthemostcommonfire

spreadingcauses.Thelackofinformationisnodoubttheworstof

problem.However,gascontainersstillcontinuetobeconditioned

inclosedunventilatedareas.Electricalcablingisalsoresponsible

forpotentialfireignition,withtheabsenceofelectricalbreakers

andoldelectricalinstallationswithoutanytypeofprotection.Inold

citycentresandparticularlyinthepresentcasestudy,theexistence

ofsmallcommercialandserviceareasatthegroundfloorlevelare

frequent,whileupperfloorsareexclusivelyforresidentialpurposes

(mixeduseofbuildings),inwhichfiresafetylegalrequirementsare

oftenneglected[15].

InordertoreducefirerisksintheoldcitycentreofSeixal

sev-eralshort and medium term measuresare mentioned, suchas

closesurveillanceofunoccupiedorabandonedbuildings,alerting

ownerstotheconsequencesincaseofafireevent,improvingthe

firehydrantsnetwork,providingrecognitionmeasuresofbuildings

withcriticalfireloads,analysingthemoreadequatefirecombat

vehiclefor conditionedaccesslocationsand firedrillsincritical

areaswithintheoldcitycentre.

Theproposedmethodology wasvalidated bycomparingthe

achievedresultswiththoseobtainedapplyingtheoriginalARICA

(in[19])tofivebuildingsconsideredtypologicallyrepresentative

ofSeixal’sbuildingstock.Globally,althoughnon-expressive

devia-tionswerefound,theachievedresultsfromthisdirectcomparison

canbeseenaspositiveandsatisfactory,sincemaximumdeviations

werecalculatedin6%.Nonetheless,furthervalidationshouldbe

carriedout,byincreasingthesamplesize,allowingamoredetailed

analysisonthereliabilityoftheproposedmethod.

TheintegrationoftheachievedresultsintoaGIStoolhasagain

provedtobeaveryefficientandusefulstrategyfordatastorage,

namelybuildingfeaturesandsurveyinformation,andalsoforthe

creationofriskscenarios.Thesefeatures,combinedwiththe

pos-sibilityofmappingdifferentoutputs,makeGISaneffectivetoolin

thesupportofmitigationstrategiesandmanagementoffireriskat

anurbanscale.

Furtherimprovementsshouldbeimplementedinthepresented

methodology, such as the influence of adjacent buildings with

higher firerisk potential,whichshouldnaturally beconsidered

when assessing neighbouring buildings. Moreover, uncertainty

analysisandofthehumanfactorsinorderprovideexposure

param-eterdefinitionandevacuationprocedurecharacterizationshould

be also addressed on further studies. Finally, as the proposed

methodologyisbasedonPortuguesefirecodes andregulations,

limitingitsapplicabilitytoothercountries,furtherdevelopments

shouldaddressitsadaptationtoEuropeanfirecodesinforce,sothat

itcouldbeapplicableandextendedtootherEuropeancountries.

Acknowledgments

The authors would liketo acknowledgethe Civil Protection

DepartmentofSeixalMunicipalityfortheircontributionand

coop-erationonprovidingadequateandup-to-dateinformationduring

allthebuildinginspectionappraisalandrecordingactivity,aswell

aslogisticsupport.Theanonymousreviewersarealsothankedfor

theirinsightfulcommentsandconstructivesuggestions.

References

[1]R.Vicente,StrategiesandMethodologiesforUrbanRehabilitation Interven-tions,SeismicVulnerabilityandRiskAssessmentofCoimbra’sDowntownArea BuildingStock(PhDDissertation),CivilEngineeringDepartmentofthe Univer-sityofAveiro,Portugal,2008.

[2]A.M.S.Fernandes,FireSafetyinOldCityCenters(MasterDissertation),Faculty ofScienceandTechnologyoftheUniversityofCoimbra,Portugal,2006(in Portuguese).

[3]Portugal,MinesterialOrderNo.426/89,Medidascautelaresdeseguranc¸acontra riscodeincêndioemcentrosurbanosantigos,MinistériodaAdministrac¸ão InternaedasObrasPúblicas,TransporteseComunicac¸ões,Lisbon,Portugal, 1989,pp.5309–5313.

[4]A.Lec¸aCoelho,Buildingconservationandrehabilitationfromthepointofview offiresafety,in:A.B.Coelho,J.V.Paiva(Eds.),Conservac¸ãoereabilitac¸ãode edifíciosrecentes,CadernoEdifíciosCAD5,firsted.,LNEC,Lisbon,Portugal, 2010.

[5]A.Magalhães,ModeloInformáticoparaarealizac¸ãodeInspec¸õeseGestãoda SCIE(MasterDissertation),FacultyofEngineeringoftheUniversityofOporto, Portugal,2012.

[6]D.Barral,Implementac¸ãodomodeloFIREchecknoâmbitodasmedidasde autoprotec¸ãodaSCIE(MasterDissertation),FacultyofEngineeringofthe Uni-versityofOporto,Portugal,2013.

[7]C.F.Castro,J.B.Abrantes,ManualdeSeguranc¸acontraIncêndioemEdifícios, EscolaNacionaldeBombeiros,Sintra,Portugal,2009.

[8]P.Figueiredo,AnálisederiscodeincêndionabaixadeCoimbra(Master Dis-sertation),FacultyofScienceandTechnologyoftheUniversityofCoimbra, Portugal,2008.

[9]J.Porto,Aplicac¸ãodaNovaRegulamentac¸ãodeSeguranc¸acontraIncêndio emEdifícios,AEngenharianaProtec¸˜aoCivil,2ndseries,IngeniumEdic¸˜oes Lda,OrdemdosEngenheiros,n.116,Lisbon,Portugal,2010,pp.35–37(in Por-tuguese).

[10]A.Lec¸aCoelho,MetodologiasdeAvaliac¸ãodeRiscodeIncêndioUrbano,in: SeminárioNúcleosUrbanosAntigoeasEstratégiasdeProtec¸ãoCivil,2010.

[11]F.Neves,A.Costa,R.Vicente,C.S.Oliveira,H.Varum,Seismicvulnerability assessmentandcharacterisationofthebuildingsonFaialIsland,Azores,Bull. EarthquakeEng.10(1)(2012)27–44.

[12]R.Vicente,Cadernosdeapoioaoestudodoriscosísmicoedeincêndioem centrosurbanosantigosdoSeixal,PedroNunoInstitute,Seixal,Portugal,2010.

[13]Portugal,MinisterialOrderNo.1532/2008,RegimeJurídicodeSeguranc¸acontra IncêndiosemEdifício,INCM,Lisbon,Portugal,2008,pp.9050–9127.

[14]A.Rodrigues,Riscodeincêndioemcentroshistóricos:índicederisco(Fire RiskinHistoricalCentres:RiskIndex)(MScDissertation),CivilEngineering DepartmentoftheUniversityofAveiro,Portugal,2010(inPortuguese).

[15]Portugal,MinisterialOrderNo.220/2008,“Seguranc¸acontraIncêndiosem Edifícios”,OfficialGazetteoftheRepublicofPortugal,1stseries,Ministerial OrderNo.220.Lisbon,2008,pp.7903–7922(inPortuguese).

[16]C.Santos,T.M.Ferreira,R.Vicente,J.A.R.MendesdaSilva,Buildingtypologies identificationtosupportriskmitigationattheurbanscale–Casestudyofthe oldcitycentreofSeixal,Portugal,J.Cult.Herit.14(6)(2013)449–463.

[17]ESRI,GeographicInformationSystems(GIS),EnvironmentalSystemsResearch Institute.310NewYorkStreet,Redlands,92373-8100,USA,2005.

[18]G.Proulx,MovementofPeople:theEvacuationTiming.TheSFPEHandbook ofFireProtectionEngineering,fourthed.,NationalFireProtectionAssociation, Quincy,2008.

[19]A.Rodrigues,Riscodeincêndioemcentroshistóricos:índicederisco(Master Dissertation),UniversityofAveiro,Portugal,2010.

Referências

Documentos relacionados

[r]

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Para se estabelecer uma rede de disseminação entre os participantes deste Programa e as respectivas comunidades, foram desenvolvidas ações integradas compreendendo o diagnóstico

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Os controlos à importação de géneros alimentícios de origem não animal abrangem vários aspetos da legislação em matéria de géneros alimentícios, nomeadamente