• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número5"

Copied!
8
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Multi-elemental

analysis

of

Ziziphora

clinopodioides

from

different

regions,

periods

and

parts

using

atomic

absorption

spectrometry

and

chemometric

approaches

Xuejia

Zhang

a,e

,

Wenhuan

Ding

b

,

Jie

Li

a

,

Feng

Liu

c

,

Xiaoying

Zhou

d

,

Shuge

Tian

a,b,∗

aCollegeofTCM,XinjiangMedicalUniversity,Urumqi,Xinjiang,China bCentralLaboratoryofXinjiangMedicalUniversity,Urumqi,Xinjiang,China

cCollegeofChemistryandChemicalEngineering,XinjiangNormalUniversity,Urumqi,Xinjiang,China dCollegeofPharmacy,XinjiangMedicalUniversity,Urumqi,Xinjiang,China

eChinaPharmaceuticalUniversity,Nanjing,Jiangsu,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28December2014 Accepted22July2015

Availableonline4September2015

Keywords:

Ziziphoraclinopodioides Traceelements

Atomicabsorptionspectrometry Chemometricapproaches Diversity

Variationanddistribution

a

b

s

t

r

a

c

t

In this study, ten trace elements in Ziziphora clinopodioides Lam., Lamiaceae, from different

regions, periods and parts in Xinjiang were determined by atomic absorption spectrometry

following microwave-assisted acid digestion. The decreasing sequence of elements levels was

K>Ca>Mg>Fe>Cu>Zn>Na>Mn>Cd>Pb.Chemometricapproaches,suchascorrelationanalysis,

prin-cipalcomponentanalysis,andhierarchicalclusteranalysiswereappliedtoclassifyZ.clinopodioides

accordingtoitselementscontents.Principalcomponentanalysisrevealed83.51%ofthevariancewith

thefirstfourprincipalcomponentvariables.Hierarchicalclusteranalysisindicatedfivegroupsfromthe

eighteenregions,andtheresultofclassificationcancorrespondtothegeographicaldistributionforthe

mostregions.Variationintheelementsexhibitedadecreasingtrend,butofdifferenttypesinthestudied

periods.Elementalcontentsdistributedinleaveswerehigherthanthoseinflowersandstems.Therefore,

chemometricapproachescouldbeusedtoanalyzedatatoaccuratelyclassifyZ.clinopodioidesaccording

toorigins.Thisstudyprovidedsomeelementalinformationonchemotaxonomy,diversity,changing

pat-tern,distribution,andmetabolismofZ.clinopodioidesatspatialandtemporallevels,andcouldbeused

asareferenceofplantingandqualitystandards.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

ZiziphoraclinopodioidesLam.,aperennialplantbelongingtothe Lamiaceae,isawellknowntraditionalUyghurmedicinalherbfrom Xinjiang,China.Infolksociety,freshanddryZ.clinopodioideshas beenused as spice in noodle and tea. Moreover,this aromatic plantisrich in essentialoil, which isappliedin food,perfume, andmedicaltreatments,thus,localpeoplecallZ.clinopodioidesas “wildpeppermint.”Thisplantisalsousedtotreathypertension, fever, edema, heart disease, neurasthenia, insomnia, tracheitis, lungabscess,andhemorrhoids(Liuetal.,1999;Senejouxaetal., 2010).Other ethnobotanical uses of Ziziphora species as stom-achic,carminativeandwoundhealingmaterialhavebeenrecorded inIranianandTurkishfolkmedicines(Meraletal.,2002;Ozturk

∗ Correspondingauthor. E-mail:tsgyz@sina.com(S.Tian).

and Ercisli, 2007).Previous pharmacological investigations also revealedthatthisspecies exhibitsantimicrobial(Jietal.,2012), antifungal(Behravanetal.,2007),antioxidative(Tianetal.,2011), andanti-hypertensive(Guoetal.,2014)propertiesattributedto itsessentialoil.Phytochemicalinvestigationshaveshownthatthis genusisasourceofflavonoids,polyphenols,polysaccharides,fatty acidsand sterols(Yuetal.,2012).Theherbalsobiosynthesizes phenolic compounds, suchas caffeic acid, rosmarinic acid, and flavonoidderivatives,includingluteolin,linarin,diosmin,and thy-monin(Yangetal.,2008;Tianetal.,2012).Moreover,thisaromatic plantisrichinessentialoil.Pulegone,trans-isopulegone,menthol, 1,8-cineoleandlimonenewerefoundtobethemajorcomponents ofZ.clinopodioidesessentialoil(Dingetal.,2014a,b).

Traceelementsplayanimportantroleinanorganism’s biolog-icalactivities.Inplants,traceelementsareimplicatedinseveral physiologicalactivities,includingmetabolismandbiosynthesis,as wellasenzymecofactors(Maigaetal.,2005).Traditionalmedicine playsanimportantroleinthegeneralhealthstatusofa popula-tion,andthedemandformedicinalherbsanditsproductshave

http://dx.doi.org/10.1016/j.bjp.2015.07.021

(2)

Figure1. GeographicaldistributionofthecollectedZ.clinopodioidessamplesinXinjiang,China.

continuouslyincreased.However,healthriskisposedbyvarious medicinalherbs and theirproductsbecause ofthe presence of toxicelements.Thehumanbodyrequiresmetallicand nonmetal-licelementswithincertainpermissiblelimitsforgrowthandgood health.Assuch,varioustraceelementconcentrations shouldbe quantitativelyestimatedtoevaluatetheeffectivenessofmedicinal plantsforthetreatmentofvariousdiseasesandunderstand phar-macologicalactivities(Tokalıoglu,2012).Superiorqualitycontrol formedicinalherbsshouldbeimplementedtoprotectconsumers fromcontamination.Varioustechniques,suchasatomic absorp-tionspectrometry(AAS)(WangandLiu,2010),inductivelycoupled plasmaopticalemissionspectrometry(ICP-OES)(Liuetal.,2014), inductivelycoupledplasma-massspectrometry(ICP-MS)(Buetal., 2013),andX-rayfluorescence(XRF)(Kierdorfetal.,2014),areused toanalyzetraceelementsinmedicinalherbs.AASasrapid and accuratetechniqueforthispurposewaschosenforthepresented work.

Thisstudyaimedtodeterminetentraceelements(Ca,Cd,Cu, Fe,K,Mg,Mn,Na,Pb,andZn)inZ.clinopodioidessamplesfrom dif-ferentregions,periodsandpartsinXinjiang,China.Theseelements weredeterminedbyflameandgraphitefurnaceatomicabsorption spectrometry,aftermicrowave-assisted aciddigestion was per-formed.Toprovidebetterinsightsintothepatternsofelements,we performedcommonchemometricapproaches,suchascorrelation analysis(CA),principalcomponentanalysis(PCA),and hierarchi-calclusteranalysis(HCA),asclassificationtechniquestoevaluate data.Semi-monthlyvariationofelementalconcentrationsandthe distributionofelementsinleaves, flowersandstemswerealso investigated.

Materialsandmethods

Reagentsandmaterials

Allofthereagentsusedthroughouttheexperimentswereof analytical-reagentgrade.UltrapuregradeHNO3 (65%)andH2O2

(37%) were purchased from Tianjin Chemical Co., Ltd., China. Double-deionizedwaterwasproducedusingMilliQwater purifica-tionsystem(Millipore,Bedford,MA,USA).Thestandardsolutions ofCa,Cd,Cu,Fe,K,Mg,Mn,Na,Pb,andZnwereobtainedfromthe

NationalResearchCenterforCertifiedReferenceMaterial(CRM)of China(NRCCRM),andusedtopreparethestocksolution.Glassware andTeflondigestionvesselswerecleanedbysoakingovernightin dilutedHNO3(1/9,v/v)andbysubsequentlyrinsingwith

double-deionizedwateranddryingbeforeuse.

Instruments

AHitachiZ-2000atomicabsorptionspectrometer(HitachiCo., Ltd.,Japan)equippedwithamulti-elementalhollowcathodelamp andaDeuteriumandZeemanbackgroundcorrectionsystemwere usedtodeterminateoftraceelements.Thisequipmentwas oper-atedusinganair/acetyleneflameandtransverse-heatedgraphite furnace controlled bya personal computer. Operating parame-tersoftheworkingconcentrationsofelementsweresetaccording tomanufacturer’srecommendation.Eachsamplewasreadthree timestoobtainameanvalue.Concentrationwascorrectedonthe basisofvolumeofacidusedinsamplepreparation.

A Sineo MDS-6 closed vessel microwave digestion system (Shanghai EU Analytical Instrument Co., Ltd., China) was used forextraction.Teflonreactionvesselswereusedforalldigestion procedures.Operatingparametersweresetaccordingtothe man-ufacturer’srecommendations.

Procedure

EighteensamplesofZiziphoraclinopodioides Lam.,Lamiaceae, werecollectedineighteendifferentregionsinXinjiang(Fig.1)in July2013.Ninesampleswerecollectedsemi-monthlyduringMay toAugustfromonestationaryplace,oneofthesampleswasdivided intothreeparts(flowers,stems,andleaves)forstudy.Allofthe sampleswereidentifiedbyYongheLi,achiefapothecaryofthe ChineseMedicineHospitalofXinjiang,China.Thesesampleswere washedwithdouble-deionizedwaterandthenoven-driedat60◦C.

Driedsamplesweregrindedandhomogenizedusinga homoge-nizer.Afterward,thesesampleswerescreenedwitha200mesh sieveandstoredinplasticbags.

(3)

Table 1 Concentrations of elements in Ziziphora clinopodioides samples from different geographical regions. a No. Ca ( ␮ g g − 1) Cu ( ␮ g g − 1) Zn ( ␮ g g − 1) Fe ( ␮ g g − 1) K ( ␮ g g − 1) Mg ( ␮ g g − 1) Mn ( ␮ g g − 1) Na ( ␮ g g − 1) Cd (ng g − 1) Pb (ng g − 1) S1 2980.17 ± 63.61 54.01 ± 1.12 36.18 ± 0.57 497.05 ± 6.12 11,553.67 ± 40.80 958.83 ± 22.77 17.99 ± 1.73 9.46 ± 0.35 0.73 ± 0.02725 0.03 ± 0.00094 S2 3152.59 ± 57.66 67.51 ± 1.87 79.61 ± 0.60 538.27 ± 12.76 9943.50 ± 37.09 3346.24 ± 38.34 19.07 ± 1.32 23.72 ± 0.36 0.11 ± 0.00403 0.02 ± 0.00070 S3 2911.21 ± 17.86 60.76 ± 0.96 46.05 ± 0.26 778.72 ± 11.08 8333.33 ± 13.43 2700.99 ± 22.38 20.16 ± 0.91 24.19 ± 0.77 0.73 ± 0.03925 0.02 ± 0.00013 S4 3575.00 ± 29.87 74.26 ± 5.42 117.11 ± 0 94 1067.26 ± 30.18 12,090.40 ± 52.28 2926.83 ± 46.78 20.16 ± 0.81 26.09 ± 0.64 4.69 ± 0.13336 0.03 ± 0.00069 S5 3497.41 ± 54.36 60.76 ± 1.27 37.50 ± 0.49 552.01 ± 16.93 11,045.20 ± 56.94 2507.42 ± 27.73 14.74 ± 0.33 17.54 ± 0.83 0.11 ± 0.00503 0.01 ± 0.00002 S6 1643.97 ± 28.38 83.26 ± 1.47 63.82 ± 0.14 1218.40 ± 30.79 13,361.58 ± 22.18 2120.27 ± 39.31 21.24 ± 1.33 105.91 ± 0.49 3.65 ± 0.20757 0.02 ± 0.00016 S7 2023.28 ± 20.28 63.01 ± 0.73 62.50 ± 0.16 421.48 ± 4.18 9378.53 ± 19.06 2507.42 ± 2.79 13.65 ± 1.10 15.64 ± 0.66 ND 0.01 ± 0.00019 S8 1083.62 ± 13.87 78.76 ± 1.09 53.95 ± 0.23 2674.84 ± 16.97 11,807.91 ± 59.67 3249.45 ± 36.21 60.28 ± 1.94 70.76 ± 0.66 4.07 ± 0.19586 0.03 ± 0.00048 S9 1626.72 ± 34.41 72.01 ± 1.09 44.74 ± 0.33 1726.78 ± 10.16 13,192.09 ± 48.98 2410.63 ± 16.79 31.00 ± 0.72 68.38 ± 2.24 ND 0.02 ± 0.00020 S10 3135.34 ± 43.44 58.51 ± 0.87 32.89 ± 0 42 421.48 ± 6.01 8983.05 ± 27.78 1991.22 ± 1.87 17.99 ± 1.54 18.97 ± 0.29 ND 0.01 ± 0.00021 S11 3118.10 ± 36.82 69.76 ± 1 79 44.74 ± 0.16 1445.11 ± 11.24 8926.55 ± 49.67 5604.59 ± 38.37 37.51 ± 1.73 58.40 ± 0.89 ND 0.01 ± 0.00042 S12 2721.55 ± 38.74 65.26 ± 1.50 38.82 ± 0.34 778.72 ± 19.60 8474.58 ± 55.95 3055.88 ± 8.85 36.42 ± 2.64 26.57 ± 0.47 1.36 ± 0.13932 ND S13 2704.31 ± 75.54 56.26 ± 3.04 59.87 ± 0.45 476.44 ± 5.42 9943.50 ± 35.20 2700.99 ± 15.18 28.83 ± 2.17 27.04 ± 1.59 0.53 ± 0.01022 ND S14 3075.00 ± 25.74 74.26 ± 1.13 54.61 ± 0.69 1184.05 ± 9.85 7937.85 ± 25.32 4281.84 ± 61.45 49.44 ± 1.20 138.70 ± 1.13 ND 0.04 ± 0.00091 S15 2307.76 ± 16.17 69.76 ± 1.53 13.16 ± 0.19 991.69 ± 11.17 10,480.23 ± 24.96 3055.88 ± 21.96 32.09 ± 0.74 32.75 ± 0.28 0.32 ± 0.01472 ND S16 2756.03 ± 14.79 47.25 ± 1.38 29.61 ± 0.08 579.49 ± 6.35 9039.55 ± 44.11 2249.32 ± 56.68 29.92 ± 1.92 33.22 ± 1.08 3.86 ± 0.09100 ND S17 3040.52 ± 39.78 83.26 ± 2.17 44.74 ± 0.23 2008.45 ± 14.65 9124.29 ± 15.80 5507.81 ± 91.30 72.21 ± 1.54 80.73 ± 1.45 ND 0.01 ± 0.00022 S18 2307.76 ± 46.22 76.51 ± 3.70 71.71 ± 0.53 2441.26 ± 24.64 10,564.97 ± 26.68 3443.02 ± 72.32 67.87 ± 0.23 85.96 ± 1.30 ND ND Mean 2647 . 80 67 . 51 51 . 75 1100 . 08 10 , 232 . 27 3034 . 37 32 . 81 48 . 00 1.12 0.01 a Results were mean ± standard deviation obtained from three replicates of one sample. ND: not detected.

ofafreshlypreparedmixtureofconcentratedHNO3–H2O2(7,1,v/v)

wasaddedtothevesselandkeptatroomtemperaturefor10min. Thedigestionconditionsforthemicrowavesystemwereapplied asfollows:(1)400Wat90◦Cfor2min,and(2)400Wat120Cfor

8min.Afterambienttemperaturewasreached,thereactorswere openedtoeliminatenitrousvapors.Theundissolvedpartswere separatedbycentrifugationat1788.8×gfor5min.Theextractwas transferredtoavolumetric flaskandfinal volumeof50ml was obtainedbyadding double-deionizedwater. Blankexperiments (n=3)werecarriedoutinthesameway.

Tenelements(Ca,Cd,Cu,Fe,K,Mg,Mn,Na,Pb,andZn)were determinedinthisstudy.Ca,Cu,Fe,K,Mg,Mn,Na,andZnionswere determinedinanair/acetyleneflame.CdandPbionswere deter-minedusingagraphitefurnaceatomicabsorptionspectrometer (GFAAS).Theoperatingparametersfortheworkingconcentrations oftheelementsweresetasrecommendedbythemanufacturer. Eachsamplewasreadthreetimestoobtainameanvalue. Concen-trationwascorrectedforthevolumeofacidusedinthesample preparation.

Dataanalysis

StatisticaldataanalysiswasperformedusingSPSS19.0software forWindows.Chemometricapproacheswereusedtoevaluate ele-mentaldatawidely(WangandLiu,2010),suchasCA,PCA,andHCA, toanalyzedifferencesintraceelementpatternsinZ.clinopodioides

samples.

Resultsanddiscussion

Elementalcontentofdifferentgeographicalregions

Table 1 lists the average results of the elemental contents obtainedfromtriplicateanalysesbyAASmethod.Theaverage con-tent of theelements in the studiedZ. clinopodioides decreased inthefollowingorder,K>Ca>Mg>Fe>Cu>Zn>Na>Mn>Cd>Pb. Thisresultwassimilartothatinapreviousstudy(Tianetal.,2009). Ingeneral,traceelementsinplantsaremainlyobtainedfromsoil (Russell,1979).DifferentZ.clinopodioidessamplesvariedonthe basisofelementalcontent.Atotalofeighteensampleswere col-lectedfromdifferentregionsalong TianshanMount inXinjiang, andeachofthemwasplacedawayfromoneanotheratalong dis-tance.Thesoilsonthismountaindifferbecauseofthecomplex structureandgeographicalenvironmentofTianshanMountain(Ma etal.,2014).Variousreportshaverevealedthesameconclusions astheresultofthisstudy(Shietal.,2009).Ourresultswerealso affectedbyotherfactors,suchasclimate,humans,orotherplants. Forexample,sample4containedCdandPblevelshigherthanthe othersamples.Toourknowledge,themajorreasonisbecausean importanthighwaythatcrossesthedistributionofsample4. Exces-siveamountsofautomobileexhaustinducedtheaccumulationof heavymetalsinsoilandthisexhaustwasabsorbedbyZ. clinopodi-oides.Onthecontrary,samples7,10,11,13,15,and17contained lowerlevelsofCdandPbbecauseoflesshumanactivity.

Correlationanalysis

(4)

Table2

CorrelationmatrixfortheelementalconcentrationsinZiziphoraclinopodioides.a

Ca Cu Zn Fe K Mg Mn Na Cd Pb

Ca 1.000

Cu −0.357 1.000

Zn 0.113 0.371 1.000

Fe −0.510* 0.753** 0.147 1.000

K −0.471* 0.341 0.283 0.292 1.000

Mg 0.174 0.537* 0.092 0.491*

−0.412 1.000

Mn −0.256 0.578*

−0.027 0.842**

−0.140 0.652** 1.000

Na −0.335 0.712** 0.113 0.645** 0.088 0.477* 0.643** 1.000

Cd −0.239 0.115 0.360 0.154 0.410 −0.242 −0.042 0.046 1.000

Pb −0.050 0.294 0.435 0.137 0.247 −0.034 −0.078 0.317 0.186 1.000

apvalues. * Meansp<0.05. ** Meansp<0.01.

C.c.>0.5(or<−0.5)wasusedtointerpretcorrelationanalysis results.However,somevaluescloseto±0.5werealsoincludedto producegroupingssuchas0.491forMgandFeand−0.471forCa andK.Significantcorrelationbetweentwoormoreelements indi-catessimilarabilitytoenterZ.clinopodioidesorthepresenceofthe samesource.HighcorrelationswerefoundamongNa,Cu,Fe,Mg, andMnwithc.c.between0.491and0.842.Dependencybetween theseelementscan beexplained by thecommon originof the soilminerals.Inaddition,thestrongestcorrelationwasobserved betweenMnandFe(c.c.=0.842).However,Cawasnegatively cor-relatedwithFeandK(c.c.=−0.510andc.c.=−0.471,respectively). Correlationcoefficientmethodprovidesinformationthatcould onlyindicatethesamesourceorbehaviorfortwo ormore ele-ments,whereasinformationonthedifferencesbetweensamples fromthedifferentregionscannotbeprovided.Further interpreta-tionsbetweenelementsandregionsmaybeobtainedusingmore powerfulchemometrictechniques,suchasPCA.

Principalcomponentanalysis

Inordertohighlighttherelationshipsbetweenelements,we subjectedtheentiredatasettoPCA.PCAcouldalsobeperformed ontheconcentrationsofelementstoenableadiscriminationof thesamples.Thefirstfourprincipalcomponentswereextracted andexplained83.51% ofthetotalvariabilityamongthe10 vari-ables.Fig.2Ashowstheloadingplot(PC1versusPC2)whereCu, Fe,Mn,andNapredominatedinthehigherpositivevaluesofPC 1andexplained38.15%ofthetotalvariance.Onthecontrary,Ca exhibitedconsiderablynegativevaluesinthePC1becauseCawas negativelycorrelatedwiththeseelements.KandCdelicitedthe highesteffectonPC2andaccountedfor22.82%ofthetotal vari-ance.MgnegativelycorrelatedwithPC2.Thethirdcomponentwas correlatedwithZnandCa.Basedonthescoresonthefirst princi-palcomponent,Cu,Fe,Mn,andNacontentsonthefirstprincipal componentloadingswerehigherinsample8,9,14,17,and18than intheothersamples;bycontrast,Cu,Fe,Mn,andNacontentson thefirstprincipalcomponentloadingwerelowerinsamples1,10, 13,and16thanintheothersamples.Basedonthescoresofthe secondprincipalcomponent,KandCdconcentrationswerehigher insamples4,6,and8butlowerinsamples10,11,and14thanin theothersamples.

Thefirsttwovarimaxrotatedprincipalcomponentloadingsand scoresareshowninFig.2.Theloadingsindicatedthesimilarities andcorrelationsbetweenthetwoelements.Elementswithhigh loadingsgreatlyinfluencedonthegroupingandtheseparationof samples;bycontrast,elementswithsmallloadingsslightly influ-enceddatastructure.InFig.2A,anassociationbetweenCu,Fe,Mn, andNawasapparent.Anotherassociationwasobservedbetween KandCdonthePC2,whereasCaandMgappearedmoredispersed

intothecomponentspaceandshowedamoreindividualized char-acteristic.ThescoresinFig.2Bindicatedthesimilaritiesandthe correlationsbetweentwosamples.Thepointsintheanomalous positions6,8,9,14, 17,and18 wereoutliers,in particular,the sample6and17containedthehighestCu,whereassamples6and 9containedthelowestCa(Table1);Sample8and18containedthe highestFe,whereassample14containedthehighestNa(Table1).

Hierarchicalclusteranalysis

HCAisoneofthemostwidelyusedunsupervisedpattern recog-nitiontechniquesinchemometrics.Inthistechniquerelationships betweensamples are determinedwithout usingprior informa-tionpertainingtotheserelationships.HCAwasappliedusingSPSS 19.0.In this study,Ward’smethodof clusteringwasappliedto thesquaredEuclideandistanceasameasure.Similargroupingsto thosedescribedpreviouslywereobtainedfromtheresultsofHCA, asshowninthedendrogram(Fig.2C).Thesegroupswerelistedas follows,

Group1,Samples2,3,7,10,12,13,15,and16. Group2,Samples1,4,and5.

Group3,Samples11,14,and17. Group4,Samples6and9. Group5,Samples8and18.

(5)

1.00

.50

A

B

C

.00

–.50

–1.00

–.40 Ca

Cd

Pb Zn

Mg

Mn Na Fe

Cu K

–.20 .00 .20

PC 1 (38.15%)

Dendrogram using average linkage (between groups)

Rescaled distance cluster combine

PC 2 (22.82%)

.40 .60

0

S3

S12

S10 S16

S13

S15 S4 S5

S1 S11

S17

S14 S6

S9 S8 S18 S7 S2

5 10 15 20 25

.80 1.00

2.00000

2.00000 –2.00000

–2.00000 1.00000

1.00000 –1.00000

–1.00000 .00000

.00000 Ca

S11 S12

S15 S10

S13

S5 S3

S2 S7

S1 S9

S4 S6

S8

S16

S14 S18

S17

PC 1 (38.15%)

PC 2 (22.82%)

Figure2. Principalcomponentanalysisandhierarchicalclusteranalysisonelementalconcentrationsbasedon10variablesinZ.clinopodioides.PanelAandBillustratethe correspondingloadingplotandthescoreplot.Cisthedendrogramofclusteranalysisofthe18Z.clinopodioidessamplesfromdifferentgeographicaloriginsinXinjiang.

Traceelementsvariationindifferentperiods

Asimilartrendthatismainlycharacterizedbyadeclinefromthe beginningtimetothefinaltime,wasobservedinthehighesttrace elementconcentrationsinZ.clinopodioidessamplesfromnine dif-ferentcollectiontimepointsbutwithaminimaldifferencebetween elements.InFig.3,theeightelements(exceptCdandPb)couldbe groupedintoonemajortype,the“W”type(Ca,Fe,Mg,Na,andZn), andthreeindividualtypes,namely,“N”type(Mn),“Oblique”type (Cu),and“Wave”type(K).

Forthe“W”type,areducingtrendwasobservedinearly col-lectionperiod andthen anuncertainpeak appearedduringthe summertime.Ca,Fe,andZnreachedthepeaksinearlysummer, whereasNaandMgreachedthepeaksinmiddleandlatesummer, respectively.Anincreasewasappearedinearlyautumn(Fig.3)for the“N”type,indicatinganincreaseinearlysummer;adecrease inMnconcentrationwasthenobserveduntilmiddlesummer.No morefluctuationsoccurredinthefollowingtime(Fig.3).

Forthe“Oblique”type,atotallyreducingtrendwasdisplayed duringtheinvestigationperiodsfortheCuconcentration(Fig.3); “Wave”type waspresentedinthesemi-monthlyvariationinK. with three peaks occurringin early,middle, and late summer, Therefore,three increaseanddecrease,likeawave,werefound inthevariationinKduringtheinvestigationperiods(Fig.3).

(6)

Figure3.Semi-monthlyvariationofelementalconcentrationsinZ.clinopodioides.

trans-isopulegone,eucarvone,˛-pinene,andˇ-pinene,showeda “Wave”typevariation.Onthecontrary,non-volatilecomponents, exceptflavonoidcompounds,showedanincreasingtrend; pheno-licandtriterpenoid compoundsexhibiteda“W”typesimilarto mostelements,freeaminoacids,andK.Inpolysaccharides,higher contentsarealsodetectedintheearlygrowthstage(Dingetal., 2014a,b).

Plantsgrowfast in earlygrowthstages to accomplishplant developmentandorganformation.Amountsoftraceelementsare absorbedfromsoilandthenbecomeaccumulatedtocompletethe growthprocess.Elementsaremoresignificantinplantmetabolism and slightly participate in bioavailability afterplant organs are formed.Lesseramountsareneededinearlygrowthstagethan dur-ingplantdevelopment.However,differentplantsshowdifferent patternsofmetabolicchangesintraceelements(Niuetal.,2014).

TraceelementsdistributionindifferentpartsofZ.clinopodioides

Theconcentrationsofeight elements(Ca, Cu,Fe,K,Mg,Mn, Na,and Zn) in flowers,stems and leaves from one plantof Z.

clinopodioideswereinvestigated.Theconcentrationsofthe exam-inedelementsweredifferent(Fig.4).Thefollowingconcentrations wereobservedinflowers,stems,andleaves,

Flowers,K>Ca>Mg>Fe>Cu>Zn>Na>Mn. Stems,K>Ca>Mg>Fe>Cu>Na>Zn>Mn. Leaves,K>Ca>Mg>Fe>Cu>Zn>Mn>Na.

ThesamerankingwasobservedinK,Ca,Mg,Fe,andCuinthe threeparts.Thedifferencewasobservedinthesequence ofNa, Mn,andZn.Na,Mn,andZnwerealsointhesamelevelbutshowed fewdifferences,thus,nogreatinfluencewasobserved.However, certaingapsweredetectedinK,Ca,Mg,andFe(Fig.4).The concen-trationofKwasthemostabundantofalltheexaminedelements, withapproximately10mgg−1 followedbyCa,Mg,andFe,which

wereapproximately3,1,and0.1mgg−1,respectively.

(7)

Figure4.Thedistributionandconcentrationsofelementsinflowers,stems,and leavesofZ.clinopodioides.

Many elementsare necessary to stimulate physiological activi-ties inleaves. However,Kcontentin thestemswasmorethan thatin leaves. Ca,Mn andZnconcentrations are approximated betweentheflowersandstems.ThestemscontainshigherCu,Fe andNacontentsthantheflowers,bycontrast,Mgconcentration washigherintheflowersthanstems.

Conclusion

In the present study, 18 Z. clinopodioides samples collected fromdifferentregionsin Xinjiangwerecharacterizedaccording totheirmetal contents.The concentrations ofthe 10 elements (Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Pb, and Zn) were determined by flame and graphite furnace atomic absorptionspectrometry following microwave-assisted acid digestion. The average con-tent of the elementsin thestudied Z. clinopodioides decreased inthefollowingorder,K>Ca>Mg>Fe>Cu>Zn>Na>Mn>Cd>Pb. Chemometricmethods, such as PCAand HCA techniqueswere usedtoclassifythesesamplesbasedontheirconcentrations.The resultsobtainedbyPCAandHCAconfirmedthatelementalcontent datasupportadequateinformationtodifferentiateZ.clinopodioides

samplesaccordingtotheirtype.PCAyielded fourprincipalPCs thataccountedfor83.51% ofthetotalvarianceinthedata.HCA revealedfivegroups ofZ. clinopodioides samplesbasedontheir traceelementconcentrations.Thisstudyrevealedthat PCAand HCAanalysisareusefultoolsfortheauthenticdifferentiationof

Z.clinopodioidessamplesbyusingtheprofileofelementalcontents andtheyhighlightedthediversityofelements.Variationsinthe elementsinthestudiedperiodsshoweda decreasingtrend,but withdifferenttypes.Thischangewasassociatedwiththechemical componentsreportedpreviously.Amongthethreeplantparts,the leavesshowedthehighestamountofaccumulatedelements.This studyprovidedsomeelementalinformationoncontent,diversity, chemotaxonomy,changingpattern,distribution,andmetabolism ofZ.clinopodioidesatspatialandtemporallevels;thisresultcould beusedasareferenceofplantingandqualitystandards.

Authors’contributions

XJZ,JLandFLcontributedinrunningthelaboratoryworkand XJZcarriedoutdataanalysesandwrotethemanuscript.WHD,XJZ, JLandXYZcontributedincollectingplantsamples.SGTdesigned thestudy,supervisedthelaboratoryworkandgavecriticalreading ofthemanuscript.Alltheauthorshavereadthefinalmanuscript andapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisworkwassupportedbytheProgramforXinjiangScience and TechnologySupport Plan (Grant No. 201233134) and Pro-gramforXinjiangGraduateInnovationFund(XJGRI2013090).The authorsthankYongheLiforidentificationofplantsamples.

References

Behravan,J.,Ramezani,M.,Hassanzadeh,M.K.,Eskandari,M.,Kasaian,J.,Sabeti,Z., 2007.CompositionantimycoticandantibacterialactivityofZiziphora

clinopodi-oidesLam.essentialoilfromIran.J.Essent.OilBear.Plants10,339–345.

Bu,K.X.,Cizdziel,J.V.,Reidy,L.,2013.Analysisofherbalsupplementsforselected dietarymineralsandtraceelementsbylaserablation-andsolution-based ICPMS.Microchem.J.106,244–249.

Ding,W.H., Li,J.,Wang, D.D., Tian,S.G., 2014a.Theextractiontechnologyof polysaccharidesfromZiziphoraclinopodioidesLam.andthedynamicchanges of polysaccharides in different growth stages. J. Xinjiang Med. Univ. 3, 306–308.

Ding,W.H.,Yang,T.,Liu,F.,Tian,S.G.,2014b.Effectofdifferentgrowthstagesof

ZiziphoraclinopodioidesLam.onitschemicalcomposition.Pharmacogn.Mag.

37,1–5.

Guo,Y.T.,Lan,W.,Wu,Y.N.,Geng,Z.,2014.Theresearchofantihypertensiveeffect onSpontaneouslyHypertensiveRatsbyvolatileoilfromZiziphoraclinopodioides

Lam.J.XinjiangMed.Univ.37,257–260.

Ji,Z.H.,Yu,Q.,Zhou,X.Y.,Upur,H.,2012.EffectsofaqueousextractofZiziphora

clinopodioidesLam.onthegrowthofStreptococcusmutans.J.XinjiangMed.Univ.

35,1031–1034.

Kierdorf,U.,Stoffels,D.,Kierdorf,H.,2014.Elementconcentrationsandelement ratiosinantlerandpedicleboneofyearlingreddeer(Cervuselaphus)stags–a quantitativeX-rayfluorescencestudy.Biol.TraceElem.Res.162,124–133. Liu,F.,Liu,W.X.,Ding,W.H.,Lv,G.Y.,Zhou,X.Y.,2014.Traceelementsanalysisby

ICP-OESaftermicrowavedigestionofMedicagosativaL.seedsfromdifferent locationsinXinjiang,China.AsianJ.Chem.26,3522–3526.

Liu,Y.M.,Liu,W.X.,Shawuti,Y.,Zou,Y.,1999.PharmacographyofUighur.Xinjiang, ScienceandTechnologyandHygienePublishingHouse,Urumqi,pp.446–449. Ma,H.M.,Zhang,J.,Wang,H.L.,Zhang,F.,2014.Physico-chemicalanalysisof

rhi-zospheresoilforXinjiangwild AconitumL. plants.J.AnhuiAgric.Sci. 42, 1931–1932.

Maiga,A.,Diallo,D.,Bye,R.,Paulsen,B.S.,2005.Determinationofsometoxicand essentialmetalionsinmedicinalandedibleplantsfromMali.J.Agric.Food Chem.53,2316–2321.

Malaspinam,P.,Giordani,P.,Modenesi,P.,Abelmoschi,M.L.,Magi,E.,Soggia,F.,2014. BioaccumulationcapacityoftwochemicalvarietiesofthelichenPseudevernia

furfuracea.Ecol.Indic.45,605–610.

Meral,G.E.,Konyalioglu,S.,Ozturk,B.,2002.Essentialoilcompositionand antiox-idantactivityofendemicZiziphoratauricasubsp.cleonioides.Fitoterapia73, 716–718.

Niu,X.X.,Chen,X.W.,Su,H.,Eneji,A.E.,Guo,Y.H.,Dong,X.H.,2014.Changesof secondarymetabolitesandtraceelementsinGentianamacrophyllaflowers,a potentialmedicinalplantpart.ChineseHerb.Med.6,145–151.

Ozturk,S.,Ercisli,S.,2007.Antibacterialactivityandchemicalconstitutionsof

Ziziphoraclinopodioides.FoodControl18,535–540.

Russell,E.W.,1979.SoilConditionsandPlantGrowth.SincePress,Beijing,China,pp. 33–34.

Senejouxa, F.,Girarda,C.,Kerramb,P., Aisac, H.A.,Berthelota,A., Bévalota,F., Demougeota,C.,2010. MechanismsofvasorelaxationinducedbyZiziphora

clinopodioidesLam.(Lamiaceae)extractinratthoracicaorta.J.Ethnopharmacol.

132,268–273.

Shi,W.,Pan,B.R.,Zhang,Q.,2009.Comparisonofelementcontentsinhabitatsoiland plantpeavesofAmmopiptanthusnanusandA.mongolicus.Chin.J.Appl.Environ. Biol.15,660–665.

(8)

Tian, S.G., Yu, Q., Xin,L.D., Zhou, Z.S., Upur, H., 2012. Chemical fingerprint-ing by RP-RRLC-DAD and principal component analysis of Ziziphora

clinopodioides Lam. from different locations. Nat. Prod. Commun. 9,

1181–1184.

Tian,S.G.,Zhou,X.Y.,Xu,D.H.,Ding,J.B.,Shan,L.J.,Shi,Y.,2009.Determinationoften metalelementsinZiziphoraclinopodioidesLam.bymicrowavedigestion-FAAS. Spectrosc.Spect.Anal.29,1993–1996.

Tokalıoglu,S.,2012.Determinationoftraceelements incommonlyconsumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 134, 2504–2508.

Wang,H.W.,Liu,Y.Q.,2010.Evaluationoftraceandtoxicelementconcentrationsin

ParispolyphyllafromChinawithempiricalandchemometricapproaches.Food

Chem.121,887–892.

Xu,H.Y.,Ding,W.H.,Tian,S.G.,2015.PhytochemicaldiversityofZiziphora

clinopodi-oidesLam.inXinJiang,China.Res.J.Biotechnol.3,1–12.

Yang,X.J.,Li,N.,Meng,D.L.,Li,W.,Li,X.,2008.Isolationandidentificationofchemical constituentsfromZiziphoraclinopodioidesLam.J.ShenyangPharm.Univ.25, 456–458.

Yu,Q.,Shi,Y.,Yuan,S.N.,Tian,S.G.,2012.Preliminarystudyofqualitystandardsof

Imagem

Figure 1. Geographical distribution of the collected Z. clinopodioides samples in Xinjiang, China.
Table 1 lists the average results of the elemental contents obtained from triplicate analyses by AAS method
Figure 2. Principal component analysis and hierarchical cluster analysis on elemental concentrations based on 10 variables in Z
Figure 3. Semi-monthly variation of elemental concentrations in Z. clinopodioides.
+2

Referências

Documentos relacionados

FRACTURE OF THE TIBIAL COMPONENT IN TOTAL KNEE ARTHROPLASTY: REPORT ON TWO CASES.. Rev

The best way to achieve this goal is to apply a solvent-free, pH-neutral, hydrophobic adhesive resin layer in a separate step, as confirmed by inferior in vitro and in vivo

In this sense, the Middle Ages is one of the historical periods in which the body has played a decisive role as an agent motivating the appearance of images- object in the context

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

[r]

Janice Caiafa, Universidade Federal do Rio de Janeiro, Brasil Jiani Adriana Bonin, Universidade do Vale do Rio dos Sinos, Brasil José Afonso da Silva Junior, Universidade Federal

Bolm Inst.. Amazon and Pará rivers. The oceanographic conditions of the area concerning the continental shelf are strong- ly influenced by the presence of n large

The principal component analysis based on the correlation matrix between 18 specific anthocyanins and total anthocyanins concentration in mg/kg showed the first five