• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número3"

Copied!
5
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Isolation

of

quinoline

alkaloids

from

three

Choisya

species

by

high-speed

countercurrent

chromatography

and

the

determination

of

their

antioxidant

capacity

Gilda

G.

Leitão

a,∗

,

Joao

Paulo

B.

Pereira

a

,

Patricia

R.

de

Carvalho

b

,

Denise

R.

Ropero

c

,

Patricia

D.

Fernandes

b

,

Fabio

Boylan

c

aInstitutodePesquisasdeProdutosNaturais,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil

bLaboratóriodeFarmacologiadaDoredaInflamac¸ão,InstitutodeCiênciasBiomédicas,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil cSchoolofPharmacyandPharmaceuticalSciences,TrinityBiomedicalSciencesInstitute,TrinityCollegeDublin,Dublin2,Ireland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13October2016 Accepted22January2017 Availableonline2March2017

Keywords:

Quinolinealkaloids

Countercurrentchromatography Anhydroevoxine

Choisyine ROS

a

b

s

t

r

a

c

t

ChoisyaternataKunth,C.ternatavar.sundanceKunthandthehybridChoisya‘Aztec-Pearl’arethreerelated speciesbelongingtotheRutaceaefamily.Ethanolextractswerepreparedfromtheleavesofthesethree speciesandevaluatedinrelationtotheirantioxidantactivityusinginvitroandexvivomodels.The ethanolextractsbelongingtothethreespeciesproducedaveryhighantioxidantprofileasevidenced bytheDPPHradicalscavengingactivity,thedeterminationoftotalphenolicsandflavonoidequivalent. ThegenerationofreactivespeciesofoxygeninleukocytesstimulatedwithLPSwasdramaticallyreduced whenthethreeethanolextractswereused.Thealkaloidsanhydroevoxineandchoisyinewereisolated fromtheethanolextractofC.ternatausingHEMWat(4:6:5:5)asthesolventsystembymeansof high-speedcountercurrentchromatography.Thiswasthefirsttimequinolinealkaloidswereisolatedfrom thisspeciesusingHSCCC.Thesecompoundswerealsoassayedfortheircapacitytoinhibitthegeneration ofROSinleukocytesstimulatedbyLPSandtheresultsalsosuggestedthattheyarereactiveoxygenase inhibitors.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

ChoisyaternataKunth,knownasMexicanorange orMexican orangeblossom,iswidelycultivatedinBritainsince1825(Muller, 1940;Benson,1943).Thereisalsothegoldenleafyvariety,whichis calledC.ternatavar.sundance.Choisyadumosavar.arizonicaisalso knownasMexican-orangeorstarleafandtoMexicansas“sorilla” or“zorillo”. Thesetwo speciesare consideredtoxictothe live-stock,bearingtoxiccompounds(Dayton,1931)thatwerenotyet identified.C.ternataandC.dumosavar.arizonicawereartificially crossedin1982(Lancaster,1991)togeneratethehybridChoisya

‘Aztec-Pearl’,whichhasbiggerflowersthanitsparentsbutisnot asrobustinstatureasthem.Previousphytochemicalstudieson

C.ternatahaveindicatedtheimportanceofitsnon-volatile quino-linealkaloids.Therearesevenmainalkaloidsthatarewidespread intheRutaceaefamilyandthatwerefoundinspeciesofChoisya: skimmianine,kokusaginine,7-isopentenyloxy-c-fagarine,evoxine,

∗ Correspondingauthor.

E-mail:ggleitao@nppn.ufrj.br(G.G.Leitão).

choisyine,platydesminiummethosaltandbalfourodinium methos-alt(Johnsetal.,1967;Grundonetal.,1974;Boydetal.,2002).Boyd etal.(2007)haveisolatedseventeenquinolinealkaloidsfromC. ter-nata,includingseverallevelsofoxidationduringtheirbiosynthesis. DifferentspeciesofRutaceaehavealreadybeenusedastonic, febrifuge,againstinflammatoryandmicrobialprocessesandinthe treatmentofmalaria(Cruz,1995;DeMouraetal.,1997;Gonzaga etal.,2003;MoreiraandGuarim-Neto,2009;Jullianetal.,2006). Severalchemicalcompoundsisolatedfromdifferentspeciesofthis familycouldaccountforthepharmacologicalpropertiesobserved fortheextractsbutoneclassisprominent.Thequinolinealkaloids mentioned beforecan beresponsible forsomeoftheidentified activities.

Previouslyourgrouphasshown thatextractsobtainedfrom

C. ternataand two of theirquinolinealkaloids aswellas com-poundspresentinitsessentialoilpossessantinociceptiveactivity (Radulovi ´cetal.,2011;Pinheiroetal.,2014).Yowtaketal.(2011) hasshown a relationshipbetween spinalneuropathic pain and oxidativestress.

In this study, a high-speed countercurrent chromatography (HSCCC)methodwasdevelopedforthefractionationoftheethanol

http://dx.doi.org/10.1016/j.bjp.2017.01.003

(2)

extractofleavesofthreespeciesofChoisya;C.Aztec-Pearl,C. ter-nataandC.ternatavar.sundance.Countercurrentchromatography (CCC)isaformofliquid-liquidpartitionchromatographywhere thestationaryphaseis heldinside thecolumnwithouttheuse of a solid support (Conway,1990). In modern CCC equipment, thecolumncanrotate inoneaxis,generatinghydrostatic equi-libriumofthetwoimmiscibleliquidphases(thestationaryphase andthemobilephase),oritcanrotateinaplanetarymotion(two rotationaxes),generatingahydrodynamicequilibriumofthetwo phases.HSCCCmachineshave hydrodynamicequilibriumofthe twoliquidphasesandhavebeenlargelyusedforthefractionation andpurificationofnaturalproducts(Leitãoet al.,2012; Friesen etal.,2015).Manydifferentsolventsystemshavebeenusedfor thepurificationofalkaloidsusingmodernhydrostaticor hydro-dynamicequipment.Ionizable compoundslike alkaloidscanbe purified using a technique calledpH-zone refining CCC, devel-opedbyItointhe1990s(ItoandMa,1996),amodificationofthe CCCtechniquethatusesacidsorbasesasretainersand/oreluters. Ina studyfromFangetal. (2011)acompilationof several sol-ventsystemsforthepurificationofalkaloidsfromherbs,byboth HSCCCandpH-zone-refiningCCCispresented.Inthatreviewitis reportedtheseparationof94alkaloidsfrommorethanthirty dif-ferentplantsourcesbyconventionalHSCCCusingthirteendifferent solventsystems.Theauthorsreportthatmorethan67%ofthe alka-loids werepurified withhexane–ethylacetate–methanol–water (theso-called HEMWatsystem)and CHCl3–MeOH–H2O.In fact,

thesesolventsystems representtwo versatilefamilies that can beusedincountercurrentchromatography.Moreover,quinoline alkaloidshavenotyetbeenisolatedfromC.ternatabymeansof countercurrentchromatography.

SincespeciesofChoisyaandsomeoftheirisolatedcompounds havealreadyshownactivitytowardspinalneuropathicpain,we decidedto evaluatetheethanol extractsof these three species ofChoisyainrelationtotheircapacityofprotectingagainst reac-tiveoxygenspecies.anhydroevoxine(1),andchoisyine(2),isolated fromC.ternatainonestepHSCCCanalysis,werealsoevaluated.

Materialsandmethods

Chemicals

Solventsusedforplantextractionwereofanalyticalgradeand acquiredfromtheHazardMaterial Facilitiesstore (HMF-Trinity CollegeDublin)andthoseforcountercurrentchromatography sep-arationswereofHPLCgradepurchasedfromTediaBrazil(Riode Janeiro,Brazil).

Plantmaterial

FreshleavesofChoisyaternataKunth,thehybridC.Aztec-Pearl andC.ternatavar.sundance,Rutaceae,werecollectedinDublin, IrelandinSeptember2013andtheirvoucherspecimen(ref.TCD Hodkinson&Ropero01,02and03)weredepositedinthe Herbar-iumofTrinityCollege,Dublin.ThesampleswereidentifiedbyDr. TrevorHodkinsonfromtheDepartmentofBotany,TrinityCollege, Dublin.

Plantextraction

Theextractionofleaves(100g)ofC.ternata,C.Aztec-Pearland

C.ternatavar.sundancewasperformedusingSoxhletapparatus (80◦C)for72h.ThesolventusedfortheSoxhletextractionwas ethanol.Extract(ca.40geachplant)wasreducedtodrynessunder reducedpressureusingarotaryevaporatorinaheatingbath.

Equipment

HSCCC fractionationswere performedonthe98mlcoil of a QuattroHT-Prepcounter-currentchromatograph(AECS,Bridgend, UnitedKingdom)equippedwithtwobobbinscontainingtwo poly-tetrafluoroethylenemulti-layercoilseach(Bobbin1containsthe 26mlandthe224mlcoils,1.0mmi.d.and3.2mmi.d.respectively; Bobbin2containsthe95mlandthe98mlcoils,both2.0mmi.d.). Therotationspeedisadjustableupto865rpm.TheHSCCC sys-temswereconnectedtoaconstantflowpumpJascoPU-2089SPlus (JapanSpectroscopicCorporation,Japan).A5mlsampleloop(low pressuresampleinjectionvalve,Model5020,Rheodyne)wasused toinjectthesample.Separationswereperformedatroom temper-ature.

HPLCanalysis

TheHPLCsystemconsistedof a WatersAllianceSeparations moduleequippedwithatemperatureprogrammableautosampler andWaters2996PDAdetector.TheLCseparationwasperformed onareversedphasecolumnC18(250mm×4.6mm,5␮m)from

ThermoScientific,usingmobilephaseA(water)andmobilephaseB (acetonitrilewith1%formicacid)inagradientprogramwithaflow of0.8ml/min:0–30min:10%B;30–32min:100%B;32–35min: 10%Band35–38min:10%B.Thevolumeofasingleinjectionwas 10␮l.UV/visspectrabetween190and400nmwererecorded.

ChoiceofthesolventsystemforCCCfractionations

SmallamountsoftheethanolextractsofleavesofeachChoisya

species were dissolved in separate test tubes containing the hexane–ethylacetate–methanol–water(HEMWat)solventsystem in the ratios 10:5:5:1, 1:1:1:1, 6:4:6:4 and 4:6:5:5. Then the test tubes were shaken and the sample was allowed to par-tition between the two liquid phases. Equal aliquots of each phasewerespottedsidebysideonsilicagelTLCplates(Merck, Art.5554,Germany)developed withthesolventsystem chloro-form:methanol:water(9:1:1).Theresultswerevisualizedunder UVlight(254and365nm)followedbysprayingTLCplateswith vanillin(2%inmethanol)andsulfuricacid(1%inmethanol).

HSCCCfractionations

Preparationofthetwo-phasesolventsystemandsamplesfor injection

The selected solvent system (hexane:ethyl acetate: methanol:water 6:4:5:5) was thoroughly equilibrated in a separationfunnelatroomtemperature.Thetwophaseswere sep-aratedshortlybeforeuseanddegassedbysonicationfor10min. Thesamplesolutionswerepreparedbydissolvingthesample(ca. 500mgofeachChoisyaextract)inthesolventmixtureof2.5ml stationaryphaseand2.5mlmobilephaseofthesolventsystem usedfortheHSCCCseparation.

HSCCCseparationprocedure

(3)

2ml/min,whiletheapparatuswasrotatedat860rpm,ata con-stanttemperatureof25◦C.Thesamplesolution(ca.500mgofeach Choisyaextractin5mlbiphasicsystem)wasinjectedintothe col-umnafterhydrodynamicequilibriumwasreached.Thestationary phaseretentionSfforthesolventsystemineachfractionationwas around84–87%.Fractionsof4mlwerecollectedinatotalof80in eachrun.

Determinationoftheantioxidantactivity

Theantioxidantactivitywasperformedontheethanolextracts ofleavesofChoisyaAztec-Pearl,C.ternataandC.ternatavar. sun-dance.Theantioxidantactivitywasinvestigatedusingfourdifferent assays:DPPHfreeradicalscavengingactivitymicroassayusinga 96-wellplate,quantificationoftotalphenolicsanddetermination oftotalflavonoidcontentsandfinallytheproductionofreactive oxygenspecies.

Antioxidantactivity,useof2,2-diphenyl-1-picrylhydrazyl(DPPH)

Theradicalscavengingeffectoftheplantextractswas deter-mined using the DPPH methodology. Here, the hydrogen free radicalsdonationabilityoftheplantextractswasmeasuredfrom thebleachingofthepurplecoloredethanolsolutionofDPPH.The assaywasbasedonthestudydonebyMensoretal.(2001).

Assayfortotalphenolics

Thetotalphenoliccontentoftheextractswasdetermined fol-lowing theFolin–Ciocalteumethodcarried outby Gursoyetal. (2009),onlyadaptedtoamicroscale(Medina-Remonetal.,2009).

Assayfortotalflavonoids

Thedeterminationofthetotalflavonoidcontentoftheextracts wasdone based onthe methodology adapted by Gursoyet al. (2009).

Determinationoftheproductionofreactiveoxygenspecies(ROS)

Leukocyteswerecollectedfromasubcutaneousairpouch cre-atedinthedorsalareaofamouseforthemodelofcellmigration inducedbycarrageenan andstoredin vials(106 cells) ina

vol-umeof 1ml. Cellswerefurther incubatedat 37◦C and 5% CO2 for 1h. Crude ethanol extracts of the three Choisya species or theisolatedcompoundswerethen addedtothecells ata con-centrationof1,10and30␮g/mlandincubatedfor30minmore

usingthesame conditions.Cells werethen treated with10nM phorbol myristateacetate (PMA) and re-incubatedat thesame conditions for another45min.Twomicroliters ofa solutionof 2′-7-dichlorodihydrofluoresceindiacetate (DCF-DA) wasadded, followedbyanotherincubationperiodof30minatthesame condi-tions.TheDCF-DApermeatedrapidlythroughthecellmembrane. Onceintheintracellularcavityitishydrolysedbythestearases beingconvertedinto2′-7-dichlorofluorescin(DCFH),whichis a non-fluorescentcompoundimpermeabletothecellmembrane.In thepresenceofanyROS,DCFHisoxidizedinsidethecellforminga fluorescentcompound:2′-7-dichlorofluorescin(DCF),whichstays intheintracellularcavity(SrivastavaandGonugunta,2009). Flu-orescencewasmeasuredbyflowcytometryintheFL-1channel.

Resultsanddiscussion

Countercurrent chromatography (CCC),a liquid–liquid parti-tionchromatographytechniquewithnosolidsupport,isidealfor theseparationofcomplex naturalproductmixtures anditsuse in this area of interest keeps growingeach day (Friesen et al., 2015).Themajorchallenge ofthetechnique isthe selectionof thecorrectsolventsystem,whichcanaccountfor90%ofthetime spentontheanalysis(Ito,2005).Severalstrategieshavebeen pro-posedinthelastyearsforafastsolventsystemselection(Friesen andPauli, 2007;CostaandLeitão,2010;Yinetal.,2010;Leitão et al.,2012; Lianget al., 2015) Literature reportshexane–ethyl acetate–methanol–water,usuallyreferredtoasHEMWat,asthe mostusedsolventsysteminCCCseparations(Leitãoetal.,2012). Thisisbecauseitcoversalargerangeofpolarities,beingusefulin thepurificationofeitherlowtomediumpolaritycompoundsas wellasmediumtohighpolarityones.So,thissolventsystemwas ourchoiceforthepurificationofthethreeextractsofChoisya:C.

Aztec-Pearl,C.ternataandC.ternatavar.sundance.Severalratiosof theHEMWatsolventsystemweretestedforthefractionationofthe extracts:HEMWat10:5:5:1,1:1:1:1,6:4:6:4and4:6:5:5,beingthe lattertheonethatgavethebestresults,affordingKvaluesoftarget compounds(thealkaloids)near1.Twoalkaloids,anhydroevoxine,

1(0.5%yield)andchoisyine,2(1.1%yield),wereisolatedinasingle HSCCCstepfromC.ternataleaves.Choisyinewasalsoisolatedfrom

C.Aztec-PearlandC.ternatavar.sundance.However, anhydroevox-inecouldnotbeisolatedaspurecompoundsinonestepfromthese twospecies.Thiscouldbeduetodifferencesinthecomplexityof thematrix(theethanolextract),whichwaspreviouslyobserved byourgroupwhenoptimizingtheisolationofverbascosidefrom

LantanaandLippiaspecies(Leitãoetal.,2015)Thesetwoalkaloids werefurtheridentifiedbyHPLCintheethanolextractoftheother twospecies(datanotshown).

Anhydroevoxine (1)was isolated as a white crystal and its structurewasundoubtedlyestablishedbymeansofMSandNMR analysisandcomparisonwiththeliteraturedata(Akhmedzhanova etal.,1975).

Whitecrystallinesolid;Rf:0.52(chloroform:methanol:water;

9:1:1); mp: 88–92◦C; [˛]20

D 0.0 (c 0.009, CH2Cl2); EIMS for

C18H19NO5 m/z;330[M+H]+and352[M+Na]+;1HNMR(CDCl3,

400MHz)ı:3.32(1H,t,J=10.92,H-2′),4.11(3H,s,OCH3–C-8),4.29 (1H,m,H-1′),4.41(3H,s,OCH

3–C-4),7.02(1H,d,J=2.4,H-9),7.22

(1H,d,J=9.0,H-6),7.57(1H,d,J=2.4,H-10),7.96(1H,d,J=9.0,H-5);

13CNMR(CDCl

3,100MHz)ı:18.9(CH3,C-4′),24.6(CH3,C-5′),58.3

(CH,C-3′),59.0(OCH

3,C-4),61.6(OCH3,C-8),61.7(CH,C-2′),69.4

(CH2,C-1′),102.3(CH,C-9),104.6(C,C-3),114.8(CH,C-6),118.1

(CH,C-5),141.6(C,C-8a),143.1(CH,C-10),143.2(C,C-8),151.1(C, C-7),155.5(C-4a),157.1(CH,C-4),164.3(C-2).

Choisyine(2)wasisolatedasanamorphousyellowishpowder anditsstructurewasundoubtedlyestablishedbymeansofMSand NMRanalysisandcomparisonwiththeliteraturedata(Frolovaand Kuzovkov,1963).

Yellowish amorphous solid; Rf: 0.44

(chloro-form:methanol:water; 9:1:1); mp: 88–92◦C; [˛]20

(4)

Table1

CorrelationbetweenstudiedparametersDPPHantioxidantactivitywithtotalphenolicandflavonoidequivalentofeachethanolextract.

Plantspecies DPPH(EC50)(␮g/ml) Phenolics(␮gGAEs/mgextract) Flavonoids(␮gGAEs/mgextract)

ChoisyaAztec-Pearl 25.84±0.005 338.33±0.002 0.59±0.003

Choisyaternata‘Sundance’ a 713.33±0.012 182.77±0.005

Choisyaternata 9.32±0.002 655.00±0.014 37.42±0.003

aEC

50valueisundefined.ConcentrationofEC50valuetoolowtoallowforinterpretationbutisindicativeofhighpotency.EC50forGinkgobilobaintheDPPHassaywas

38±0.005.Eachassaywasperformedintriplicate.

CH2Cl2);EIMSforC18H19NO5m/z;330[M+H]+and352[M+Na]+; 1HNMR(CDCl

3,400MHz)ı:1.28(3H,s,H-4′),1.41(3H,s,H-5′),

2.02(1H,s,H-1′),3.72(1H,m,H-3),3.95(3H,s,OCH3–C-7),4.33 (3H,s, OCH3–C-4), 4.78(1H, t,J=9.5, H-2′), 6.97(1H,d, J=2.4,

H-9),7.18(1H,s,H-8),7.51(1H,d,J=2.4,H-10);13CNMR(CDCl 3,

100MHz)ı:24.1(CH3,C-4′),26.1(CH3,C-5′),33.7(CH2,C-1′),55.7

(OCH3,C-7),58.8(OCH3,C-4),71.9(CH,C-3′),90.5(CH,C-2′),93.08

(C,C-3),102.7(C,C-4a),104.6(C,C-7),106.4(CH,C-8),118.7(C, C-5),142.5(C,C-8a),144.5(C,C-6),148.3(C,C-4),156.5(CH,C-4), 164.3(C-2).

Antioxidantactivityoftheethanolextractofthethree

Choisyaspecies

DPPH,totalphenolicsandflavonoidequivalent

TheethanolextractsofleavesofChoisyaAztec-Pearl,C.ternata

var.sundanceandC.ternataweretestedforantioxidantactivityand thencompared(Table1).TheDPPHfreeradicalscavengingactivity usingUV–visspectrophotometrywasfirstemployed,followedby totalphenolicsandflavonoidequivalent.Itisclearfromthe val-uesthattheethanolextractsofleavesfromtheChoisyaspecies havemuchgreaterantioxidantactivitythantheethanolextractof

Ginkgobiloba,usedaspositivecontrol.Negativecontrolconsistedof onlyethanolandDPPH.Therefore,accordingtothisstudy,allthree samplesaremorepotentantioxidantsthantheG.bilobastandard. The antioxidant activity of phenolics and their derivatives dependonthenumberandpositionofhydroxylgroupsboundto thearomaticring,thebindingsitesandthemutualpositionsof hydroxylgroupsinthearomaticringandthetypeofsubstituent (Ricoetal.,2013).Thehighesttotalphenoliccontentwasseenin theextractsofC.ternataAztec-Pearl(713.33␮gGAE/mgextract).

ThiswasfollowedbytheC.ternatavar.sundanceextractsandthen theC.ternataextracts.

Flavonoidsare phenolic compounds that could be responsi-ble for the antioxidant capacity of medicinalplants. According to theresults in this study, the highest amountof flavonoids, 182.77±0.005equivalentofquercetin,wasfound,asexpected,for

C.ternatavar.sundance,thegoldenleafyspecies.

FromtheanalysisofTable1,itcanbeseenthattherewasa distinctcorrelationbetweenthestudiedparameters(total pheno-liccontent,flavonoidequivalentandDPPHscavengingactivity)for

ChoisyaAztec-Pearl,C.ternataandC.ternatasundanceextracts.The scavengingactivitymeasuredbytheDPPHshowedaverygood cor-relationtothequantityofphenolsandflavonoidsineachofthese extracts.

ROSproduction

Thegenerationofreactivespeciesofoxygenwasmeasuredin leucocytesbythemethoddescribedpreviously.Itisobservedthat

C.ternataandC.ternatavar.sundancesimilarlyprotected leuco-cytesfromgeneratingfreeradicalswhenstimulatedwithPMAby 83%bothat10␮g/mlandby95%and92%at30␮g/ml,respectively.

However,inthismodelC.Aztec-Pearlconfersaslightlyhigher pro-tectionofthecellsafterstimulationwithPMA;ataconcentration

of10␮g/mltheprotectionisaround98%andataconcentration

of 30␮g/ml it goes up to99%. According tothis model,

anhy-droevoxineprotectsthecellsby71%at30␮g/mlwhilechoisyine

confers64%protectionatthesameconcentration.Inleukocytes, ROSaremainlygeneratedbyNADPHoxidase(Saueretal.,2001) atargetofproteinkinaseC,whichisactivatedbyPMA(Karlsson etal.,2000).ThePMA-inducedROS formationwassignificantly reducedbyChoisyaspeciesat10mM,reflectingitsknown radical-scavengingproperties(Loetal.,2002).Incontrast,Choisyaspecies didnotinterferewithPMA-activatedROSgenerationupto10mM, excludingunspecificanti-oxidantproperties.Theseresultssuggest thatC.ternata anditsalkaloidscouldinhibitROSgenerationor production.ThisstudyalsoshowedthatCyathulaprostata exhib-itedanti-inflammatoryandantinociceptiveactivitiesandthiswas mediated byother pathwaysbut not bya direct action onthe oxidativemetabolism(Imbrahimetal.,2012).Poeckeletal.(2008) observedthattheactionofRosmarinusofficinalisandSalvia offici-nalis,aswellasoftheirmainconstituents,thediterpenescarnosol andcarnosic acidinrelationtotheiranti-inflammatoryactivity hadastrongcomponentlinkedtotheirantioxidantcapacity.The evaluationofthegenerationofreactiveoxygenspeciesin leuko-cytesstimulatedbyPMA,followedbytheuseofthesediterpenes andtheplantextractsshowedthestronglinkbetweentheir anti-inflammatoryactionandthespecificantioxidantcapacity.

ItcouldthusbeconcludedthatthethreespeciesofChoisya eval-uatedpossessedaveryhighantioxidantpotentialasillustratedby

invitroandexvivoassaysusedinthisstudy.Thesamegoesfor thetwoquinolinealkaloidsisolatedfromC.ternata.It wasalso thefirsttimethatquinolinealkaloidswereisolatedbymeansof countercurrentchromatographyfromthisspecies.

Authors’contribution

GGLandJPBPdidHSCCCseparationsandchoiceofsolvent sys-tems.PRC,DRR,PDFandFBdidantioxidantexperiments.FBalso performedHSCCCseparations.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorsfromBrazilwanttoacknowledgethegrantsfrom CNPq and FAPERJ. The authors from Ireland wish to acknowl-edgetheHighEducationAuthority’sProgrammeforResearchin Third-LevelInstitutions Cycle 5’sfunding support for TBSI and toreinforcetheimportanceofSFIProgrammeISCA-Brazil(Grant no.SFI/13/ISCA/2843)thatcontributedtothecollaborativework betweenBrazilandIreland.

References

Akhmedzhanova,V.I.,Bessonova,I.A.,Yunusov,S.Y.,1975.Methylevoxine,anew alkaloidfromHaplophyllumperforatum.Khim.Prir.Soedin.11,272.

(5)

Boyd,D.R.,Sharma,N.D.,Loke,P.L.,Malone,J.F.,McRoberts,W.C.,Hamilton,J.T.G., 2002.Absoluteconfigurationassignmentandenantiopuritydeterminationof chiralalkaloidsandcoumarinsderivedfromO-andC-prenylepoxides.Chem. Commun.24,3070–3071.

Boyd,D.R.,Sharma,N.D.,Loke,P.L.,Malone,J.F.,Mcroberts,W.C.,Hamilton,J.T.G., 2007.Synthesis,structureandstereochemistryofquinolinealkaloidsfrom

Choisyaternata.Org.Biomol.Chem.5,2983–2991.

Conway,W.D.,1990.Counter-CurrentChromatography:Apparatus,Theoryand Applications.VCHPublishers,Inc.,NY.

Costa,F.N.,Leitão,G.G.,2010.Strategiesofsolventsystemselectionfortheisolation offlavonoidsbyCountercurrentChromatography.J.Sep.Sci.33,336–347.

Cruz,G.L.,1995.DicionáriodePlantasúteisdoBrasil,vol.5.,pp.436.

Dayton,W.A.,1931.ImportantWesternBrowsePlants.USDepartmentof Agricul-ture,MiscellaneousPublicationsNo.101.

DeMoura,N.F.,Ribeiro,H.B.,Machado,E.C.S.,Ethur,E.M.,Zanatta,N.,Morel,A.,1997.

BenzophenanthridinealkaloidsfromZanthoxylumrhoifolium.Phytochemistry 46,1443–1446.

Fang, L.,Liu, Y.,Yang, B.,Wang, X., Huang, L., 2011. Separation ofalkaloids fromherbsusinghigh-speedcounter-currentchromatography.J.Sep.Sci.34, 2545–2558.

Friesen,J.B.,Pauli,G.F.,2007.Rationaldevelopmentofsolventsystemfamiliesin counter-currentchromatography.J.Chromatogr.A1151,51–59.

Friesen,J.B.,McAlpine,J.B.,Chen,S.N.,Pauli,G.F.,2015.Countercurrentseparation ofnaturalproducts:anupdate.J.Nat.Prod.78,1765–1796.

Frolova, V.I., Kuzovkov, A.D., 1963. Alkaloids of Choisya ternata:structure of choisyine.ZlObshcheiKhimii33,125.

Gonzaga,W.A.,Weber,A.D.,Giacomelli,S.R.,Simionatto,E.,Dalcol,I.I.,Dessoy,E.C.M., Morel,A.F.,2003.CompositionandantibacterialalkaloidsfromZanthoxylum rhoifolium.PlantaMed.69,773–775.

Grundon, M.F., Harrison, D.M., Spyropoulos, C.G., 1974. Biosynthesis of the furoquinolinealkaloids,skimmianine,evoxineandchoisyine:mechanismof formationofthefuranring.Thetimingofaromatichydroxylationandof meth-ylation.J.Chem.Soc.Chem.Commun.,51–52.

Gursoy,N.,Sarikurkcu,C.,Cengiz,M.,Solak,M.H.,2009.Antioxidantactivities,metal contents,totalphenolicsandflavonoidsofsevenMorchellaspecies.FoodChem. Toxicol.47,2381–2388.

Imbrahim,B.,Abimbola,S.,vanRooyen,A.,VandeVenter,M.,2012. Antiinflam-matory,analgesicandantioxidantactivitiesofCyathulaprostrata(Linn.)Blume (Amaranthaceae).J.Ethnopharmacol.141,282–289.

Ito,Y.,2005.Goldenrulesandpitfallsinselectingoptimumconditionsforhighspeed counter-currentchromatography.J.Chromatogr.A1065,145–168.

Ito,Y.,Ma,Y.,1996.pH-zone-refiningcounter-currentchromatography.J. Chro-matogr.A753,1–36.

Johns,S.R.,Lamberton,J.A.,Sioumis,A.A.,1967.AlkaloidsofChoisyaternata.The structureofchoisyine.Aust.J.Chem.20,1975–1981.

Jullian,V.,Bourdy,G.,Georges,S.,Maurel,S.,Sauvian,M.,2006.Validationofusea traditionalantimalarialremedyfromFrenchGuianaZanthoxylumrhoifoliuLam. J.Ethnopharmacol.106,348–352.

Karlsson,A.,Nixon,J.B.,McPhail,L.C.,2000.Phorbolmyristateacetateinduces neu-trophilNADPH-oxidaseactivitybytwoseparatesignaltransductionpathways: dependentorindependentofphosphatidylinositol3-kinase.J.Leukoc.Biol.67, 396–404.

Lancaster,R.,1991.ShrubsThroughtheSeasons.London,HarperCollins.

Leitão,G.G.,Costa,F.N.,Figueiredo,F.,2012.Strategiesofsolventsystemselection fortheisolationofnaturalproductsbyCountercurrentChromatography.In:Rai, M.,Cordell,G.A.,Martinez,J.L.,Marinoff,M.,Rastrelli,L.(Eds.),MedicinalPlants: BiodiversityandDrugs,vol.1.CRCPress(aTaylor&FrancisGroup),BocaRaton, FL,pp.641–668(Chapter21).

Leitão,G.G.,Pinto,S.C.,deOliveira,D.R.,Timoteo,P.,Guimarães,M.G.,Cordova, W.H.P.,Leitão,S.G.,2015.Gradient×isocraticelutionCCCintheisolationof ver-bascosideandotherphenylethanoids:influenceofthecomplexityofthematrix. PlantaMed.81,1609–1613.

Liang,J.,Meng,J.,Wu,D.,Guo,M.,Wu,S.,2015.Anovel9×9map-basedsolvent selectionstrategyfortargetedcounter-currentisolationofnaturalproducts.J. Chromatogr.A1400,27–39.

Lo,A.H.,Liang,Y.C.,Lin-Shiau,S.Y.,Ho,C.T.,Lin,J.K.,2002.Carnosol,anantioxidantin rosemary,suppressesinduciblenitricoxidesynthasethroughdown-regulating nuclearfactor-kappaBinmousemacrophages.Carcinogenesis23,983–991.

Mensor,L.L.,Menezes,F.S.,Leitão,G.G.,Reis,A.S.,dosSantos,T.C.,Coube,C.S.,Leitão, S.G.,2001.ScreeningofBrazilianplantextractsforantioxidantactivitybythe useofDPPHfreeradicalmethod.Phytother.Res.15,127–130.

Medina-Remon,A.,Barrionuevo-Gonzalez,A.,Zamora-Ros,R.,Andres-Lacueva,C., Estruch,R.,Martinez-Gonzalez,M.A.,Diez-Espino,J.,Lamuela-Raventos,R.M., 2009.RapidFolin-Ciocalteumethodusingmicrotiter96-wellplatecartridges forsolidphaseextractiontoassessurinarytotalphenoliccompounds,asa biomarkeroftotalpolyphenolintake.Anal.Chim.Acta634,54–60.

Moreira,D.L.,Guarim-Neto,G.,2009.Usosmúltiplosdeplantasdocerrado:um estudoetnobotâniconacomunidadeSítioPindura,RosárioOeste,MatoGrosso, Brasil.Polibotânica27,159–190.

Muller,C.H.,1940.ArevisionofChoisya.Am.Midl.Nat.24,729–742.

Poeckel,D.,Greiner,C.,Verhoff,M.,Rau,O.,Tausch,L.,Hörnig,C.,Steinhilber,D., Schubert-Zsilavecz,M.,Werz,O.,2008.Carnosicacidandcarnosolpotently inhibithuman5-lipoxygenaseandsuppresspro-inflammatoryresponsesof stimulatedhumanpolymorphonuclearleukocytes.Biochem.Pharmacol.76, 91–97.

Pinheiro,M.M.G.,Radulovi ´c,N.S.,Miltojevi ´c,A.B.,Boylan,F.,Fernandes,P.D.,2014.

AntinociceptiveestersofN-methylanthranilicacid:mechanismofactionin heat-mediatedpain.Eur.J.Pharmacol.727,106–114.

Radulovi ´c,N.S.,Miltojevi ´c,A.B.,McDermott,M.,Waldren,S.,Parnell,A.,Pinheiro, M.M.G.,Fernandes, P.D.,Menezes,F.S.,2011. Identification ofanew anti-nociceptivealkaloidisopropylN-methylanthranilatefromtheessentialoilof

ChoisyaternataKunth.J.Ethnopharmacol.135,610–619.

Rico,M.,López,A.,Santana-Casiano,J.M.,González,A.G.,González-Dávila,M.,2013.

VariabilityofthephenolicprofileinthediatomPhaeodactylumtricornutum

growingundercopperandironstress.Limnol.Oceanogr.58,144–152.

Sauer,H.,Wartenberg,M.,Hescheler,J.,2001.Reactiveoxygenspeciesas intracel-lularmessengersduringcellgrowthanddifferentiation.Cell.Physiol.Biochem. 11,173–186.

Srivastava,N.,Gonugunta,V.K.,2009.Nitricoxideproductionoccursdownstream ofreactiveoxygenspeciesinguardcellsduringstomatalclosureinducedby chitosaninabaxialepidermisofPisumsativum.Planta229,757–765.

Yin,L.,Li,Y.,Lu,B.,Jia,Y.,Pen,J.,2010.TrendsinCounter-CurrentChromatography: applicationstonaturalproductspurification.Sep.Purif.Rev.39,33–62.

Yowtak,J.,Lee,K.Y.,Kim,H.Y.,Wang,J.,Kim,H.K.,Chung,K.,Chung,J.M.,2011.

Referências

Documentos relacionados

MNEs' international experience offsets barriers imposed by institutional distance between home and host countries on MNEs' entry strategy such that for both low and high levels

Diante disto, este trabalho prop˜ oe uma abordagem para a integra¸c˜ ao da verifica¸c˜ ao de modelos ao processo de desenvolvi- mento baseado em componentes para sistemas de tempo

Radical scavenging activity was analyzed towards the synthetic radicals DPPH • and ABTS •+ and antioxidant activity was evaluated applying the method of oxygen

It was assessed for antioxidant activity using DPPH, ABTS, CUPRAC, ferric ion reducing, superoxide scavenging and peroxyl radical scavenging assays.. DNA protective activity was

or emulsification/ evaporation presented antioxidant activity, confirmed by DPPH free radical scavenging activity and β-carotene/linoleic acid assay, probably. due to

Antioxidant activity evaluated by the Ferric reduction activity power (FRAP), 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH-RSA) and anti-hemolytic activity assays

coriacea demonstrated a moderate antioxidant effect and exhibited a free radical scavenging activity of 31.53%, by the DPPH test.. The

ABSTRACT: The free radical scavenging activity (FRS) using 2,2-diphenyl-1-picrylhydrazyl (DPPH), the reducer power and the total phenolic concentration of extracts