• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número4"

Copied!
10
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Isolation

and

characterization

of

flavanols

from

Anthocephalus

cadamba

and

evaluation

of

their

antioxidant,

antigenotoxic,

cytotoxic

and

COX-2

inhibitory

activities

Madhu

Chandel

a

,

Manish

Kumar

a

,

Upendra

Sharma

b

,

Neeraj

Kumar

b

,

Bikram

Singh

b,∗

,

Satwinderjeet

Kaur

a,∗

aDepartmentofBotanicalandEnvironmentalSciences,GuruNanakDevUniversity,Amritsar,India

bNaturalProductChemistryandProcessDevelopmentDivision,CSIR-InstituteofHimalayanBioresourceTechnology,Palampur,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4November2015 Accepted25February2016 Availableonline2May2016

Keywords:

Anthocephaluscadamba Antioxidant

Antigenotoxic Cytotoxic

Cyclooxygenase-2inhibitoryactivity

a

b

s

t

r

a

c

t

Insearchofleadmoleculesforuseindiseasepreventionandasfoodadditivefromnaturalsources, two flavanols wereisolated from leaves ofAnthocephalus cadamba (Roxb.)Miq., Rubiaceae.Their structureswereestablishedas6-hydroxycoumarin-(4′′8)-()-epicatechinand

6-hydroxycoumarin-(4′′8)-()-epicatechin-(46′′′)-()-epicatechinonthebasisofspectroscopicdata.Boththecompounds

exhibitedpotentantioxidantandantigenotoxicactivity.6-Hydroxycoumarin-(4′′8)-()-epicatechin

scavenged DPPH, ABTS+.and superoxide anion radicalswith IC

50 values of 6.09␮g/ml, 5.95␮g/ml

and42.70␮g/mlrespectivelywhereastheIC50valuesfor6-hydroxycoumarin-(4′′→8)-(−

)-epicatechin-(4→6′′′)-()-epicatechinwere6.62g/mlforDPPHfreeradicals,6.93g/mlforABTSradicalcationsand

49.08␮g/mlforsuperoxideanionradicals.Boththecompoundsalsoexhibitedpotentreducing poten-tialinreducingpowerassayandprotectedtheplasmidDNA(pBR322)againsttheattackofhydroxyl radicalsgeneratedbyFenton’sreagentinDNAprotectionassay.InSOSchromotest, 6-hydroxycoumarin-(4′′8)-()-epicatechindecreasedtheinductionfactorinducedby4NQO(20g/ml)andaflatoxinB1

(20␮g/ml)by31.78%and65.04%respectivelyataconcentrationof1000␮g/ml.Ontheotherhand, 6-hydroxycoumarin-(4′′8)-()-epicatechin-(46′′′)-()-epicatechindecreasedthegenotoxicityofthese

mutagensby37.11%and47.05%respectively.ItalsoshowedcytotoxicityinCOLO-205cancercellline withGI50of435.71␮g/ml.Boththecompoundsshowedmoderatecyclooxygenase-2inhibitoryactivity.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Cancerisamajorpublichealthprobleminallpartsoftheworld. Diversemolecular,biochemicalandcellularmechanismsateach stageof carcinogenesisareaccountable foraltering normal cell cycleprocess and converting a normal cell toa cancerous one (Seifriedetal.,2007).Ithasbeenobservedthatabout20%ormore ofcancercasescouldbepreventedbyincreasedintakeoffruitsand vegetablesindailydiet(RuhulAminetal.,2009).Natural prod-ucts/phytochemicalsarebeingexploredfortheirchemopreventive propertiesduetotheirnon-toxicnature,protectiveeffectsagainst oxidants and theirrecognition as dietary additives (Suh et al., 2009;Linetal.,2011;Liuetal.,2011;Wangetal.,2011;Kundu

Correspondingauthors.

E-mails:bikramsingh@ihbt.res.in(B.Singh),satwinderjeet.botenv@gndu.ac.in (S.Kaur).

etal.,2014;Bohnetal.,2014).Oxidativestressisthemajor deter-minantinthedevelopmentofdiversediseases(Halliwell,1997; Flora,2007; Halliwelland Gutteridge, 2007; Ziech etal., 2010; Ayala-Pena,2013).Plantderivedconstituentsprovideprotection fromROS-inducedDNAdamageandconsequentlyfrom carcino-genesis(Lamsonetal.,2010).Numerousreportshaveshownthe capabilityofphytoconstituentstoprovideprotectionagainstfree radicalinducedailments(Sahinetal.,2010;Ungvarietal.,2010; Negietal.,2011;Scapagninietal.,2011;Xiongetal.,2012;Ziech etal.,2012;Carmona-Ramirezetal.,2013).Phytochemicalsisolated fromdifferentpartsoftheplantsbelongingtodiverseclassesof plantsecondarymetabolitesareaccountableforantioxidant prop-ertiesofmedicinalplants(Chungetal.,1998;Pietta,2000).Toxic effectsofantioxidantsofsyntheticoriginhavelimitedtheir uti-lizationinfoodproducts(Itoetal.,1986;Peters etal.,1996;Li etal.,2002).Naturalplantproductsarefrequentlyreportedas effi-cientchemopreventiveagents(SurhandFerguson,2003).Immense researchcarriedoutinplantscienceshasleadtotheidentification

http://dx.doi.org/10.1016/j.bjp.2016.02.007

(2)

of various plants used in ancient times for their medicinal potential.

Anthocephaluscadamba(Roxb.)Miq.,Rubiaceae,isanAyurvedic medicinalplant,usedintreatingvariousailments.Itisusedasa folkmedicineinthetreatmentoffeverandanemia,asantidiuretic andfor improvementof semenquality. Earlier,in astudyfrom thesamelaboratory,wehavereportedthatamongallfractions, EAAC fractionof A. cadamba leavesexhibited highest potential tocounteroxidativestressinvariousinvitroantioxidantassays (Chandeletal.,2012).Therefore,thepresentstudywasundertaken towardanefforttoisolatetheactivecompoundsresponsibleforthe potentialantioxidantactivityofEAACfractionandtoevaluatethe isolated molecules for theirantioxidant/antigenotoxic/cytotoxic properties.

Materialsandmethods

Bacterialstrain/celllinesandchemicals

EscherichiacoliPQ37 strainwaspurchasedfromInstitut Pas-teur,France.HeLaandCOLO-205cancercelllineswereobtained fromNationalCentreforCellSciences(NCCS),Pune. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), ferric chloride, l-ascorbic acid, NADH (nicotinamideadeninedinucleotide),PMS(phenazine methosul-phate),NBT(nitrobluetetrazoliumchloride),ortho-nitrophenyl␤ -d-galactopyranoside(ONPG),para-nitrophenylphosphate(PNPP), fetal bovineserum(FBS), DMEMculturemedium, RPMIculture medium, MTT, dimethyl sulfoxide (DMSO), penicillin, trypsin, antibiotic/antimycotic solution, HEPES, NaHCO3, streptomycin

wereobtainedfromHiMediaPvt.LimitedMumbai,India.Potassium persulfate, ABTS [2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammoniumsalt]andrutinfromSigma(St.Louis,MO,USA). PlasmidpBR322waspurchasedfromGeneiPvt.Ltd.,Banglore.All otherreagentsusedwereofanalyticalgrade(AR).

Collectionofplantmaterial

The plant material used (leaves of Anthocephalus cadamba (Roxb.) Miq., Rubiaceae) was procured during July 2010 from campusofGuruNanakDevUniversity(G.N.D.U.),Amritsar, Pun-jab(India).ThespecimenwasidentifiedandkeptatHerbarium, Department of Botanical and Environmental Sciences, G.N.D.U. withVoucherspecimenno.6557/2011.

ColumnchromatographyofEAACfraction

EAACfraction(15g)waspreparedasmentionedinthe fraction-ationprocedure(Fig.1)anddissolvedin10mlofMeOH,mixedwith silicagelandtheslurrywasmade.Thecolumnwaselutedusinga gradientofhexane/EtOAc(100/0),(98/2),(95/5),(85/15),(80/20), (75/25),(70/30),(60/40),(50/50),(40/60),(30/70),(20/80),(10/90), (0/100)andfinallythecolumnwaselutedwithMeOH.Three frac-tionswerecollectedwhenelutingwithhexane/EtOAc((10/90)viz. EALAC1,EALAC2andEALAC3.Agradientofhexane/EtOAc(100/0), (75/25),(70/30),(65/35),(60/40),(55/45),(50/50),(40/60),(20/80), (0/100)wasusedtofurtherfractionateEALAC2(500mg)andthe columnwaselutedwithMeOH.Compound1(20mg)wasobtained fromfractionselutingin(55:45)n-hexane/EtOAc.

EALAC3 (7.91g) was dissolved in EtOAc and washed with H2O (3×300ml). The EtOAc layerwas dried over sodium

sul-fate and concentrated to obtain EALAC3-S fraction. A gradient ofCHCl3/MeOH(100/0),(95/5),(92/8),(90/10),(85/15),(80/20),

(75/25),(70/30),(60/40),(50/50),(30/70),(0/100)wasusedto col-umnchromatograph EALAC3-Sfraction and finally elutionwas donewithMeOH.Thinlayerchromatographyoffractionscollected inCHCl3/MeOH(90/10)gave singlespotandthefractionswere

concentratedandlyophilizedtoobtaindarkbrowncolored com-pound2(50mg).Compound1wasagainobtainedfromprecipitates obtainedatgradientCHCl3/MeOH(95/5)asmentionedinFig.1.

Antioxidantactivity

DPPH-radicalscavengingassay

ScavengingofDPPHradicalswasassayedusingtheprotocolof Blois(1958)withminormodifications.

ABTSradicalscavengingassay

ThespectrophotometricanalysisofABTS+•scavengingactivity wasdeterminedaccordingtotheprotocolgivenbyReetal.(1999) withslightmodifications.

Reducingpowerassay

Reducing potential of both the compounds wasdetermined usingthemethodofOyaizu(1986).

Superoxideanionradicalscavengingassay

Themeasurementofsuperoxideanionscavengingactivityof theisolatedcompoundswasperformedaccordingtothemethod ofNishikimietal.(1972)withslightmodifications.

Rutinwasused asstandard antioxidantcompound inDPPH, ABTS.+,reducingpowerandsuperoxideanionradicalscavenging

assays.

DNAprotectionassay

Tomeasurethehydroxylradicalscavengingeffectoftheisolated compounds,DNAnickingexperimentwasperformedaccordingto theprotocolofLeeetal.(2002).

Antigenotoxicactivity

SOSchromotest

(3)

Anthocephalus cadamba (Leaves powder, 1.4 g)

Refluxed with 95% ethanol

Ethanol extract (ETAC) after solvent evaporation (325.4 g)

Dissolved in distilled water

Aqueous ethanol extract Ethyl acetate

EAAC (15 g) Marc

Subjected to column chromatography eluting with a gradient of Hex:EtoAc

Hex:EtoAc::10:90

EALAC1 EALAC2 (500 mg)

Hex:EtoAc::55:45

Compound 1

Upper EtoAc layer Lower aqueous layer

Filteration through sodium-sulfate

Concentrated and dried (EALAC3-S, 1.92 g)

Subjected to column chromatography eluting with a gradient of CHCI3:MeOH

CHCI3:MeOH::95:5 CHCI3:MeOH::90:10

Compound 2

Compound 1 Precipitates (200 mg)

CHCI3:MeOH::95:5 Subjected to column chromatography

eluting with a gradient of CHCI3:MeOH

Subjected to column chromatography eluting with a gradient of Hex:EtoAc

EALAC3 (7.91 g)

Dissolved in EtoAc

EtoAc soluble part

Fig.1. Isolationofcompounds1and2fromleavesofAnthocephaluscadamba.

(hydroxymethyl)amino-methane.Theabsorptionwasmeasuredat 420nmusingareferencesolutioninwhichcultureisreplacedbyL medium.

Theenzymeactivitieswerecalculatedaccordingtothe simpli-fiedmethod:

Enzymeunits (U)=A420×1000

t

A420: opticaldensityat 420nm; t: substrateconversiontime in

minutes.

Inductionfactor (IF)= Rc Ro

Rc:␤-galactosidase activity/alkalinephosphatase activity deter-minedforthetestcompoundatconcentrationc,

Ro:␤-galactosidaseactivity/alkalinephosphataseactivityinthe absenceofthetestcompound.

Anti-genotoxicitywas expressedas percentage inhibition of genotoxicityaccordingtotheformula:

Inhibition (%)=100−IF1−IF0 IF2−IF0

×100

where:

(4)

IF2istheinductionfactorofpositivecontrol(4NQOandaflatoxin

B1)

IF0 theinductionfactor oftheblank(without anytest

com-pound).

Cytotoxicity

MTTassay

The cytotoxicityof compounds 1 and 2 on Helaand COLO-205 cancer cell lines was assessed by MTT assay. Cell plating (1×104/well)wasdonein96-wellplates.After24hincubation,

cells were incubated with different concentrations of the test sampleinDMSO(0.1%)for24h.Additionof10␮lofMTT(5mg/ml, phosphate-buffered saline solution) was done followed by 2h incubation.The mediumwasdiscardedandDMSOwasusedto dissolvethecrystalsofreducedMTTformed.Opticaldensitywas noticedat570nm.The%ofcytotoxicitywasdeterminedusingthe formulagivebelow:

%cytotoxicity=A0−A1

A0 ×100 where,

A0=absorbanceofcontrol A1=absorbanceoftestsample

InvitroCOX-2inhibitoryactivity

InhibitionofCOX-2activityofisolatedcompoundsfromEAAC fractionfromleavesof A. cadamba wasassessed withthehelp of ‘COX (ovine/human)inhibitor screening assay’ kit (Item No. 560131,CaymanChemicalsCompany,USA).

Statisticalanalysis

The results were presented as the mean±standard error. Regressionanalysiswascarriedoutbybestfit methodandIC50

valueswerecalculatedusingregressionequation.Thedatawere analyzedforstatisticalsignificanceusinganalysisofvariance (one-wayANOVA).Thedifferenceamongaveragevalueswascompared byhonestlysignificantdifference(HSD)usingTukey’stest.The sig-nificancewascheckedat*p≤0.05.

Resultsanddiscussion

Analysisofcompounds1and2

Compound1

HRMSofcompound1displayedamolecularionpeakatm/z 452.7750correspondingtothemolecularformulaC24H20O9(see

supplementarydataassociatedwiththisarticle).Totaltwentyfour carbonsignalswereobservedin13CNMRspectraofcompound1

includingtenmethines,twomethylenesandtwelvequaternaryas evidentfromDEPTspectra.SignalformethyleneatıC28.2(C-4)

correlatingwithıH2.86(1H,m)andıH 2.94(1H,m),inHMQC

spectrumwasfoundtobeadjacenttotwooxygenatedmethines atıH 4.20 (1H,m), ıC66.0 (C-3)and ıH 4.82(1H,overlapped), ıC79.1(C-2)byHMBCanalysis,hence,suggestedthepresenceof

flavan-3-oltypeofunitincompound1.Threearomaticsignalat [ıH6.84(1H,s);ıC114.9(C-2′)],[ıH6.72(1H,m),ıC115.5(C-5′)]

and[ıH6.69(1H,m),ıC118.4(C-6′)]showedlongrangecorrelation

withquaternaryaromaticcarbonsatıC130.7(C-1′),ıC144.9(C-3′)

andıC145.3(C-4′)inHMBCspectraofcompound1.Other

oxy-genatedaromaticcarbonsC-5,C-7,C-9,C3′andC4wereobserved atı156.2,152.5,151.0,144.9and145.3respectively.Onthebasis

oftheseNMRchemicalshiftsandcomparisonwithliterature val-ues(Agrawal andBansal,1989)partialskeleton ofcompound1 appearedtobe(−)-epicatechin.

In1HNMRspectrum,onlyonesinglet forH-6wasobserved

insteadofmeta-coupledprotonsforH-6andH-8incaseof(− )-epicatechinthatindicatedthepresenceofsubstitutionatC-8.13C

NMRspectrumofcompound1showedadditionalsignalsforester typecarbonylatıC169.8,methyleneat[ıH2.83–2.88(2H,m),ıC

37.2(C-3′′)],aliphaticmethineat[ı

H4.45(12H,m),ıC34.3(C-3′′)],

aromaticmethines[ıH6.78(1H,m),ıC114.3(C-5′′)],[ıH6.63(1H,

m),ıC114.0(C-7′′)],[ıH6.99(1H,m),ıC118.3(C-8′′)]andthree

qua-ternarycarbonsatıC152.5(C-6′′),144.1(C-9′′)and134.3(C-10′′).

TheanalysisoftheseNMRvaluessuggested6-hydroxycoumarin skeleton.ThesubstitutionatC-8wasconfirmedby13CNMR

spec-trumwhichrevealeddownfieldquaternarycarbonforC-8atıC

105.1.Thisquaternarycarbonatı105.1(C-8of(−)epicatechin) showedlongrangecorrelations(HMBC)withmethineatı34.3 (C-4′′of6-hydroxycoumarin)suggestedthatbothmoietieswereC-C linkedwhichwasfurtherconfirmedfromspectraldata.Thus,on thebasisofNMRspectraldata(seesupplementarydataassociated withthisarticle)thestructureofcompound1waselucidatedas 6-hydroxycoumarin-(4′′8)-()-epicatechin.Thestructureis ten-tativelyassignedasforcoumarinunitlinkageatC-6insteadofC-8 similarNMRvaluesandcorrelationareexpected.

Compound2

HRMSofcompound2displayeda molecularionpeakatm/z 741.8964(seesupplementarydataassociatedwiththisarticle) cor-respondingtothemolecularformulaC39H32O15.1Hand13CNMR

signals arevery similartotheNMR of compound 1with addi-tionalsignalscorrespondingtoonemoreepicatechinmoiety.The linkagebetweentwoepicatechinsunitswereestablishedbylong rangecorrelationbetween[ıH2.97–3.07(1H,m),ıC36.7(C-4)]

C-4andıC107.3(C-6′′′)inHMBCspectrum(seesupplementarydata

associatedwiththisarticle).Thus,onthebasisofNMRspectraldata, ‘compound2’wascharacterizedas6-hydroxycoumarin-(4′′ 8)-(−)epicatechin-(4→6′′′)-()-epicatechin.

O

O HO

O

HO

OH

OH OH

OH

1

O

O HO

O

HO

OH

OH OH

OH

HO OH

O HO

OH OH

2

6"

2"

4"

8

5 4

2 1' 3'

6"

2"

4"

8

5 4

2 1' 3'

6"' 5"'

3"'

2"' 1""

3""

4""

Antioxidantactivity

Compounds1and2exhibitedpotentradicalscavenging activ-ityinDPPHassay.Thecompounds1and2scavengedtheDPPH radicalsby77.08%and76.91%respectivelywithIC50of6.09␮g/ml

(compound 1) and 6.62␮g/ml (compound 2) which waslower thanthestandardantioxidantcompoundrutin(IC5054.05␮g/ml)

(5)

y=11.34ln(x)+29.51 r∗∗∗= 0.966

0 20 40 60 80 100

100 80 60 40 20 0

Concentration (µg/ml)

y=19.12ln(x)+15.91 r∗∗=0.943

0 20 40 60 80 100

100 80 60 40 20 0

Inhibition, %

Inhibition, %

Concentration (µg/ml)

DPPH assay ABTS+. assay

y=0.737x+6.489 r∗∗∗=0.992

0 20 40 60 80 100

100 80 60 40 20 0

Concentration (µg/ml)

y=0.618x+23.61 r∗∗∗=0.957

0 20 40 60 80 100

100 80 60 40 20 0

Inhibition, %

Inhibition, %

Concentration (µg/ml)

radical anion Superoxide

scavenging assay Reducing power assay

Fig.2.Antioxidantactivityofcompound1fromAnthocephaluscadambaleavesindifferentassays.

scavengingeffectexhibitedbycompounds1and2was28.35%and 24.99%whichdosedependentlyincreasedto99.76%and99.59% respectivelyatthehighesttestedconcentrationof100␮g/ml.The IC50valueforcompound1wascalculatedas5.95␮g/ml,whereas

compound2showedIC50 valueof6.93␮g/ml whichwaslower

thanthestandardantioxidantcompoundrutin(Figs.2and3).In reducingpowerassayboththecompoundsviz.1and2showed potentreductionpotentialof76.00%and55.57%athighesttested concentration(100␮g/ml)respectively.Standardantioxidant com-poundrutinshowedhigherIC50(IC50ofrutin160.77␮g/ml)than

theisolatedcompounds(IC50ofcompound1:70.27␮g/ml;IC50

ofcompound2:85.48␮g/mlwithrespecttorutin)(Figs.2and3). Bothcompoundsviz.compounds1and 2exhibitedpronounced superoxideanionradicalscavengingwithIC50of42.70␮g/mland

49.08␮g/mlrespectivelywhichwaslessthanthatofstandardrutin (IC5058.75␮g/ml)(Figs.2and3).Boththecompoundsshowedthe

abilitytoprotectthedamagedpBR322plasmidDNAfromtheattack ofhydroxylradicalsgeneratedbyFenton’sreaction(Fig.4).

Thehigher antioxidantactivityofcompounds1and 2might beattributedtothepresence ofmore hydroxyl groups present intheAandBringofthemolecules.Thenumberand configura-tionofhydroxylgroupsandthearrangementoffunctionalgroups aboutthenuclearstructuremayberesponsiblefortheantioxidant capacityofphenolics(Caoetal.,1997;ShekherPannalaetal.,2001). Theresultsofthepresentstudyareinaccordancewiththe sev-eralreportsshowingthepotentantioxidantactivityofflavonoids (Horvathovaetal.,2003;Gulcinetal.,2005;Rahmanetal.,2006; Kalpanaetal.,2009;Emametal.,2010;Hoetal.,2012;Jayasinghe et al.,2012; Tatsimo etal., 2012).Thereis a clearrelationship betweentheantioxidantpowerandthestructuralcharacteristics offlavonoids.Thepotentantioxidantactivityofcompounds1and 2mightbeduetothepresenceofO-dihydroxygroupsinthe B-ring,themeta5,7-dihydroxyarrangementsintheAringanda-OH

groupatposition3.Variousstudiesreportedthepresenceofabove mentionedstructuralcharacteristicsasthemajordeterminantsof antioxidantactivityofflavonoids(RattyandDas,1988;Borsetal., 1990;VanAckeretal.,1996;Rice-Evansetal.,1997;Pietta,2000; Lopez-Velezetal.,2003;Villanoetal.,2005;WolfeandLiu,2008). Moreover,flavonoidscanterminateradicalchainreactionsby servingaselectronandhydrogendonorsandtherebyconverting freeradicalstomorestableproducts(Kellyetal.,2002;Yenand Chen,1995).Thesuperoxideanionsscavengingactivityand antiox-idationof flavonols(quercetin,rutin,morin), flavones(acacetin, hispidulin)andflavanones(hesperidin,naringin)wasstudiedby Yuting et al. (1990). Rutin was found to be the most potent scavengerfollowedbyquercetinandnaringin, whilemorinand hispidulinwereveryweak.Caietal.(1997)attributedthe anti-carcinogeniceffectsofdifferentclassesofflavonoidsi.e.flavonol (quercetin),flavones(luteolin),andisoflavone(genistein)totheir antioxidantactivity.Quercetinandluteolinwerefoundtobepotent scavengerofH2O2andsuperoxideanionradicalsandalsoinhibited

thelipidperoxidationefficiently,whilegenisteinshoweda moder-ateeffectinradicalscavengingandexhibitedweakinhibitoryeffect inlipidperoxidationassay.

(6)

y=11.62ln(x)+28.02 r∗∗∗=0.955

0 20 40 60 80 100

100 80 60 40 20 0

Inhibition, %

Concentration (µg/ml)

y=20.21ln(x)+10.89 r∗∗=0.932

0 20 40 60 80 100

100 80 60 40 20 0

Inhibition, %

Concentration (µg/ml)

DPPH assay ABTS+. assay

y=0.533x+4.434 r∗∗∗=0.996

0 20 40 60 80 100

100 80 60 40 20 0

Inhibition, %

Concentration (µg/ml)

y=0.697x+15.79 r∗∗∗=0.950

0 20 40 60 80 100

100 80 60 40 20 0

Inhibition, %

Concentration (µg/ml)

radical anion Superoxide

scavenging assay Reducing power assay

Fig.3. Antioxidantactivityofcompound2fromAnthocephaluscadambaleavesindifferentassays.

wogonoside isolated from radixof Scutellaria baicalensis. Dose-dependentscavengingofhydroxylradicals,DPPHradicalsandalkyl radicalswasobservedbybaicaleinandbaicalinwhilewogoninand wogonosideshowedveryweakinhibitoryeffectsontheseradicals. Amongallthetestedcompoundsbaicaleinwasthemosteffective antioxidantanditspotentantioxidantactivitywasattributedto thepresenceofo-tri-hydroxylstructureintheAring.Hiranoetal. (2001)evaluatedtheDPPH•scavengingactivityofflavanols (cate-chin,epicatechin[EC],epigallocatechin[EGC],epicatechingallate [ECG], epigallocatechin gallate [EGCG]), flavonols (myricetin, quercetin,kaempferol)andflavones(apigeninandluteolin).EGCG wasthemostpotentDPPHradicalscavenger,whileluteolinwas theleastactive.Theyhavealsoevaluatedtheeffectofflavonoids onLDL oxidation and the inhibitory effectwas in theorder of

luteolin>ECG>EC>quercetin>catechin>EGCG>EGC>myricetin> kaempferol>apigenin.

Variousotherworkersgaveacomparativeaccountof antioxi-dantactivityofflavonoidsindifferentinvitroantioxidantassays andattributedthedifferenceintheiractivitytothepresenceor absence ofsubstituents onring A,ring Bor ring C (Gao etal., 1999;Pietta,2000;Miraetal.,2002;KhandujaandBhardwaj,2003; Emametal.,2010).

Antigenotoxicactivity

Identification of natural products with specific molecular and cellular targets can provide an effective approach to can-cer chemoprevention. Such an approach can be accomplished

1 2 3 4 5 6 1 2 3 4 5 6

100 70 50

10 10 50 70 100

Compound 2

Nicked circular form Linear form Supercoiled form

Compound 1

Figure4.Effectofcompounds1and2fromAnthocephaluscadambaleavesinplasmidDNAnickingassay. Lane1:NegativeControl(DW+pBR322plasmidDNA)

(7)

Table1

Antigenotoxiceffectofcompound1fromleavesofAnthocephaluscadambaagainst4NQOandAFB1inSOSchromotestusingE.coliPQ37testerstrain.

Treatment Dose(␮g/ml) ␤-Galactosidaseunits Alkalinephosphataseunits R Inductionfactor(IF) Mean±SE Mean±SE

4NQO(direct-actingmutagen)

Control(nontreatedcells) 6.23±0.55 29.17±1.99 0.21 1.00 Positivecontrol(4NQO) 20␮g/ml 46.74±4.19 16.57±0.66 2.82 13.43 Negativecontrol(compound1only) 10 4.52±0.24 23.72±2.30 0.19 0.90a

30 4.38±0.29 24.34±2.08 0.18 0.86a

100 4.44±0.28 26.43±2.01 0.17 0.81a

300 4.92±0.19 24.06±1.22 0.20 0.95a

1000 5.10±0.18 23.76±1.67 0.21 1.00a

4NQO+compound1 10 30.58±3.83 12.65±0.45 2.42 11.52

30 34.34±2.95 12.60±0.49 2.73 13.00

100 33.86±2.92 14.32±1.62 2.36 11.24a

300 33.89±2.84 16.09±1.44 2.11 10.04a

1000 31.95±6.21 16.03±0.93 1.99 9.48a

AflatoxinB1(S9-dependentmutagen)

Control(nontreatedcells) 10.42±0.75 61.92±5.04 0.17 1.00

Positivecontrol(aflatoxinB1) 20␮g/ml 97.42±2.99 60.87±5.19 1.60 9.41

Negativecontrol(compound1only) 10 10.53±0.85 62.57±3.16 0.17 1.00a

30 11.42±0.19 61.13±3.98 0.19 1.12a

100 8.93±1.29 60.73±2.62 0.15 0.88a

300 9.03±1.03 61.00±5.48 0.15 0.88a

1000 9.48±0.51 67.18±5.52 0.14 0.82a

AflatoxinB1+compound1 10 61.10±9.04 59.18±6.71 1.04 6.12a

30 61.27±6.48 57.55±5.18 1.06 6.24a

100 57.13±8.15 56.98±5.02 1.00 5.88a

300 51.65±4.71 69.77±10.6 0.74 4.35a

1000 45.68±4.06 68.45±9.59 0.67 3.94a

R,␤-galactosidaseunits/alkalinephosphataseunits;IF,Rc/Ro.

aLevelofstatisticalsignificance:p0.05withrespectto4NQOandAflatoxinB1.

throughisolation,characterizationandpreclinicalevaluationfor their development as chemopreventive agents (Lippman and Hong,2002;Gupta,2007).Evaluationofantimutagenicactivities of natural products becomes necessary, as there is concor-dancebetweenantimutagenicityandanticarcinogenicity(Maron and Ames, 1983; El-Sayed et al., 2007). Antimutagenic stud-ies of botanical extracts form the foundation for selecting the leadextractsfor longtermand costlyinvivo chemoprevention investigationstogetherwiththeseparation and chemical struc-tural elucidation ofpossible active compounds(EI-Sayedet al., 2013).

IntheSOSchromotest,itwasascertainedthatdifferent concen-trationsofcompounds1and2addedtotheindicatorbacteriawere notgenotoxicastheinductionfactorinducedbythetesteddoses wasbelow1.5.Table1andFig.5showedthatataconcentrationof 10␮g/ml,compound1inhibitedthegenotoxicityofAFB1(IF=9.41)

by39.12%whichdosedependentlyincreasedandata concentra-tionof1000␮g/ml,itshowedaninhibitionof65.04%.Similarly, compound1inhibitedtheinductionfactorof4NQO(IF=13.43)by 15.37%ataconcentrationof10␮g/mland31.78%at1000␮g/ml.As seenfromTable2andFig.5,compound2didnoteffectively mod-ulatedthegenotoxicityof4NQOandAFB1.Compound2reduced theinductionfactor of4NQO(IF=10.62)and AFB1(IF=8.80)by 37.11%and47.05%athighesttestedconcentrationof1000␮g/ml respectively.

Epicatechinsareoneofthecomponentsofteapolyphenolsand in a report by Itoet al. (1989),protective effects of hot water greenteaextractswereevaluatedagainsttheAFB1-induced chro-mosomal aberrations in bone marrow cells. Mutagenic effects mightbeinhibitedbycatechinsduetoflavanol–mutagenadduct formation(Stich,1991).Kuroda(1996)reportedthe bioantimu-tagenic activity of catechins against the direct-actingmutagen

100

80

60

40

20

0 100

80

60

40

20

0

10 30 100 300 1000 10 30 100

Compound 1 Compound 2

Concentration (

µ

g/ml)

% Inhibition

4NQO Aflatoxin B1 300 1000

(8)

Table2

Antigenotoxiceffectofcompound2fromleavesofAnthocephaluscadambaagainst4NQOandAFB1inSOSchromotestusingE.coliPQ37testerstrain.

Treatment (␮g/ml) ␤-Galactosidaseunits Alkalinephosphataseunits R Inductionfactor(IF) Mean±SE Mean±SE

4NQO(direct-actingmutagen)

Control(nontreatedcells) 5.71±1.14 26.72±1.19 0.21 1.00 Positivecontrol(4NQO) 20␮g/ml 56.16±6.19 25.17±1.55 2.23 10.62 Negativecontrol(compound2only) 10 4.16±0.74 19.20±3.74 0.22 1.04a

30 3.92±0.72 19.62±3.54 0.20 0.95a

100 5.01±0.53 19.31±3.25 0.26 1.24a

300 5.38±0.39 20.05±3.59 0.27 1.29a

1000 6.20±0.62 19.96±3.67 0.31 1.48a

4NQO+compound2 10 43.24±5.13 22.59±2.35 1.91 9.10

30 41.01±6.15 22.67±2.17 1.81 8.62

100 35.26±4.24 22.32±2.21 1.58 7.52

300 40.67±5.80 23.15±2.34 1.78 8.48

1000 37.73±7.02 25.46±2.67 1.48 7.05

AflatoxinB1(S9-dependentmutagen)

Control(nontreatedcells) 11.92±0.21 78.13±3.18 0.15 1.00

Positivecontrol(aflatoxinB1) 20␮g/ml 95.80±1.34 72.63±2.69 1.32 8.80

Negativecontrol(compound2only) 10 11.08±0.99 74.63±2.13 0.15 1.00a

30 11.62±0.35 76.77±1.81 0.15 1.00a

100 12.92±0.43 76.10±4.41 0.17 1.13a

300 11.15±0.18 76.57±1.82 0.15 1.00a

1000 10.58±0.32 79.52±0.67 0.13 0.87a

AflatoxinB+compound2 10 56.12±2.51 79.83±3.26 0.70 4.67a

30 62.13±1.37 75.40±1.99 0.82 5.47a

100 60.30±6.34 75.40±1.98 0.80 5.33a

300 66.38±3.91 76.35±2.24 0.87 5.80a

1000 59.45±3.22 77.43±1.83 0.77 5.13a

R,␤-galactosidaseunits/alkalinephosphataseunits;IF,Rc/Ro.

aLevelofstatisticalsignificance:p0.05withrespectto4NQOandAflatoxinB1.

i.e.4NQO.Matsumotoetal.(1996)andWeisburgeretal.(1997) reportedthat epicatechins modulatethe activityof detoxifying enzymesi.e.reductionofcytochromeP450andincreaseinphase II enzymes. Bhouri et al. (2011) reported the antigenotoxicity of two flavonoids, kaempferol 3-O-␤-isorhamninoside (K3O-ir) andrhamnocitrinand3-O-␤-isorhamninoside(R3O-ir)againstthe genotoxicityinducedbynitrofurantoineandaflatoxinB1.K3O-ir andR3O-irreducedthegenotoxicityofaflatoxinB1significantly by96.64%and90.26%,respectivelyatthehighesttested concentra-tionof10␮g/ml.Flavonoidscanalsoactasdesmutagensbydirectly interactingwithmutagensandinactivatingthem(Heoetal.,1994). Antigenotoxicpotentialofapigenin(flavone)againstmitomycinC inducedgenotoxicdamageinmousebonemarrowcellswas stud-iedbySiddiqueandAfzal(2009).Resultsofthestudydemonstrated thatapigenineffectivelydiminishedthegenotoxictyofmitomycin Casreflectedfromdecreaseofsisterchromatidexchanges(SCEs) andchromosomalaberrationsinmousebonemarrowcells.Hayder etal.(2004)reportedtheantigenotoxicactivityofextractsfrom Myrtuscommunisandalltheextractswerefoundeffectiveagainst thegenotoxicityofAFB1andnifuroxazideandtheyattributedthe potentialofthetestedextractstowardantigenotoxicitytothe pres-enceofflavonoids,coumarinsandtannins.

AntiproliferativeandinvitroCOX-2inhibitoryactivity

Only compound 2 exhibited cytotoxicity against COLO 205 celllinewithpercentinhibitionof 52.06%at500␮g/ml(Fig.6). Howeverboththecompoundswerefoundtobeineffectiveagainst HeLa cellline.Procyanidins(flavonoids)-richgrape seedextract showedgrowthinhibitoryeffectand inductionofapoptoticcell deathina humanprostate carcinomaDU145cell line(Agarwal et al., 2002). Wang et al. (1999) investigated the mechanism of inductionof apoptosisby apigenin,myricetin, quercetinand kaempferol in HL-60 leukemiacells. Apigenin was foundtobe mostpotentinreducingthecellviabilitywithIC50of50␮M.Park

and Min(2011) reported that quercetininhibited invasion and

proliferationofgliomacellsbydownregulationofphospholipase D1,aregulatorofcellproliferationandtumorigenesis.Compound 1fromA.cadambaleavesinhibitedtheCOX-2by17.79%at concen-trationof1␮Mwhereas compound2showed25.64%inhibition atsameconcentration.Compound2wasfoundeffectiveagainst COLO-205 and this antiproliferative activity of the compound may partly be due to the inhibition of COX-2. Overexpression of COX-2hasbeen observedin colon tumors (Kawamori etal., 1998; Crofford, 1997; Roelofs et al., 2014). Therefore specific COX-2 inhibitors could potentially serve as chemopreventive agents. Ye et al. (2004) investigated the anticancer activity of genistein on human oral squamous carcinoma line (SCC-25). Genisteininhibitedthegrowthoforalsquamouscarcinomacells withIC50ofapproximately200␮MviaG2/Marrest.Genisteinat

aconcentrationof0.1␮Meffectivelydecreasedtheexpressionof COX-2.

100

80

60

40

20

0

25 50 125

Concentration (µg/ml)

% Inhibition

Colo-205 cell line

250 500

(9)

Conclusions

The isolated phytochemicals from A. cadamba have the potential to alleviate the genotoxicity of environmental muta-gens/carcinogens.Thesehavealsobeenfoundtopossesssignificant antioxidantactivitygreaterthanthatofstandardcompoundrutin. The results clearly show the chemopreventive potential of A. cadambaphytochemicalsand canbeapromisingnaturalsource inhealthandmedicine.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethattheyhave fol-lowed theprotocolsof theirworkcenter onthepublication of patientdata.

Right to privacy and informed consent. The authors have obtainedthewritteninformedconsentofthepatientsorsubjects mentionedinthearticle.Thecorrespondingauthorisinpossession ofthisdocument.

Authors’contributions

MCcarriedoutextraction,isolationandmajorbioactivitypart ofpresentwork.MKandMCcollectivelyconductedcytotoxicand COX-2inhibitoryactivitiesalongwithstatisticallyanalysisofthe data.US,NKandBScarriedoutstructuralelucidationand char-acterizationofisolatedcompounds.SKdesigned,supervisedand criticallycheckedthemanuscript.Allauthorsreadandapproved thefinalversionofmanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

The authors are thankful to UGC (DRS-SAP), New Delhi for providingfinancialassistanceandDirector,IHBT,Palampurfor pro-vidingthenecessaryfacilitiestocarryoutisolationpart.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2016.02.007.

References

Agrawal,P.K.,Bansal,M.C.(Eds.),1989.Carbon-13NMRofFlavonoids.Elsevier, Amsterdam.

Agarwal,C.,Singh,R.P.,Agarwal,R.,2002.Grapeseedextractinducesapoptoticdeath ofhumanprostatecarcinomaDU145cellsviacaspasesactivationaccompanied bydissipationofmitochondrialmembranepotentialandcytochromecrelease. Carcinogenesis23,1869–1876.

Ayala-Pena,S.,2013.RoleofoxidativeDNAdamageinmitochondrialdysfunction andHuntington’sdiseasepathogenesis.FreeRadic.Biol.Med.62,102–110. Bhouri,W.,Sghaier, M.B., Kilani,S.,Bouhlel, I.,Dijoux-Franca,M.-G., Ghedira,

K.,Ghedira,L.C.,2011.Evaluationofantioxidantandantigenotoxicactivity oftwoflavonoidsfromRhamnusalaternusL.(Rhamnaceae):Kaempferol 3-O-␤-isorhamninosideandrhamnocitrin3-O-␤-isorhamninoside.FoodChem. Toxicol.49,1167–1173.

Blois,M.S.,1958.Antioxidantdeterminationsbytheuseofastablefreeradical. Nature29,1199–1200.

Bohn,S.K.,Blomhoff,R.,Paur,I.,2014.Coffeeandcancerrisk,epidemiological evi-dence,andmolecularmechanisms.Mol.Nutr.FoodRes.58,915–930. Bors,W.,Heller,W.,Michel,C.,Saran,M.,1990.Flavonoidsasantioxidants:

deter-minationofradicalscavengingefficiencies.MethodsEnzymol.186,343–354. Cai,Q.,Rahn,R.O.,Zhang,R.,1997.Dietaryflavonoids,quercetin,luteolinand

genis-tein,reduceoxidativeDNAdamageandlipidperoxidationandquenchfree radicals.CancerLett.119,99–107.

Cao,G.,Sofic,E.,Prior,R.L.,1997.Antioxidantandprooxidantbehaviorofflavonoids: structure–activityrelationships.FreeRadic.Biol.Med.22,749–760.

Carmona-Ramirez, I., Santamaria, A., Tobon-Velasco, J.C., Orozco-Ibarra, M., Gonzalez-Herrera,I.G.,Pedraza-Chaverri,J.,Maldonado,P.D.,2013.Curcumin restoresNrf2levelsandpreventsquinolinicacid-inducedneurotoxicity.J.Nutr. Biochem.24,14–24.

Chandel,M.,Sharma,U.,Kumar,N.,Singh,B.,Kaur,S.,2012.Antioxidantactivityand identificationofbioactivecompoundsfromleavesofAnthocephaluscadambaby ultra-performanceliquidchromatography/electrosprayionizationquadrupole timeofflightmassspectrometry.AsianPac.J.Trop.Med.5,977–985. Chung,K.-T.,Wong,T.-Y.,Huang,Y.-W.,Lin,Y.,1998.Tanninsandhumanhealth:a

review.Crit.Rev.FoodSci.Nutr.38,421–464.

Crofford,L.J.,1997.COX-1andCOX-2tissueexpression:implicationsand predic-tions.J.Rheumatol.49,15–19.

Devasagayam,T.P.,Subramanian,M.,Singh,B.B.,Ramanathan,R.,Das,N.P.,1995. Protection ofplasmid pBR322 DNA byflavonoids against single stranded breaksinducedbysingletmolecularoxygen.J.Photochem.Photobiol.B30, 97–103.

EI-Sayed, W.M., Hussin, W.A., Mahmoud, A.A., Alfredan, M.A., 2013. The Conyza triloba extracts with high chlorophyll and free radical scav-enging activity had anticancer activity in cell lines. Biomed. Res. Int., http://dx.doi.org/10.1155/2013/945638.

El-Sayed,W.M.,Hussin,W.A.,Franklin,M.R.,2007.Theantimutagenicityof 2-substitutedselenazolidine-4-(R)-carboxylicacids.Mutat.Res.627,136–145. Emam,A.M.,Mohamed,M.A.,Diab,Y.M.,Megally,N.Y.,2010.Isolationandstructure

elucidationofantioxidantcompoundsfromleavesofLaurusnobilisandEmex spinosus.DrugDiscov.Ther.4,202–207.

Flora,S.J.,2007.Roleoffreeradicalsandantioxidantsinhealthanddisease.CellMol. Biol.53,1–2.

Gao,Z.,Huang,K.,yang,X.,Xu,H.,1999.Freeradicalscavengingandantioxidant activitiesofflavonoidsextractedfromtheradixofScutellariabaicalensisGeorgi. Biochim.Biophys.Acta16,643–650.

Gulcin,I.,Berashvili,D.,Gepdiremen,A.,2005.Antiradicalandantioxidantactivity oftotalanthocyaninsfromPerillapankinensisdecne.J.Ethnopharmacol.101, 287–293.

Gupta, S., 2007. Prostatecancer chemoprevention: current status and future prospects.Toxicol.Appl.Pharmacol.224,369–376.

Halliwell,B.,1997.Antioxidantsandhumandiseases:ageneralintroduction.Nutr. Rev.55,44–52.

Halliwell,B.,Gutteridge,J.M.C.,2007.RadicalsinBiologyandMedicine.Oxford Uni-versityPress,NewYork.

Hayder,N.,Abdelwahed,A.,Kilani,S.,BenAmmar,R.,Mahmoud,A.,Ghedira,K., Chekir-Ghedira,L.,2004.Anti-genotoxicandfree-radicalscavengingactivities ofextractsfrom(Tunisian)Myrtuscommunis.Mutat.Res.564,89–95. Heo,H.Y.,Lee,S.J.,Kwon,C.H.,Kin,S.W.,Sohn,D.H.,Au,W.W.,1994.

Anticlasto-geniceffectsofgalanginagainstbleomycininducedchromosomalaberrations inmousespleenlymphocytes.Mutat.Res.311,225–229.

Hirano,R.,Sasamoto,W.,Matsumoto,A.,Itakura,H.,Igarashi,O.,Kondo,K.,2001. AntioxidantabilityofvariousflavonoidsagainstDPPHradicalsandLDL oxida-tion.J.Nutr.Sci.Vitaminol.47,357–362.

Ho,R.,Violette,A.,Cressend,D.,raharivelomanana,P.,Carrupt,P.A.,Hostettmann, K.,2012.Antioxidantpotentialandradical-scavengingeffectsofflavonoidsfrom theleavesofPsidiumcattleianumgrowninFrenchPolynesia.Nat.Prod.Res.26, 274–277.

Horvathova,K.,Novotny,L.,Vachalkova,A.,2003.Thefreeradicalscavengingactivity offourflavonoidsdeterminedbythecometassay.Neoplasma50,291–295. Ito,N.,Hirose,M.,Fukishima,S.,Tsuda,H.,Shirai,T.,Tatematsu,M.,1986.

Stud-iesonantioxidants:theiranticarcinogenicandmodifyingeffectsonchemical carcinogenesis.FoodChem.Toxicol.24,1099–1102.

Ito,Y.,Ohnishi,S.,Fujie,K.,1989.ChromosomeaberrationsinducedbyaflatoxinB1 inratbonemarrowcellsinvivoandtheirsuppressionbygreentea.Mutat.Res. 222,253–261.

Jayasinghe,L.,Amarasinghe,N.R.,Arundathie,B.G.S.,Rupasinghe,G.K.,Jayatilake, N.H.A.N.,Fujimoto,Y.,2012.AntioxidantflavonolglycosidesfromElaeocarpus serratusandFiliciumdecipiens.Nat.Prod.Res.26,717–721.

Kalpana,K.B.,Srinivasan,M.,Menon,V.P.,2009.Evaluationofantioxidantactivity ofhesperidinanditsprotectiveeffectonH2O2inducedoxidativedamageon pBR322DNAandRBCcellularmembrane.Mol.Cell.Biochem.323,21–29. Kawamori,T.,Rao,C.V.,Seibert,K.,Reddy,B.S.,1998.Chemopreventiveactivityof

celecoxib,aspecificcyclooxygenase-2inhibitor,againstcoloncarcinogenesis. CancerRes.58,409–412.

Kelly, E.H., Anthony, R.T., Dennis, J.B., 2002. Flavonoid antioxidants: chem-istry,metabolismandstructure–activityrelationships.J.Nutr.Biochem.13, 572–584.

Khanduja,K.L.,Bhardwaj,A.,2003.Stablefreeradicalscavengingand antiperoxida-tivepropertiesofresveratrolcomparedinvitrowithsomeotherbioflavonoids. IndianJ.Biochem.Biophys.40,416–422.

(10)

Kuroda,Y.,1996.Bio-antimutagenicactivityofgreenteacatechinsincultured Chi-nesehamsterV79cells.Mutat.Res.361,179–186.

Lamson,D.W.,Gu,Y.H.,Plaza,S.M.,Brignall,M.S.,Brinton,C.A.,Sadlon,A.E.,2010. ThevitaminC:vitaminK3system-enhancersandinhibitorsoftheanticancer effect.Altern.Med.Rev.15,345–351.

Lee,J.C.,Kim,H.R.,Kim,J.,Jang,Y.S.,2002.Antioxidantactivityofethanolextract ofthe stemof Opuntia ficus-indicavar. saboten. J. Agric. Food Chem.50, 6490–6496.

Li,Y.,Seacat,A.,Kuppusamy,P.,Zweier,J.L.,Yager,J.D.,Trush,M.A.,2002. Cop-perredox-dependentactivationof2-tert-butyl(1,4)hydroquinone:formationof reactiveoxygenspeciesandinductionofoxidativeDNAdamageinisolatedDNA andculturedrathepatocytes.Mutat.Res.518,123–133.

Lin,K.-W.,Yang,S.-C.,Lin,C.-N.,2011.Antioxidantconstituentsfromthestemsand fruitsofMomordicacharantia.FoodChem.127,609–614.

Lippman,S.M.,Hong,W.K.,2002.Cancerpreventionscienceandpractice.Cancer Res.62,5119–5125.

Liu,J.F.,Ma,Y.,Wang,Y.,Du,Z.Y.,Shen,J.K.,Peng,H.L.,2011.Reductionoflipid accumulationinHepG2cellsbyluteolinisassociatedwithactivationofAMPK andmitigationofoxidativestress.Phytother.Res.25,588–596.

Lopez-Velez,M.,Martinez-Martinez,F.,Valle-Ribes,C.D.,2003.Thestudyof phe-noliccompoundsasnaturalantioxidantsinwine.Crit.Rev.FoodSci.Nutr.43, 233–244.

Maron,D.M.,Ames,B.N.,1983.RevisedmethodsfortheSalmonellamutagenicity test.Mutat.Res.113,173–215.

Matsumoto,N.,Kohri,T.,Okushio,K.,Hara,Y.,1996.Inhibitoryeffectsoftea cat-echins,blackteaextractandoolongteaextractonhepatocarcinogensisinrat. Jpn.J.CancerRes.87,1034–1038.

Mira,L.,Fernandez,M.T.,Santos,M.,Rocha,R.,Florencio,M.H.,Jennings,K.R.,2002. Interactionsofflavonoidswithironandcopperions:amechanismfortheir antioxidantactivity.FreeRadic.Res.36,1199–1208.

Negi,G.,Kumar,A.,Sharma,S.S.,2011.Nrf2andNF-kappaBmodulationby sul-foraphanecounteractsmultiplemanifestationsofdiabeticneuropathyinrats andhighglucose-inducedchanges.Curr.Neurovasc.Res.8,294–304. Nishikimi,M.,Rao,N.A.,Yagi,K.,1972.Theoccurrenceofsuperoxideanioninthe

reactionofreducedphenazinemethosulphateandmolecularoxygen.Biochem. Biophys.Res.Commun.46,849–853.

Oyaizu,M.,1986.Studiesonproductofbrowningreactionpreparedfromglucose amine.Jpn.J.Nutr.44,307–315.

Park,M.H.,Min,D.S.,2011.Quercetin-induceddownregulationofphospholipaseD1 inhibitsproliferationandinvasioninU87gliomacells.Biochem.Biophys.Res. Commun.412,710–715.

Peters,M.M.C.G.,Rivera,M.I.,Jones,T.W.,Monks,T.J.,Lau,S.S.,1996.Glutathione conjugatesoftert-butyl-hydroquinone,ametaboliteoftheurinarytracttumor promoter3-tert-butyl-hyroxyanisole,aretoxictokidneyandbladder.Cancer Res.56,1006–1011.

Pietta,P.-G.,2000.Flavonoidsasantioxidants.J.Nat.Prod.63,1035–1042. Quillardet,P.,Hofnung,M.,1985.TheSOSchromotest,acolorimetricbacterialassay

forgenotoxins:procedures.Mutat.Res.147,65–78.

Rahman, M.M., Ichiyanagi, T., Komiyama, T., Hatano, Y., Konishi, T., 2006. Superoxide radical and peroxynitrite-scavenging activity of anthocyanins; structure–activity relationship and their synergism. Free Radic. Res. 40, 993–1002.

Ratty,A.K.,Das,N.P.,1988.Effectsofflavonoidsonnonenzymaticlipidperoxidation: Structure–activityrelationship.Oncology39,69–79.

Re,R.,Pellegrini,N.,Proreggente,A.,Pannala,A.,Yang,M.,Rice-Evans,C.,1999. AntioxidantactivityapplyinganimprovedABTSradicalcationdecolourization assay.FreeRadic.Biol.Med.26,1231–1237.

Rice-Evans,C.A.,Miller,N.J.,Paganga,G.,1997.Antioxidantpropertiesofphenolic compounds.TrendsPlantSci.2,152–159.

Roelofs,H.M.J.,Morsche,R.H.M.,VanHeumen,B.W.H.,Nagengast,F.M., Peters, W.H.M.,2014.Over-expressionofCOX-2mRNAincolorectalcancer.BMC Gas-troenterol.,http://dx.doi.org/10.1186/1471-230X-14-1.

RuhulAmin,A.R.M.,Kucuk,O.,Khuri,F.R.,Shin,D.M.,2009.Perspectivesforcancer preventionwithnaturalcompounds.J.Clin.Oncol.27,2712–2725.

Sahin,K.,Tuzcu,M.,Gencoglu,H.,Dogukan,A.,Timurkan,M.,Sahin,N.,Aslan,A., Kucuk,O.,2010.Epigallocatechin-3-gallateactivatesNrf2/HO-1signaling path-wayincisplatin-inducednephrotoxicityinrats.LifeSci.87,240–245.

Scapagnini,G.,Vasto,S.,Abraham,N.G.,Caruso,C.,Zella,D.,Fabio,G.,2011. Modula-tionofNrf2/AREpathwaybyfoodpolyphenols:anutritionalneuroprotective strategyforcognitiveandneurodegenerativedisorders.Mol.Neurobiol.44, 192–201.

Seifried,H.E.,Anderson,D.E.,Fisher,E.I.,Milner,J.A.,2007.Areviewoftheinteraction amongdietaryantioxidantsandreactiveoxygenspecies.J.Nutr.Biochem.18, 567–579.

ShekherPannala,A.,Chan,T.S.,O’Brien,P.J.,Rice-Evans,C.A.,2001.FlavonoidsB-ring chemistryandantioxidantactivity:fast-reactionkinetics.Biochem.Biophys. Res.Commun.282,1161–1168.

Siddique,Y.H.,Afzal,M.,2009.AntigenotoxiceffectofapigeninagainstmitomycinC inducedgenotoxicdamageinmicebonemarrowcells.FoodChem.Toxicol.47, 536–539.

Stich,H.F.,1991.Thebeneficialandhazardouseffectsofsimplephenoliccompounds. Mutat.Res.259,307–324.

Suh,Y.,Afaq,F.,Johnson,J.J.,Mukhtar,H.,2009.Aplantflavonoidfisetininduces apoptosisincoloncancercellsbyinhibitionofCOX-2and Wnt/EGFR/NFkappaB-signalingpathways.Carcinogenesis30,300–307.

Surh,Y.,Ferguson,L.R.,2003.Dietaryandmedicinalantimutagensand anticarcino-gens:Molecularmechanismsandchemopreventivepotentialhighlightsofa symposium.Mutat.Res.9485,1–8.

Tatsimo,S.J.N.,Tamokou,J.D.D.,Havyarimana,L.,Csupor,D.,Forgo,P.,Hohmann, J., Kuiate, J.-R., Tane, P., 2012. Antimicrobial and antioxidant activity of kaempferol rhamnosidederivativesfrom Bryophyllum pinnatum.BMC Res. Notes,http://dx.doi.org/10.1186/1756-0500-5-158.

Ungvari,Z.,Bagi,Z.,Feher,A.,Recchia,F.A.,Sonntag,W.E.,Pearson,K.,deCabo,R., Csiszar,A.,2010.Resveratrolconfersendothelialprotectionviaactivationofthe antioxidanttranscriptionfactorNrf2.Am.J.Physiol.HeartCirc.Physiol.299, 18–24.

VanAcker,S.A.B.E.,Berg,D-J.V.D.,Tromp,M.N.J.L.,Griffioen,D.H.,Bennekom,W.P.V., Vijgh,W.J.F.V.D.,Bast,A.,1996.FreeRadic.Biol.Med.20,331–342.

Villano,D.,Fernandez-Pachon,S.F.,Troncoso,A.M.,Garcia-Parrilla,C.,2005. Com-parisonofantioxidantactivityofwinephenoliccompoundsandmetabolites invitro.Anal.Chim.Acta538,391–398.

Vinson,J.A.,Dabbagh,Y.A.,Serry,M.M.,Jang,J.,1995.Plantflavonoids,especiallytea flavonols,arepowerfulantioxidantsusinganinvitrooxidationmodelforheart disease.J.Agric.FoodChem.43,2800–2802.

Wang,I.-K.,Lin-Shiau,S.-Y.,Lin,J.-K.,1999.Inductionofapoptosisbyapigeninand relatedflavonoidsthroughcytochromecreleaseandactivationofcaspase-9and caspase-3inleukaemiaHL-60cells.Eur.J.Cancer35,1517–1525.

Wang,S.,Meckling,K.A.,Marcone,M.F.,Kakuda,Y.,Tsao,R.,2011.Can phytochem-icalantioxidantrichfoodsactasanti-canceragents?FoodRes.Int.44,2545– 2554.

Weisburger,J.H.,Rivenson,A.,Garr,K.,Aliaga,C.,1997. Tea,orteaandmilk, inhibitmammarygland andcoloncarcinogenesisinrats.CancerLett.114, 1–5.

Wolfe,K.L.,Liu,R.H.,2008.Structure–activityrelationshipsofflavonoidsinthe cel-lularantioxidantactivityassay.J.Agric.FoodChem.56,8404–8411.

Xiong,N.,Huang,J.,Chen,C.,Zhao,Y.,Zhang,Z.,Jia,M.,Zhang,Z.,Hou,L.,Yang,H.,Cao, X.,Liang,Z.,Zhang,Y.,Sun,S.,Lin,Z.,Wang,T.,2012.Dl-3-n-butylphthalide,a nat-uralantioxidant,protectsdopamineneuronsinrotenonemodelsforParkinson’s disease.Neurobiol.Aging33,1777–1791.

Ye,F.,Wu,J.,Dunn,T.,Yi,J.,Tong,X.,Zhang,D.,2004.Inhibitionofcyclooxygenase-2 activityinheadandneckcancercellsbygenistein.CancerLett.28,39–46. Yen,G.-C.,Chen,H.-Y.,1995.Antioxidantactivityofvariousteaextractsinrelation

totheirantimutagenicity.J.Agric.FoodChem.43,27–32.

Yuting,C.,Rongliang,Z.,Zhongjian,J.,Yong,J.,1990.Flavonoidsassuperoxide sca-vengersandantioxidants.FreeRadic.Biol.Med.9,19–21.

Ziech,D.,Anestopoulos,I.,Hanafi,R.,Voulgaridou,G.P.,Franco,R.,Georgakilas,A.G., Pappa,A.,Panayiotidis,M.I.,2012.Pleiotrophiceffectsofnaturalproductsin ROS-inducedcarcinogenesis:theroleofplantderivednaturalproductsinoral cancerchemoprevention.CancerLett.327,16–25.

Imagem

Fig. 1. Isolation of compounds 1 and 2 from leaves of Anthocephalus cadamba.
Fig. 2. Antioxidant activity of compound 1 from Anthocephalus cadamba leaves in different assays.
Fig. 3. Antioxidant activity of compound 2 from Anthocephalus cadamba leaves in different assays.
Fig. 5. Effect of compounds 1 and 2 from Anthocephalus cadamba leaves on genotoxicity induced by 4NQO and AFB1 in SOS chromotest using E
+2

Referências

Documentos relacionados

Para tanto foi realizada uma pesquisa descritiva, utilizando-se da pesquisa documental, na Secretaria Nacional de Esporte de Alto Rendimento do Ministério do Esporte

evidences of promising antioxidant potential, mainly through in vitro experiments, it is urgent to validate the in vivo activity of these and other phenolic constituents

Tem-se como objetivo principal a obtenção dos parâmetros elétricos (fluxo concatenado, força contra eletromotriz, resistência de fase, cogging torque, torque

The findings of the present study are in accordance with the in silico study and demonstrates that natamycin and nystatin are more potent antileishmanial agents than

It was assessed for antioxidant activity using DPPH, ABTS, CUPRAC, ferric ion reducing, superoxide scavenging and peroxyl radical scavenging assays.. DNA protective activity was

Overall, our results showed a significant alteration in the content of different pigments and total flavonoids, but no significant increase in antioxidant activity (by the

Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Potential antioxidant activities in vitro

De uma forma geral, as motivações para a internacionalização podem ser agrupadas em quatro grupos de fatores: a penetração em mercados externos, que está relacionado