• Nenhum resultado encontrado

J. Infect. Dis. (2015) 132–140] myocarditis”[Braz. effects of IL-28A in coxsackievirusB3-induced Retraction notice to “Antiviral and myocyteprotective INFECTIOUS DISEASES

N/A
N/A
Protected

Academic year: 2021

Share "J. Infect. Dis. (2015) 132–140] myocarditis”[Braz. effects of IL-28A in coxsackievirusB3-induced Retraction notice to “Antiviral and myocyteprotective INFECTIOUS DISEASES"

Copied!
10
0
0

Texto

(1)

www .e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Retraction

notice

Retraction

notice

to

“Antiviral

and

myocyte

protective

effects

of

IL-28A

in

coxsackievirus

B3-induced

myocarditis”

[Braz.

J.

Infect.

Dis.

(2015)

132–140]

Shihong

Wang

a

,

Xingyuan

Huang

a

,

Jing

Zhang

a

,

Congxin

Huang

b

aDepartmentofPediatrics,RenminHospitalofWuhanUniversity,WuhanUniversity,Hubei,PRChina bDepartmentofCardiology,RenminHospitalofWuhanUniversity,WuhanUniversity,Hubei,PRChina

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/ withdrawalpolicy).

ThisarticlehasbeenretractedattherequestoftheEditorandthePublisher.Afterathoroughinvestigation,thePublisher hasconcludedthatthepeer-reviewprocesshasbeencompromisedandthescientificintegrityofthepapercannotbe guaran-teed.Reviewerreportsweresubmittedfromemailaccountswhichwereprovidedtothejournalassuggestedreviewersbythe correspondingauthorduringthesubmissionofthepaper.Howevernoconfirmationhasbeenreceivedfromthoseaccounts uponfurtherrequestfromthePublishertoendorsethattheywereindeedthepersonswhocompletedthereviewsandthatthe non-institutionalemailaddresseswereofthem.

Thismanipulationofthepeer-reviewprocessrepresentsaclearviolationofthefundamentalsofpeerreview,ourpublishing policies,andpublishingethicsstandards.Apologiesareofferedtothereadersofthejournalthatthisdeceptionwasnotdetected duringthesubmissionprocess.

DOIoforiginalarticle:http://dx.doi.org/10.1016/j.bjid.2014.10.007.

http://dx.doi.org/10.1016/j.bjid.2015.09.001

(2)

www .e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Original

article

Antiviral

and

myocyte

protective

effects

of

IL-28A

in

coxsackievirus

B3-induced

myocarditis

Shihong

Wang

a

,

Xingyuan

Huang

a

,

Jing

Zhang

a

,

Congxin

Huang

b,∗

aDepartmentofPediatrics,RenminHospitalofWuhanUniversity,WuhanUniversity,Hubei,PRChina bDepartmentofCardiology,RenminHospitalofWuhanUniversity,WuhanUniversity,Hubei,PRChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22May2014 Accepted6October2014

Availableonline17December2014

Keywords: CoxsackievirusB3 IL-28A Apoptosis Myocarditis

a

b

s

t

r

a

c

t

Objective:Thisstudyaimedtoinvestigatewhetherinterleukin-28A(IL-28A)playsarolein murinemyocarditisinducedbycoxsackievirusB3(CVB3),andtoexploreitspossible mech-anisminvolved.

Methods:MaleBALB/cmicebothinfectedandnotinfectedbyCVB3wererandomlydivided intofourgroups (n=40), untreatedortreatedwith differentdoses ofIL-28A for4 days, andthensacrificedondays4and7post-infection.Theheartsampleswerecollectedfor histopathologicexamination.Cardiacviralloadwasdeterminedbyaplaqueassay. Addi-tionally,immunoblotanalysis,TUNELassay,andimmunohistochemistrywereperformed toexaminetheexpressionofsignaltransducer,activatoroftranscription1and2(STAT1 andSTAT2),CVB3-inducedapoptosisandtheexpressionofBcl-2,BAXandCaspase-3.

Results:Comparedtouninfectedmice,theCVB3infectedmiceexhibitedhighermortality rate(p<0.001),apparentinflammationandmyocardial lesion(p<0.01),and higher car-diacviral load(p<0.01). After CVB3infection, IL-28A treated micepresented nodeath (p<0.001),reduced inflammationand myocardial lesion (p<0.01), and lower viral load (p<0.01)comparedtountreatedmice.Besides,treatmentwithIL-28Amarkedlyincreased theexpressionsofSTAT1andSTAT2,andinhibitedCVB3-inducedapoptosisinmyocardial cellswithincreasedratioofBcl-2/BAX.

Conclusion:The antiviral and myocyte protective effects of IL-28A in CVB3-induced myocarditisareregulatedbySTAT1andSTAT2.

©2014PublishedbyElsevierEditoraLtda.

Introduction

Myocarditisisacardiacdiseaseassociatedwithinflammation andinjuryofthemyocardium.Severaltypesofviruseshave

Correspondingauthorat:DepartmentofCardiology,RenminHospitalofWuhanUniversity,WuhanUniversity,238JiefangRoad,Wuchang

District,Wuhan,Hubei,430060,PRChina.

E-mailaddress:huangfornew@163.com(C.Huang).

beenimplicatedinthedevelopmentofhumanmyocarditis.1 However, coxsackievirus B3 (CVB3)is considered the most common pathogen.CVB3-inducedmyocarditisisfrequently complicatedbycardiomyopathy,leftventriculardysfunction, andchronicheartfailure.2ThemurinemodelofCVB3-induced

http://dx.doi.org/10.1016/j.bjid.2014.10.007

1413-8670/©2014PublishedbyElsevierEditoraLtda.

(3)

myocarditis shares many features with human disease.3 Despite decades of extensive efforts, the pathogenesis of CVB3-inducedmyocarditisisstillnotwelldefined.Although CVB3causescellulardysfunctioneitherthroughinducedcell apoptosis,shut downofcell RNAand proteinsynthesisor viralproteasecleavageofcontractileproteins,4–7 thestrong hostTh1immuneresponsesmaybemoreresponsibleforthe courseofmyocytedamage,verifiedbytheimprovementof heartinjuryandfunctionbyimmunemodulatingand inhibi-tingagents.8–10Clinicalstudieshavealsofoundcytokinessuch asIL-1␤,IL-6andTNF-␣thatwereinvolvedinthecourseof cardiacdysfunction.11 Besides,thepoorprognosisformore thanhalfofpatientspresentingwithclinicalsymptoms,since currentlynoeffectivetherapyisavailableforthisdisease,12,13 muchworkonthedevelopmentofvaccinesandtherapeutic agentsagainstCVB3hasbeendone.

HumanIL-28A,IL-28B,andIL-29,alsoknownasinterferon (IFN)-␭2,-␭3 and -␭1,respectively,belongingto thetypeIII IFNs.14 Like other typical IFNs, these cytokines have been alsodemonstratedtoplayakeyroleinthenegative regula-tionofcytopathicvirusessuchasencephalomyocarditisvirus (EMCV),15vesicularstomatitisvirus(VSV),15cytomegalovirus (CMV),16influenzaAvirus(IAV),17respiratorysyncytialvirus (RSV),hepatitisBvirus(HBV),18hepatitisCvirus(HCV),18and herpessimplexvirus-2(HSV-2).19Agrowingnumberof pre-viousreportshavesuggestedthattypeIIIIFNsexertantiviral activitybytheinducedupregulationofIFNeffectorproteins suchasSTATproteins.14,20However,arecentstudyhasshown that certain types of viruses can develop mechanisms to inhibittheantiviralactivityoftypeIIIIFNs.21

ThisstudyaimedtoinvestigatewhetherIL-28Aplaysarole inmurinemyocarditisinducedbyCVB3,andtoexploreits pos-siblemechanisminvolvedbydeterminingtheexpressionsof STAT1andSTAT2,Bcl-2,BAX,andCaspase-3inCVB3-infected hearttissues.Itwillprovideareferenceforthedevelopment ofvaccinesandtherapeuticagentsagainstCVB3inhuman.

Materials

and

methods

Mice,CVB3infection,andIL-28Atreatment

The research protocol of this study was approved by the ethicalCommitteeofWuhanUniversitySchoolofMedicine. Animal handling was carried out according to the Wuhan Directivefor AnimalResearch. Atotal of240healthy male BALB/cmice(4-weekold),weighing10–12g,werepurchased from the AnimalCenter ofHubeiProvince (Wuhan, Hubei, China) and had free access to food and water during the experiments.Amongthem,160randomlyselectedmicewere inoculated intraperitoneally with CVB3 (Nancy strain) at a doseof105plaque-formingunits(pfu)inavolumeof100␮L

usingphosphatebufferedsaline(PBS)asavehicle,anddivided evenlyinto4groups(n=40),includinginfectedbutuntreated group, low-dose, mild-dose and high-dose IL-28A treated groups. Starting 1h after infection, these CVB3 inoculated micereceivedintraperitoneal injectionwith PBS,10,20,or 40␮g/kgofrecombinantmurineIL-28A(Peprotech,RockyHill, NJ), respectively, followed by daily subcutaneous injection for4days.The80uninfectedmice,dividedevenlyintotwo

groupsthatwereeitherintraperitoneallyinoculatedwithPBS (n=40,controlgroup)or40␮g/kgILrecombinantmurine IL-28A (n=40,IL-28Agroup). Tenmice from each groupwere euthanizedondays4and7post-infection,respectively.The heartswereexposed,perfusedwith5mLPBSthroughtheleft ventricle,andthenisolated.Approximately10mgoftissues fromcardiacapexwereexcisedandweighedforplaqueassay, whereastheremainderoftheheartwasfixedin10%neutral formalinforhistopathologicexaminationasdescribedbelow. The remaining20 miceof each group were monitoredfor healthstatusandsurvivalanalysis.

Histopathology

Theheartswerefixedin10%neutralformalinfor24h, embed-dedinparaffin,andthencutinto4␮m-thicksections(about foursectionsperheart).Thenthesectionswerestainedwith hematoxylinandeosin(H&E)andusedtoassess inflamma-toryinfiltration,myocardiallesionornecrosis.Theextentof inflammationandgeneralizedmyocardialfibernecrosiswere blindlyscoredbyapathologistbasedonthefollowingscale: 0,absent;0.5,rare;1.0,10%ofmyocardialareaaffected;2.0, 25% areaaffected;3.0,25–50%areaaffected;4.0,>50% area affected.Thetwoscoresreflectingtheextentofinflammation and myocardiallesionwerethen averagedtoyieldan inte-gratedpathology(IP)scoreasanindicatorofoverallinjury.22

Viralplaqueassays

Theviralplaqueassaywasperformedaspreviouslydescribed to determine cardiac viral load.22 One pieceof heart apex (10mg) was removed aseptically, weighed, and stored at −80◦C. Then the frozen heart tissue was homogenized in

200␮LPBSandcentrifugedat12,000rpmfor5min.Viraltiter, expressedaspfu/mL,wasdeterminedfromthesupernatant ofthehearthomogenatebyaplaqueassayonHeLacell mono-layersaccordingtopreviousstudy.23

Westernblotanalysis

Western blot analysis was performed as described in the literature to evaluate the expressions of STAT1 and STAT2.24 The ventricles of mice were homogenized in a lysis buffer consisting of 10mM HEPES, pH 7.4, 150mM NaCl, 5mM EDTA, 1mM sodium-orthovanadate, 20␮M 4-(2-aminoethyl)-benzenesulfonylfluoride,0.2%Nonidet P-40, 5␮g/mLleupeptin,andproteaseinhibitorcocktail(Sigma,St. Louis,MO).Thehomogenateswerecentrifugedat12,000rpm for10minat4◦C,andsupernatantswerecollectedto deter-minetheproteinconcentrationsusingtheDCproteinassay (Bio-Rad,Hercules,CA).Theequalamountsofprotein(40␮g) from each samplewere separated by sodiumdodecyl–poly acrylamiegelelectrophoresis(SDS-PAGE)using4–12%NuPAGE NovexprecastBis-Trisgradientgels(Invitrogen,Carlsbad,CA) andtransferredontopolyvinylidenedifluoride(PVDF) mem-branes(Bio-Rad,Hercules,CA).Themembraneswereblocked in 5%BSA for40minatroom temperature and then incu-batedindividuallyat4◦Covernightwithprimaryantibodies, includingrabbitpolyclonalantibodiesagainstSTAT1(1:1000) andactin(1:2000),andmousemonoclonalantibodiesagainst

(4)

STAT2(1:200)(CellSignalingTechnology,Inc.,Danvers,MA). AfterthreewashingswithTBST,membraneswereincubated atroomtemperaturefor40minwiththesecondaryantibodies includinghorseradishperoxidase(HRP)-conjugatedgoat anti-rabbitIgG(1:10,000)andgoatanti-mouseIgG(1:5000)(Santa Cruz Biotechnology, Inc., Dallas,TX). Thesignals from the boundantibodiesweredetectedusingtheSuperSignalWest PicoChemiluminescentSubstrateKit(Pierce,Rockford,IL).

Immunohistochemistry

Immunohistochemistrywasperformedtoassessthe expres-sionsofBcl-2,BAXandCaspase-3accordingtotheinstructions ofthemanufacturer.Briefly,paraffin-embeddedmyocardial sectionswere deparaffinized inxyleneandrehydrated ina seriesofgradedconcentrationsofethanol.Protein antigenic-itywasenhancedbyboilingthe sectionsinacitratebuffer withmicrowavefor15min.Endogenousperoxidaseactivity wasblockedwith3%hydrogenperoxideinPBSfor20minat 37◦C.Thenthesectionswerewashedwithdistilledwater,and incubated withthe primaryantibodies againstBAX (1:100), Bcl-2(1:100), and caspase-3(1:100) (Santa Cruz Biotechnol-ogy,Inc.,Dallas,TX)at4◦Covernight,followedbystaining withastreptavidin–biotin–peroxidasekit(BeijingZhongshan BiotechnologyCo.,Ltd,Beijing,China).Theimmunoreactions were then visualized witha 3,3-diaminobenzidinesolution (Beijing Zhongshan Biotechnology Co., Ltd, Beijing, China), counterstainedwith hematoxylin, and mounted.For nega-tivecontrols,anequivalentvolumeofPBSwasusedinplace ofthespecificprimaryantibodies.Theimmunostaining tis-suesampleswerevisualizedunderalightmicroscope(Eclipse E800, Nikon,Japan)and fivephotomicrographs were taken fromhighpowerfields(400×magnifications)randomly.The averageopticaldensity(AOD)fromthephotomicrographswas thenquantitatedusingthehighresolutionpathologicalimage analysissystem(HPIAS-1000;QianPingCorporation,Wuhan, China)tomeasureproteinexpressionlevelsofBcl-2,BAXand Caspase-3.TheratioofBAXtoBcl-2wasdetermined individ-uallyfromeachphotographaccordingly.

TUNELassay

TUNEL (terminal transferase-mediated 20-deoxyuridine 50-triphosphate-biotinnick endlabeling) stainingon paraffin-embeddedsectionswasusedtoevaluatetheeffectofIL-28A onCVB3-inducedapoptosisaccordingtotheinstructions pro-videdbythemanufacturer.Briefly,4␮m-thicksectionswere dewaxed,rehydrated,andincubatedwithterminal deoxynu-cleotidyltransferaseenzymeinahumectouschamberat37◦C for1h. Thereaction wasdetectedbyincubationwith anti-digoxigenin-peroxidasefor30mininahumidified chamber atroomtemperature and visualized ina buffer containing diaminobenzidine. The specimens were counterstained by immersioninhematoxylin.Thestainedtissuesampleswere observedusingafluorescencemicroscope (OlympusBX40, Japan)andfivephotomicrographswere obtainedfromhigh powerfields (400× magnifications).Thecells withapparent nuclearlabelingwereconsideredTUNELpositive.The percent-ageofTUNEL-positivecellsinthetotalcellpopulationwas thenquantitatedtoassesstheapoptosisindex.25

1.0 0.8 0.6 0.4 0 2 4 6 8 10 12 14 Postinfective day Survival function Infected IL-28A treated Groups Cum sur viv al

Fig.1–IL-28ApreventedmicewithCVB3-induced

myocarditisfromdying.Thesurvivalratewasanalyzedby

theKaplan–Meierestimate.TheIL-28Atreatedmicehad

highersurvivalratesthantheuntreatedinfectedgroup

followingCVB3infection(p<0.001).

Statisticalanalysis

Datawerepresentedasmeans±SD.One-wayanalysisof vari-ance (ANOVA) was used todetermine differences between individualmiceforIPscoresandmyocardialviraltiters.The survivalratewasanalyzedbytheKaplan–Meierestimate.All statisticalanalyseswereperformedusingSPSS13.0(SPSSInc., Chicago,IL).Anyp-values<0.05wereconsideredstatistically significant.

Results

IL-28AtreatmentprotectsmicefromCVB3 infection-associateddeath

Uninfected BALB/c mice appeared healthy whereas CVB3-inoculatedmicedisplayedsignsofseriousillness,including ruffled and dirty fur, soft feces, lethargy, and huddling behavior.Twelvemiceintheinfectedgroupdiedafter infec-tion, with six, five and one mice dying on days 6, 9 and 12 post-infection,respectively. However,treatmentwith IL-28A improved mices’ general appearance, and completely preventedCVB3infection-associateddeathupto14days post-infection,evenwiththelowerdoseofIL-28A(10␮g/kg).The Kaplan–Meieranalysisclearlyshowedmuchhighersurvival rate in IL-28A treated mice than untreated mice(infected group)followingCVB3infection(Fig.1)(p<0.001).

IL-28AtreatmentinhibitsCVB3infection-induced inflammationandmyocardiallesion

Histological examinationofthe H&E-stainedslidesshowed evidenceoflymphocyteinfiltrationandmyocardialnecrosis onday7afterCVB3infection(Fig.2A)comparedtocontrols.

(5)

Control IL-28A

B

A

Uninfected IL-28A (μg/kg) treated

Infected N.D N.D 4 3 2 1 0

Control IL-28A treated (40 μg/kg)

50 μm 50 μm 50 μm Infected 10 20 40 P athology score

Fig.2–IL-28AdecreasedtheIPscoreofCVB3-infectedmice.(A)UninfectedandCVB3-infectedmiceweretreatedwithor

without40␮g/kgIL-28Afor4days.Hearttissuewasremovedonday7post-infectionandsubjectedtoH&Estaining(200×

magnification)toexaminemyocardialinflammationandinjury.Thearrowindicatedasiteoflymphocyteinfiltrationinthe

hearttissuefollowingCVB3infection.(B)UninfectedBALB/cmiceweretreatedwithorwithout40␮g/kgIL-28A.

CVB3-infectedmicewereexposedtodifferentdosesofIL-28Afor4days.Hearttissuewasthenremovedonday7

post-infectionandsubjectedtoH&EstainingtoquantitateIPscores.TreatmentwithIL-28AsignificantlyreducedtheIP

scoresintheheartsofIL-28Atreatedmicecomparedwithinfectedmice(**p<0.01).

However,theseverityofcellularinfiltrationwassignificantly reducedinIL-28Atreatedgroup(40␮g/kg).AsshowninFig.2B, CVB3infectionincreasedtheIPscoreto2.81±0.22,whilein uninfectedcontrolandIL-28Agroupsthebasalscorewas0, withinflammationor generalizedmyocardialfiber necrosis undetected(N.D.).Despitenoeffectonuninfectedmice, IL-28AtreatmentreducedtheIPscoreofCVB3-infectedmicein adose-dependentmanner(p<0.01).Adoseof40␮g/kgalmost completelyeliminatedcardiacinflammatoryinfiltrationand protectedcardiacmyocytesfromdamage,withtheaverage IP scoreon day7 post-infection being reduced to 0.4±0.1 (p<0.01)comparedwiththeinfectedgroup.Treatmentwith alow-doseIL-28A(10␮g/kg)alsostatisticallyreducedtheIP scorecomparedwiththeuntreatedinfectedgroup,butata levelinferiortothatwith20␮g/kgIL-28A.

IL-28Areducescardiacviralload

InoculationofCVB3inBALB/cmiceresultedinconsiderably highlevelsofcardiacviralload(6432±291pfu/mg)detected bytheplaqueassayonday4post-infection(Fig.3A),which thenspontaneouslydeclinedto550±50pfu/mghearttissue

onpost-infectiveday7(Fig.3B).Asexpected,treatmentwith IL-28Adose-dependentlyreducedcardiacviralloadfourdays afterCVB3infections(p<0.01),evenatthelowdose(10␮g/kg). Onpost-infectiveday7,therewasafurtherreductionin car-diacviralloadinmicetreatedwithIL-28Acomparedwiththat ofuntreatedinfectedgroup(p<0.01,Fig.3B).

IL-28AupregulatestheexpressionofSTAT1andSTAT2

Treatment with 40␮g/kg IL-28A dramaticallyincreased the proteinlevelsofSTAT1andSTAT2inthehearttissuesofmice4 daysafterCVB3infection(Fig.4).Nosignificantdifferencewas observedinthelevelsofSTAT1andSTAT2betweenuntreated infectedandcontrolgroups.

IL-28AinhibitsCVB3-inducedapoptosisofthemyocardial cellsinmice

FollowingCVB3infection,apoptosiswastriggeredwitha sig-nificantincreaseinapoptosisindexintheinfectedmice(0.7%) comparedtocontrolgroup(0.1%)(p<0.01,Fig.5).However,a significantdecreaseinapoptoticindexwasobservedinIL-28A

(6)

Control IL-28A

Uninfected IL-28A (μg/kg) treated Infected N.D N.D 0 200 400 600 800 1000

B

A

10 20 40 PFU/mg hear t tissue Control IL-28A

Uninfected IL-28A (μg/kg) treated Infected N.D N.D 0 2000 4000 6000 8000 10000 10 20 40 PFU/mg hear t tissue

Fig.3–IL-28Adecreasedviralloadofhearttissuein

CVB3-infectedmice.UninfectedandCVB3-infectedmice

weretreatedwithorwithoutIL-28Afor4days.Hearttissue

ofinfectedmicewereremovedonday4(A)andday7(B)

post-infectionandsubjectedtoplaqueassays.Treatment

withIL-28Asignificantlyreducedmyocardialviralload

comparedwithinfectedmice(**p<0.01).

(0.39%)treatedmicecomparedtotheuntreatedinfectedgroup (p<0.01,Fig.5),suggestingthattreatmentwithIL-28Acould inhibitCVB3-inducedapoptosisinmyocardialcells.

AsshowninFig.6A,infectionwiththeCVB3substantially decreasedtheexpressionlevelsofBcl-2andupregulatedthe expressionsofBAXandCaspase-3comparedtocontrols,while IL-28Atreatmenthadareverseeffectontheexpressionlevels oftheseapoptosis-relatedproteins,withincreasedexpression levelsofBcl-2anddecreasedexpressionofBAXand Caspase-3.ThequantitativedatafurthershowedthatCVB3infection induceda2-folddown-regulationofBcl-2expression,5-fold upregulationofBAXexpression,aswellasa10-folddecrease intheratioofBcl-2toBAXcomparedwithuninfectedcontrol mice(Fig.6BandC).TreatmentwithIL-28Aupregulatedthe expressionofBcl-2by5-fold,down-regulatedtheexpression ofBAXby2.5-fold,andconsequentlyincreasedtheratioof Bcl-2toBAXby10-foldcomparedtotheuntreatedgroupfollowing CVB3infection(Fig.6BandC).

Discussion

It was demonstrated that CVB3 infection in humans frequently progresses to cardiomyopathy, left ventricular

Control STAT2

STAT1

Actin

Treated Infected

Fig.4–IL-28AincreasedtheexpressionofSTAT1and

STAT2inhearttissue.UninfectedandCVB3-infectedmice

weretreatedwithorwithoutIL-28A(40␮g/kg)for4days,

thenthehearttissuesofinfectedmicewereremovedon

day4post-infectionandsubjectedtoWesternblotanalysis.

Actinwasusedasaloadingcontrol.TheamountofSTAT2,

STAT1andActinwasquantifiedusingNIHImageJandthe

ratioofSTAT2orSTAT1toActinwasgraphedinthelower

panels.IL-28Atreatmentresultedinasignificantincrease

intheexpressionofSTAT1andSTAT2comparedtoinfected

group(**p<0.01).

dysfunction,and subsequentchronicheartfailure.2 Despite thegrowingknowledgeaboutviralmyocarditis,itremained challengingtomanagepatientswithviralmyocarditisdueto lackofeffectiveantiviraltherapeuticregimens.26Inthisstudy, the resultsshowed that IL-28Aprotectedmicefrom CVB3-induced death, inhibited viral replication in heart tissues followingCVB3infection,andreducedtheinduced inflamma-tionandmyocardiallesion.

Fromtheresults,noinflammationorgeneralized myocar-dialfibernecrosiswasdetected(N.D.)inuninfectedcontrol andIL-28Agroups(40␮g/kgIL),suggestingthatthiscytokine does not cause apparent side effects in mice. A relatively lowdose(10␮g/kg)ofIL-28Awassufficienttoreduce CVB3-induced myocarditis in mice as evidenced by significantly decreasingIPscoresandcardiacviralload,letalonetreatment with40␮g/kgIL-28A,whichalmostcompletelyinhibited car-diacinflammatoryinfiltrationandprotectedmyocytesfrom injurywithIPscoredecreasedto0.4±0.1.Itseemedthat IL-28Awasahighlyeffectiveandtolerableantiviralagentagainst CVB3-inducedmyocarditis,althoughfurtherclinicaltrialswill beconductedtoensureitseffectivenessandsafetyinhuman patients.

Consistentwithpreviousreports,27thisstudyalso demon-strated that viral replication was a dominant pathological processintheearlystagesofCVB3infection,asevidencedby averyhighviralloadwithrelativelylowlevelsof inflamma-toryinfiltrationandtissueinjuryintheheartonday4.This wasfollowedbyaspontaneousreductionofviralloadbuta furtherdevelopmentofinflammationand injuryincardiac tissueonday7,whichwoulddeteriorate generalhealth,as evidencedbythepresenceofdeathonday6to12.The spon-taneousdecayofviralloadmightbeattributedtoanactivation

(7)

Control Infected Treated

Control Infected Treated

0 0.5 1.0 2.0 1.5

A

B

C

Apoptotic inde x (%)

Fig.5–EffectofIL-28Aonapoptosisincardiacmyocytes.IL-28Adecreasedtheapoptoticindexinhearttissuecomparedto

theinfectedgroup(**p<0.01).UninfectedandCVB3-infectedmiceweretreatedwithorwithoutIL-28A(40␮g/kg)for4days,

thenhearttissuesofmicewereremovedonday4post-infectionandsubjectedtoTUNELassay.Thestainedtissuefrom

control(A),CVB3-infected(B),andIL-28A-treatedmice(C)werephotographedunderafluorescencemicroscope(400×

magnification).ThecellswithapparentnuclearlabelingwereconsideredTUNELpositive.ThepercentageofTUNEL-positive

cellsinthetotalcellpopulationwasthenquantitatedtoassesstheapoptosisindex(D).

oftheinnatecellulardefensemechanismsincludingtheIFN system.28–30 AstypeIIIIFNsincludingIL-28A,IL-28Band IL-29arefrequentlyupregulatedinresponsetocertaintypesof virus infectionsand exerted antiviralactivity in vitro.15,18,31 ThisstudyfirstdocumentedtheefficacyofIL-28Aininhibiting CVB3replicationinhearttissuesofinfectedmice.UnliketypeI

IFNsusingIFNAR(composedofsubunitsIFNAR1andIFNAR2c) asareceptor,typeIIIIFNssignaledthroughaheterodimeric receptorcomposedofIL-28R␣(IFN-␭R1orCRF2-12)specificto IFN-␭,andIL-10R␤(IL-10R2orCRF2-4)sharedwithallother IL-10-related cytokines.15,31,32 However, upon binding their specificcellsurfacereceptors,typeIandtypeIIIIFNstrigger thesameJak-STATsignaltransductionpathway,33,34leadingto theupregulationofmanygenes,calledIFN-stimulatedgenes (ISGs).35

OurfindingsdemonstratedthatIL-28Amarkedlyincreased theexpressionsofSTAT1andSTAT2,indicatingthatthesetwo proteinswere thekey antiviral regulatorsin CVB3-infected hearttissues ofmice.Itwas welldocumented that activa-tionofSTAT1andSTAT2wasessentialforantiviraleffectof IFNs.Followingvirusnucleicacidsrecognizedby transmem-branetoll-likereceptors(TLRs),cytoplasmicDNAsensorsand RNAhelicases,kinaseswereactivated.Thesekinaseswould promotetheactivationoftranscriptionfactorsandtheir sub-sequenttranslocationtothenucleuswheretheystimulated

IFN genetranscription.Afterbindingtothe cognate recep-tors, type I and type III IFNs induced the same Jak/STAT pathwaytoactivateSTAT1and STAT2transcriptionfactors. ThenphosphorylatedformsofSTAT1andSTAT2werefurther associatedwiththeDNA-bindingproteinIFNregulatory fac-tor9(IRF-9)toformanIFN-stimulatedgenefactor3(ISGF3) complex,16,35whichwasalsoacrucialmediatorinthetype1 interferonreceptor(IFNAR)signalingpathway.36ThenISGF3 was translocated to the nucleus, bound to IFN-stimulated responseelements(ISREs)withinthepromotersof interferon-stimulated genes (ISGs) and activated the transcription of ISGs.16,35Althoughthecompletesignalingcascadeinitiatedby thebindingofIFNtoitsreceptorhadnotyetbeenfully eluci-dated,currentevidenceindicatesthatthesignalingpathways activatedbyIFN-␣/␤andIFN-␭maybesimilaroroverlap.14,37 Thus,thefindingsabouttheexpressionsofSTAT1andSTAT2 expressioninducedbyIL-28Aprovidedareasonable mecha-nismresponsibleforIL-28A-mediatedantiviraleffect.

Asapoptosiswasimplicatedinvirus-inducedmyocardial injury,5,6theeffectofIL-28AonCVB3-inducedapoptosiswas alsodetermined.Theresultsshowedthattreatmentwith IL-28AcouldinhibitCVB3-inducedapoptosisinmyocardialcells asevidencedbyasignificantdecreaseinapoptoticindexin IL-28A(0.39%)treatedmicecomparedtotheuntreatedinfected group (p<0.01). This could be attributed to the regulating

(8)

Control Infected Treated

Control Infected Treated

Control T reated Inf ected Caspase 3 Bcl-2 Bcl-2 BAX BAX 0 0 2 4 6 8 10 12 0.5 1 1.5 2 2.5

A

B

C

Ratio of Bcl-2/BAX A v er

age optical density (%)

Fig.6–ImmunohistochemistrystainingofBcl-2,BAXandcaspase-3.IL-28AenhancedtheexpressionofBcl-2(p<0.01)and

decreasedtheexpressionofBAX(p<0.01)andcaspase-3(p<0.01)inhearttissue.UninfectedandCVB3-infectedmicetreated

withorwithoutIL-28A(40␮g/kg)for4days,thenhearttissueofmicewereremovedonday4post-infectionandsubjected

toimmunohistochemistrystaining.Theimmunostainedtissuesampleswerevisualizedandphotographedunderalight

microscope(A).Atotaloffivephotomicrographsweretakenfromfivehighpowerfields(400×magnification)randomly.AOD

fromthephotomicrographswasthenquantitatedtomeasuretheproteinexpressionlevelsofBcl-2andBAX(B)asdescribed

intheSectionofMaterialsandMethods.TheratioofBAXtoBcl-2wasdeterminedindividuallyfromeachphotograph(C).

(9)

effectofIL-28Aontheexpressionofcaspase-3,BAXandBcl-2, whichwerekeymoleculesregulatingapoptosis.38–40TheBcl-2 couldinhibitapoptosisbybindingtoBAXwhileBAXpromoted apoptoticcelldeathbybindingtoitself.41Specifically,incells with BAX overexpression, BAX/BAX homodimers predomi-nated,andturningthecellssusceptibletoinducedapoptosis. Conversely,incellswithBcl-2overexpression,BAX/Bcl-2 het-erodimerspredominated and the cells became resistant to apoptosis.41SinceBAX,aproapoptoticprotein,antagonized thefunctionofBcl-2,it hadbeengenerallyconsideredthat theBcl-2/BAXratiocoulddeterminethesusceptibilityofacell toapoptotic stimulus.42,43 Besides, caspase-3,amember of thecysteine-asparticacidprotease(caspase)family,actedas theexecutantofcellularapoptosis.44,45Accordingtotheabove reports,theresultalsoshowedthatIL-28Areducedthe expres-sionsofBAXandcaspase-3butupregulatedBcl-2expression, therebyresultinginanincreaseintheBcl-2/BAXratioand sub-sequentinhibitionofCVB3-inducedmyocardialcellapoptosis inmice.Interestingly,previousstudiesdemonstratedthatthe activationofSTAT1notonlyservedtoincreasethe expres-sionofBcl-246butalsonegativelyregulatedBAXexpression.47 Therefore,it seemed that, inadditiontoits antiviraleffect as discussed above, STAT1 activated byIL-28A might bind to the promoters of Bcl-2 or BAX, contributingto positive andnegativeregulationofBcl-2andBAXexpression, respec-tively.Hence,IL-28AmightincreasetheratioofBcl-2/BAXand consequentlyinhibitCVB3infection-inducedapoptosisofthe myocardiuminmicebytheabovemechanism.

Inconclusion,thisstudydemonstratedthatIL-28Aplayed animportantrolein thehostinnatedefenseagainstCVB3 infectionandcouldinhibitCVB3-inducedmyocarditisinmice. ThestudyalsosuggestedthatSTAT1andSTAT2arethekey antiviral regulatorsin heart tissuesofCVB3-infected mice, withtheformerIL-28AcouldincreasetheratioofBcl-2/BAX andconsequentlyinhibit CVB3infection-inducedapoptosis ofthemyocardium.Thusitcould beconcludedthatIL-28A hadagreatpotentialtobecomeatherapeuticinterventionfor CVB3infectioninhumans;however,theprecisemechanisms bywhichIL-28Aexertedtheantiviraldefensestillneedtobe exploredinthefuture.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

WethankDr.ZhanqiuYangforgenerouslyprovidinguswith theCVB3virus.

r

e

f

e

r

e

n

c

e

s

1. LimBK,JuES,LaoDH,etal.Developmentofaenterovirus diagnosticassaysystemfordiagnosisofviralmyocarditisin humans.MicrobiolImmunol.2013;57:281–7,

http://dx.doi.org/10.1111/1348-0421.12028. 2. FairweatherD,StaffordKA,SungYK.Updateon

coxsackievirusB3myocarditis.CurrOpinRheumatol.

2012;24:401–7,http://dx.doi.org/10.1097/Bor. 0b013e328353372d.

3.GaunttC,HuberS.Coxsackievirusexperimentalheart diseases.FrontBiosci.2003;8:E23–35.

4.SarasteA,ArolaA,VuorinenT,etal.Cardiomyocyteapoptosis inexperimentalcoxsackievirusB3myocarditis.Cardiovasc Pathol.2003;12:255–62.

5.DebiasiRL,RobinsonBA,SherryB,etal.Caspaseinhibition protectsagainstreovirus-inducedmyocardialinjuryinvitro andinvivo.JVirol.2004;78:11040–50,

http://dx.doi.org/10.1128/Jvi.78.20.11040-11050.2004. 6.KytoV,SarasteA,SaukkoP,etal.Apoptoticcardiomyocyte

deathinfatalmyocarditis.AmJCardiol.2004;94:746–50,

http://dx.doi.org/10.1016/J.Amjcard.2004.05.056.

7.BadorffC,LeeG-H,LamphearBJ,etal.Enteroviralprotease2a cleavesdystrophin:evidenceofcytoskeletaldisruptioninan acquiredcardiomyopathy.NatMed.1999;5:320–6.

8.JiangZ,XuW,LiK,etal.RemissionofCvb3-inducedviral myocarditisbyinvivoTh2polarizationvia

hydrodynamics-basedinterleukin-4genetransfer.JGene Med.2008;10:918–29.

9.HuberSA,FeldmanAM,SartiniD.CoxsackievirusB3induces Tregulatorycells,whichinhibitcardiomyopathyintumor necrosisfactor-Atransgenicmice.CircRes.2006;99: 1109–16.

10.MaischB,Risti ´cAD,HufnagelG,PankuweitS.

Pathophysiologyofviralmyocarditis:theroleofhumoral immuneresponse.CardiovascPathol.2002;11:112–22.

11.FreemanG,ColstonJT,ZabalgoitiaM,ChandrasekarB. Contractiledepressionandexpressionofproinflammatory cytokinesandInosinviralmyocarditis.AmJPhysiol-Heart CirculPhysiol.1998;274:H249–58.

12.SheppardR,BediM,KubotaT,etal.Myocardialexpressionof Fasandrecoveryofleftventricularfunctioninpatientswith recent-onsetcardiomyopathy.JAmCollCardiol.

2005;46:1036–42.

13.HenkeA,MohrC,SprengerH,etal.Coxsackievirus B3-inducedproductionoftumornecrosisfactor-alpha,IL-1 beta,andIL-6inhumanmonocytes.JImmunol.

1992;148:2270–7.

14.AnkN,WestH,PaludanSR.IFN-Lambdanovelantiviral cytokines.JInterferonCytokineRes.2006;26:373–9.

15.KotenkoSV,GallagherG,BaurinVV,etal.IFN-Lambdas mediateantiviralprotectionthroughadistinctclassIi cytokinereceptorcomplex.NatImmunol.2002;4:69–77.

16.BrandS,BeigelF,OlszakT,etal.IL-28aandIL-29mediate antiproliferativeandantiviralsignalsinintestinalepithelial cellsandmurineCmvinfectionincreasescolonicIl-28a expression.AmJPhysiolGastrointestLiverPhysiol. 2005;289:G960–8.

17.OsterlundP,VeckmanV,SirenJ,etal.Geneexpressionand antiviralactivityofalpha/betainterferonsandinterleukin-29 invirus-infectedhumanmyeloiddendriticcells.JVirol. 2005;79:9608–17.

18.RobekMD,BoydBS,ChisariFV.Lambdainterferoninhibits HepatitisBandCvirusreplication.JVirol.2005;79:3851–4.

19.CocciaEM,SeveraM,GiacominiE,etal.Viralinfectionand toll-likereceptoragonistsinduceadifferentialexpressionof TypeIandlambdainterferonsinhumanplasmacytoidand monocyte-deriveddendriticcells.EurJImmunol.

2004;34:796–805.

20.BlancM,HsiehWY,RobertsonKA,etal.Thetranscription factorStat-1couplesmacrophagesynthesisof

25-hydroxycholesteroltotheinterferonantiviralresponse. Immunity.2013;38:106–18,

http://dx.doi.org/10.1016/J.Immuni.2012.11.004.

21.HuangJ,SmirnovSV,Lewis-AntesA,etal.InhibitionofTypeI andTypeIiiinterferonsbyasecretedglycoproteinfrom

RETRACTED ARTICLE

(10)

Yaba-likediseasevirus.ProcNatlAcadSciUSA. 2007;104:9822–7.

22.WangYX,DaCunhaV,VinceletteJ,etal.Antiviraland myocyteprotectiveeffectsofmurineinterferon-betaand -{Alpha}2incoxsackievirusB3-inducedmyocarditisand epicarditisInBalb/Cmice.AmJPhysiolHeartCircPhysiol. 2007;293:H69–76.

23.KishimotoC,KitazawaM,HiraokaY,TakadaH.Extracellular matrixremodelingincoxsackievirusB3myocarditis.Clin ImmunolImmunopathol.1997;85:47–55.

24.WangH,DingY,ZhouJ,SunX,WangS.Theinvitroand invivoantiviraleffectsofsalidrosidefromRhodiolaroseaL. againstcoxsackievirusB3.Phytomedicine.2008.

25.SarasteA,ArolaA,VuorinenT,etal.Cardiomyocyteapoptosis inexperimentalcoxsackievirusB3myocarditis.Cardiovasc Pathol.2003;12:255–62.

26.GuglinM,NallamshettyL.Myocarditisdiagnosisand treatment.CurrTreatOptionsCardiovascMed.

2012;14:637–51,http://dx.doi.org/10.1007/S11936-012-0204-7. 27.KoenigA,SaterialeA,BuddRC,HuberSA,BuskiewiczIA.The

roleofsexdifferencesinautophagyintheheartduring coxsackievirusB3-inducedmyocarditis.JCardiovascTransl Res.2014;7:182–91,

http://dx.doi.org/10.1007/S12265-013-9525-5.

28.DeonarainR,CerulloD,FuseK,LiuPP,FishEN.Protectiverole forinterferon-BincoxsackievirusB3infection.Circulation. 2004;110:3540–3.

29.SamuelCE.Antiviralactionsofinterferons.ClinMicrobiol Rev.2001;14:778–809.

30.WesselyR,KlingelK,KnowltonKU,KandolfR.Cardioselective infectionwithcoxsackievirusB3requiresintactTypeI interferonsignalingimplicationsformortalityandearlyviral replication.Circulation.2001;103:756–61.

31.SheppardP,KindsvogelW,XuW,etal.IL-28,IL-29andtheir classIicytokinereceptorIl-28r.NatImmunol.2002;4: 63–8.

32.DumoutierL,LejeuneD,HorS,FickenscherH,RenauldJ. CloningofanewTypeIicytokinereceptoractivatingsignal transducerandactivatoroftranscription(Stat)1,Stat2And Stat3.BiochemJ.2003;370:391–6.

33.DumoutierL,TounsiA,MichielsT,SommereynsC,Kotenko SV,RenauldJ-C.Roleoftheinterleukin(Il)-28receptor tyrosineresiduesforantiviralandantiproliferativeactivityof Il-29/interferon-(1similaritieswithtypeIinterferon

signaling.JBiolChem.2004;279:32269–74.

34.ZhouZ,HammingOJ,AnkN,PaludanSR,NielsenAL, HartmannR.TypeIiiinterferon(Ifn)inducesATypeIIFN-like responseinarestrictedsubsetofcellsthroughsignaling pathwaysinvolvingboththeJak-Statpathwayandthe mitogen-activatedproteinkinases.JVirol.2007;81:7749–58.

35.RandallRE,GoodbournS.Interferonsandviruses:an interplaybetweeninduction,signalling,antiviralresponses andviruscountermeasures.JGenVirol.2008;89Pt1:1–47.

36.TangX,GaoJS,GuanYJ,etal.Acetylation-dependentsignal transductionforTypeIinterferonreceptor.Cell.

2007;131:93–105.

37.UzeG,MonneronD.Il-28andIl-29:newcomerstothe interferonfamily.Biochimie.2007;89:729–34.

38.DeverauxQL,SchendelSL,ReedJC.Antiapoptoticproteins theBcl-2andinhibitorofapoptosisproteinfamilies.Cardiol Clin.2001;19:57–74.

39.MayorgaM,BahiN,BallesterM,ComellaJX,SanchisD.Bcl-2 isakeyfactorforcardiacfibroblastresistancetoprogrammed celldeath.JBiolChem.2004;279:34882–9.

40.MockridgeJW,BentonEC,AndreevaLV,LatchmanDS,Marber MS,HeadsRJ.Igf-1regulatescardiacfibroblastapoptosis inducedbyosmoticstress.BiochemBiophysResCommun. 2000;273:322–7.

41.AdamsJM,CoryS.TheBcl-2proteinfamily:arbitersofcell survival.Science.1998;281:1322–6.

42.NarayanS,ChandraJ,SharmaM,NaithaniR,SharmaS. ExpressionofapoptosisregulatorsBcl-2andBaxinchildhood acutelymphoblasticleukemia.Hematology.2007;12:39–43.

43.ScopaCD,VagianosC,KardamakisD,KourelisTG,Kalofonos HP,TsamandasAC.Bcl-2/Baxratioasapredictivemarkerfor therapeuticresponsetoradiotherapyinpatientswithrectal cancer.ApplImmunohistochemMolMorphol.2001;9:329–34.

44.FerriKF,KroemerG.Organelle-specificinitiationofcelldeath pathways.NatCellBiol.2001;3:E255–63,

http://dx.doi.org/10.1038/Ncb1101-E255.

45.ZidarN,JeraJ,MajaJ,DusanS.Caspasesinmyocardial infarction.AdvClinChem.2007;44:1–33.

46.SandaT,TynerJW,GutierrezA,etal.Tyk2-Stat1-Bcl2pathway dependenceinT-cellacutelymphoblasticleukemia.Cancer Discov.2013;3:564–77,

http://dx.doi.org/10.1158/2159-8290.Cd-12-0504. 47.SoondSM,CarrollC,TownsendPA,etal.Stat1regulates

P73-mediatedBaxgeneexpression.FEBSLett. 2007;581:1217–26,

http://dx.doi.org/10.1016/J.Febslet.2007.02.049.

Referências

Documentos relacionados

Compared with model group, the serum TNF-α and IL-2 levels of nude mice in 5-Fu, middle-dose DOPA and high-dose DOPA group were significantly increased, respectively (P &lt;

To gain insights into the function of IL-6 in RUPP- induced gestational hypertension rats, the expression of IL-6 was detected in the myocardial tissue and serum of pregnant

Os áudios serão gravados com alta qualidade (192 kHz, 24 bits) para posteriores tratamentos.. Rubrica do Pesquisador Rubrica do participante da pesquisa Sendo integrante

According to UNEP (1996), methane emission rates associated with rice farming under continuous flooding regimes are higher, per unit area, than those under other water

Finalmente, sugerimos o desenvolvimento de um plano nacional de conservação das aves marinhas, que organize e defina prioridades para as atividades de diferentes instituições

expression of LMP2 following antiviral treatment was found to be comparable to that in untreated cells; YK73-treated DV2- infected cells demonstrated a 1.2 fold difference (p = 0.487)

schenckii exposure to TCAN26 resulted in cells that were slightly more elongated than control cells (untreated) (Fig. 2A-C), and this treatment induced loss of the regular

FIGURA 2.2 – Estruturas tubulares absorvedoras de energia de material compósito (Adaptado de Griffiths, 2006). Cascas de compósitos também se deformam de maneira