• Nenhum resultado encontrado

A note on the area and coarea formula

N/A
N/A
Protected

Academic year: 2022

Share "A note on the area and coarea formula"

Copied!
71
0
0

Texto

(1)

A note on the area and coarea formula

Daniel Cibotaru joint with Jorge de Lira

Universidade Federal do Ceará

7th International Meeting on Lorentzian Geometry USP, July 2013

(UFC) 1 / 20

(2)

An "easy" question

Letπ :P →M be a fiber bundle with smooth fiber and compact baseM.

Question: When does

vol(s(M))≥vol(M) hold for every sections:M→P?

Possible answer: WhenP→Bis a Riemannian submersion.

vols(M) = Z

M

detdsds dvolM ≥ Z

M

dvolM ds=id⊕d˜s⇒dsds=id+d˜sds˜≥id.

(UFC) 2 / 20

(3)

An "easy" question

Letπ :P →M be a fiber bundle with smooth fiber and compact baseM.

Question: When does

vol(s(M))≥vol(M) hold for every sections:M→P?

Possible answer: WhenP→Bis a Riemannian submersion.

vols(M) = Z

M

detdsds dvolM ≥ Z

M

dvolM ds=id⊕d˜s⇒dsds=id+d˜sds˜≥id.

(UFC) 2 / 20

(4)

An "easy" question

Letπ :P →M be a fiber bundle with smooth fiber and compact baseM.

Question: When does

vol(s(M))≥vol(M) hold for every sections:M→P?

Possible answer: WhenP→Bis a Riemannian submersion.

vols(M) = Z

M

detdsds dvolM ≥ Z

M

dvolM ds=id⊕d˜s⇒dsds=id+d˜sds˜≥id.

(UFC) 2 / 20

(5)

An "easy" question

Letπ :P →M be a fiber bundle with smooth fiber and compact baseM.

Question: When does

vol(s(M))≥vol(M) hold for every sections:M→P?

Possible answer: WhenP→Bis a Riemannian submersion.

vols(M) = Z

M

detdsds dvolM ≥ Z

M

dvolM ds=id⊕d˜s⇒dsds=id+d˜sds˜≥id.

(UFC) 2 / 20

(6)

An elementary problem

How about ifP andMare Finsler manifolds?

What is the volume form on a Finsler space?

Definition

Ann-volume density on ann-dimensional vector spaceV is a continuous functionF : ΛnV→R≥0such that:

F(λξ) =|λ|F(ξ), F(ξ) =0⇔ξ=0.

A definition of volume is a functorial assignment(V,k · k)→(ΛnV,F).

We require that

kTk ≤1⇒ kΛnTk ≤1 Remark

If V is oriented, it is enough to take F positively homogenous.

(UFC) 3 / 20

(7)

An elementary problem

How about ifP andMare Finsler manifolds?

What is the volume form on a Finsler space?

Definition

Ann-volume density on ann-dimensional vector spaceV is a continuous functionF : ΛnV→R≥0such that:

F(λξ) =|λ|F(ξ), F(ξ) =0⇔ξ=0.

A definition of volume is a functorial assignment(V,k · k)→(ΛnV,F).

We require that

kTk ≤1⇒ kΛnTk ≤1 Remark

If V is oriented, it is enough to take F positively homogenous.

(UFC) 3 / 20

(8)

An elementary problem

How about ifP andMare Finsler manifolds?

What is the volume form on a Finsler space?

Definition

Ann-volume density on ann-dimensional vector spaceV is a continuous functionF : ΛnV→R≥0such that:

F(λξ) =|λ|F(ξ), F(ξ) =0⇔ξ=0.

A definition of volume is a functorial assignment(V,k · k)→(ΛnV,F).

We require that

kTk ≤1⇒ kΛnTk ≤1 Remark

If V is oriented, it is enough to take F positively homogenous.

(UFC) 3 / 20

(9)

An elementary problem

How about ifP andMare Finsler manifolds?

What is the volume form on a Finsler space?

Definition

Ann-volume density on ann-dimensional vector spaceV is a continuous functionF : ΛnV→R≥0such that:

F(λξ) =|λ|F(ξ), F(ξ) =0⇔ξ=0.

A definition of volume is a functorial assignment(V,k · k)→(ΛnV,F).

We require that

kTk ≤1⇒ kΛnTk ≤1 Remark

If V is oriented, it is enough to take F positively homogenous.

(UFC) 3 / 20

(10)

Volume densities/forms

Example

The Busemann-Hausdorff density: (V,k · k)normed space µBH(v1∧. . .∧vn) = n

R

B1(k·k) dv1∧. . .∧dvn Example

The Holmes-Thompson density:

µHT(v1∧. . .∧vn) =−1n Z

B1

dv1∧. . .∧dvn

M manifold with a volume density.

volM= Z

M

dµ.

(UFC) 4 / 20

(11)

Volume densities/forms

Example

The Busemann-Hausdorff density: (V,k · k)normed space µBH(v1∧. . .∧vn) = n

R

B1(k·k) dv1∧. . .∧dvn Example

The Holmes-Thompson density:

µHT(v1∧. . .∧vn) =−1n Z

B1

dv1∧. . .∧dvn

M manifold with a volume density.

volM= Z

M

dµ.

(UFC) 4 / 20

(12)

Jacobians

Definition

Let(V,F),(W,G)be twon-dim vector spaces with volume densities andT :V→W be linear.

J(T) = G(Tv1∧. . .∧Tvn)

F(v1∧. . .∧vn) =kΛnTkF,G (V,k · k1)and(V,k · k2):

JHT(T) =|detT|vol(B(k · k2))

vol(B(k · k1)) JBH(T) = n

Hn({x | kTxk ≤1}) Proposition (Change of variables)

Let(M,F),(P,G)be two manifolds with volume densities with degF =degG=dimM and let T :M ,→P be an embedding. Then

Z

T(M)

dG= Z

M

J(dT)dF

(UFC) 5 / 20

(13)

Jacobians

Definition

Let(V,F),(W,G)be twon-dim vector spaces with volume densities andT :V→W be linear.

J(T) = G(Tv1∧. . .∧Tvn)

F(v1∧. . .∧vn) =kΛnTkF,G (V,k · k1)and(V,k · k2):

JHT(T) =|detT|vol(B(k · k2))

vol(B(k · k1)) JBH(T) = n

Hn({x | kTxk ≤1}) Proposition (Change of variables)

Let(M,F),(P,G)be two manifolds with volume densities with degF =degG=dimM and let T :M ,→P be an embedding. Then

Z

T(M)

dG= Z

M

J(dT)dF

(UFC) 5 / 20

(14)

Jacobians

Definition

Let(V,F),(W,G)be twon-dim vector spaces with volume densities andT :V→W be linear.

J(T) = G(Tv1∧. . .∧Tvn)

F(v1∧. . .∧vn) =kΛnTkF,G (V,k · k1)and(V,k · k2):

JHT(T) =|detT|vol(B(k · k2))

vol(B(k · k1)) JBH(T) = n

Hn({x | kTxk ≤1}) Proposition (Change of variables)

Let(M,F),(P,G)be two manifolds with volume densities with degF =degG=dimM and let T :M ,→P be an embedding. Then

Z

T(M)

dG= Z

M

J(dT)dF

(UFC) 5 / 20

(15)

Jacobians

Proposition

Letπ:P→M be a fiber bundle of compact Finsler manifolds and suppose a definition of volume has been fixed. Ifkdπpk ≤1,∀p ∈P then

vols(M)≥volM, whenever s:M→P is a section.

Remark

Ifπ:P→M is a Riemannian submersion then dπis an orthogonal projection.

(UFC) 6 / 20

(16)

Jacobians

Proposition

Letπ:P→M be a fiber bundle of compact Finsler manifolds and suppose a definition of volume has been fixed. Ifkdπpk ≤1,∀p ∈P then

vols(M)≥volM, whenever s:M→P is a section.

Remark

Ifπ:P→M is a Riemannian submersion then dπis an orthogonal projection.

(UFC) 6 / 20

(17)

Cojacobians

dimV =n+m,

F : ΛnV→R, µ: Λn+mV→R⇒ codensity:F/µ: ΛmV→R,

F/µ(v1∧. . .∧vm) = F(u1∧. . .∧un) µ(v1. . .∧vm∧u1∧. . .∧un) T :Vn+m→Wm linear,

(V,F, µ)and(W,G), G: ΛmW→R, G(w1∧. . .∧wm) = G(w 1

1∧...∧wm),

C(T)F,µ,G :=J(T)G,F= F/µ(Tv1∧. . .∧Tvm) G(v1∧. . .∧vm) .

(UFC) 7 / 20

(18)

Cojacobians

dimV =n+m,

F : ΛnV→R, µ: Λn+mV→R⇒ codensity:F/µ: ΛmV→R,

F/µ(v1∧. . .∧vm) = F(u1∧. . .∧un) µ(v1. . .∧vm∧u1∧. . .∧un) T :Vn+m→Wm linear,

(V,F, µ)and(W,G), G: ΛmW→R, G(w1∧. . .∧wm) = G(w 1

1∧...∧wm),

C(T)F,µ,G :=J(T)G,F= F/µ(Tv1∧. . .∧Tvm) G(v1∧. . .∧vm) .

(UFC) 7 / 20

(19)

Cojacobians

dimV =n+m,

F : ΛnV→R, µ: Λn+mV→R⇒ codensity:F/µ: ΛmV→R,

F/µ(v1∧. . .∧vm) = F(u1∧. . .∧un) µ(v1. . .∧vm∧u1∧. . .∧un) T :Vn+m→Wm linear,

(V,F, µ)and(W,G), G: ΛmW→R, G(w1∧. . .∧wm) = G(w 1

1∧...∧wm),

C(T)F,µ,G :=J(T)G,F= F/µ(Tv1∧. . .∧Tvm) G(v1∧. . .∧vm) .

(UFC) 7 / 20

(20)

Cojacobians

dimV =n+m,

F : ΛnV→R, µ: Λn+mV→R⇒ codensity:F/µ: ΛmV→R,

F/µ(v1∧. . .∧vm) = F(u1∧. . .∧un) µ(v1. . .∧vm∧u1∧. . .∧un) T :Vn+m→Wm linear,

(V,F, µ)and(W,G), G: ΛmW→R, G(w1∧. . .∧wm) = G(w 1

1∧...∧wm),

C(T)F,µ,G :=J(T)G,F= F/µ(Tv1∧. . .∧Tvm) G(v1∧. . .∧vm) .

(UFC) 7 / 20

(21)

Cojacobians

dimV =n+m,

F : ΛnV→R, µ: Λn+mV→R⇒ codensity:F/µ: ΛmV→R,

F/µ(v1∧. . .∧vm) = F(u1∧. . .∧un) µ(v1. . .∧vm∧u1∧. . .∧un) T :Vn+m→Wm linear,

(V,F, µ)and(W,G), G: ΛmW→R, G(w1∧. . .∧wm) = G(w 1

1∧...∧wm),

C(T)F,µ,G :=J(T)G,F= F/µ(Tv1∧. . .∧Tvm) G(v1∧. . .∧vm) .

(UFC) 7 / 20

(22)

Cojacobians

dimV =n+m,

F : ΛnV→R, µ: Λn+mV→R⇒ codensity:F/µ: ΛmV→R,

F/µ(v1∧. . .∧vm) = F(u1∧. . .∧un) µ(v1. . .∧vm∧u1∧. . .∧un) T :Vn+m→Wm linear,

(V,F, µ)and(W,G), G: ΛmW→R, G(w1∧. . .∧wm) = G(w 1

1∧...∧wm),

C(T)F,µ,G :=J(T)G,F= F/µ(Tv1∧. . .∧Tvm) G(v1∧. . .∧vm) .

(UFC) 7 / 20

(23)

Cojacobians

dimV =n+m,

F : ΛnV→R, µ: Λn+mV→R⇒ codensity:F/µ: ΛmV→R,

F/µ(v1∧. . .∧vm) = F(u1∧. . .∧un) µ(v1. . .∧vm∧u1∧. . .∧un) T :Vn+m→Wm linear,

(V,F, µ)and(W,G), G: ΛmW→R, G(w1∧. . .∧wm) = G(w 1

1∧...∧wm),

C(T)F,µ,G :=J(T)G,F= F/µ(Tv1∧. . .∧Tvm) G(v1∧. . .∧vm) .

(UFC) 7 / 20

(24)

Cojacobians

Example

f :Pn→R,µa volume form onP,

F¯ :TP→R, fiberwise convex, homogeneous F¯ :TP→Rthe dual "norm",F : Λn−1TP→R:

Λn−1TpP →µ TpP F¯ R

C(df)F,µ,dt = ¯F(df)= ¯! F(∇f),

∇f is the Finslerian gradient:TP\ {0} →TP\ {0}the Legendre transform:

(UFC) 8 / 20

(25)

Cojacobians

Example

f :Pn→R,µa volume form onP,

F¯ :TP→R, fiberwise convex, homogeneous F¯ :TP→Rthe dual "norm",F : Λn−1TP→R:

Λn−1TpP →µ TpP F¯ R

C(df)F,µ,dt = ¯F(df)= ¯! F(∇f),

∇f is the Finslerian gradient:TP\ {0} →TP\ {0}the Legendre transform:

(UFC) 8 / 20

(26)

Cojacobians

Example

f :Pn→R,µa volume form onP,

F¯ :TP→R, fiberwise convex, homogeneous F¯ :TP→Rthe dual "norm",F : Λn−1TP→R:

Λn−1TpP →µ TpP F¯ R

C(df)F,µ,dt = ¯F(df)= ¯! F(∇f),

∇f is the Finslerian gradient:TP\ {0} →TP\ {0}the Legendre transform:

(UFC) 8 / 20

(27)

Cojacobians

Example

f :Pn→R,µa volume form onP,

F¯ :TP→R, fiberwise convex, homogeneous F¯ :TP→Rthe dual "norm",F : Λn−1TP→R:

Λn−1TpP →µ TpP F¯ R

C(df)F,µ,dt = ¯F(df)= ¯! F(∇f),

∇f is the Finslerian gradient:TP\ {0} →TP\ {0}the Legendre transform:

(UFC) 8 / 20

(28)

Cojacobians

Example

f :Pn→R,µa volume form onP,

F¯ :TP→R, fiberwise convex, homogeneous F¯ :TP→Rthe dual "norm",F : Λn−1TP→R:

Λn−1TpP →µ TpP F¯ R

C(df)F,µ,dt = ¯F(df)= ¯! F(∇f),

∇f is the Finslerian gradient:TP\ {0} →TP\ {0}the Legendre transform:

(UFC) 8 / 20

(29)

Coarea formula

Theorem

Let f :Pn+m→Mnbe a C1map between smooth manifolds. Let F and µbe volume densities on P andλan n-density on M. Let A⊂P be a measurable set. Then:

Z

A

C(df)F,µ,λ dµ= Z

M

volF(A∩π−1(y))dλ(y).

(UFC) 9 / 20

(30)

Proof(sketch)

First reduce to the case off :Rn+m→Rn. Lemma

Let V,W,Z three vector spaces, A:V→W , T :W→Z . (a) IfdimV =n,dimW =n,µ∈Dn(V),λ∈Dn(W):

J(A;µ, λ) =C(A;µ, λ).

(b) IfdimV =n,µ∈Dn(V), G∈Dn(W), H ∈Dn(Z):

J(T ◦A;µ,H) =J(A;µ,G)·J(T

ImA;G,H).

(c) IfdimZ =n,λ∈Dn(Z), F/µ∈Dn(V), G/ν ∈Dn(W):

C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A

ImT;G/ν,F/µ).

(d) The same conditions as in(c)with A isomorphism and T surjective:

J(A

KerT◦A;F,G)·C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A;µ, ν).

(UFC) 10 / 20

(31)

Proof(sketch)

First reduce to the case off :Rn+m→Rn. Lemma

Let V,W,Z three vector spaces, A:V→W , T :W→Z . (a) IfdimV =n,dimW =n,µ∈Dn(V),λ∈Dn(W):

J(A;µ, λ) =C(A;µ, λ).

(b) IfdimV =n,µ∈Dn(V), G∈Dn(W), H ∈Dn(Z):

J(T ◦A;µ,H) =J(A;µ,G)·J(T

ImA;G,H).

(c) IfdimZ =n,λ∈Dn(Z), F/µ∈Dn(V), G/ν ∈Dn(W):

C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A

ImT;G/ν,F/µ).

(d) The same conditions as in(c)with A isomorphism and T surjective:

J(A

KerT◦A;F,G)·C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A;µ, ν).

(UFC) 10 / 20

(32)

Proof(sketch)

First reduce to the case off :Rn+m→Rn. Lemma

Let V,W,Z three vector spaces, A:V→W , T :W→Z . (a) IfdimV =n,dimW =n,µ∈Dn(V),λ∈Dn(W):

J(A;µ, λ) =C(A;µ, λ).

(b) IfdimV =n,µ∈Dn(V), G∈Dn(W), H ∈Dn(Z):

J(T ◦A;µ,H) =J(A;µ,G)·J(T

ImA;G,H).

(c) IfdimZ =n,λ∈Dn(Z), F/µ∈Dn(V), G/ν ∈Dn(W):

C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A

ImT;G/ν,F/µ).

(d) The same conditions as in(c)with A isomorphism and T surjective:

J(A

KerT◦A;F,G)·C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A;µ, ν).

(UFC) 10 / 20

(33)

Proof(sketch)

First reduce to the case off :Rn+m→Rn. Lemma

Let V,W,Z three vector spaces, A:V→W , T :W→Z . (a) IfdimV =n,dimW =n,µ∈Dn(V),λ∈Dn(W):

J(A;µ, λ) =C(A;µ, λ).

(b) IfdimV =n,µ∈Dn(V), G∈Dn(W), H ∈Dn(Z):

J(T ◦A;µ,H) =J(A;µ,G)·J(T

ImA;G,H).

(c) IfdimZ =n,λ∈Dn(Z), F/µ∈Dn(V), G/ν ∈Dn(W):

C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A

ImT;G/ν,F/µ).

(d) The same conditions as in(c)with A isomorphism and T surjective:

J(A

KerT◦A;F,G)·C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A;µ, ν).

(UFC) 10 / 20

(34)

Proof(sketch)

First reduce to the case off :Rn+m→Rn. Lemma

Let V,W,Z three vector spaces, A:V→W , T :W→Z . (a) IfdimV =n,dimW =n,µ∈Dn(V),λ∈Dn(W):

J(A;µ, λ) =C(A;µ, λ).

(b) IfdimV =n,µ∈Dn(V), G∈Dn(W), H ∈Dn(Z):

J(T ◦A;µ,H) =J(A;µ,G)·J(T

ImA;G,H).

(c) IfdimZ =n,λ∈Dn(Z), F/µ∈Dn(V), G/ν ∈Dn(W):

C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A

ImT;G/ν,F/µ).

(d) The same conditions as in(c)with A isomorphism and T surjective:

J(A

KerT◦A;F,G)·C(T ◦A;λ,F/µ) =C(T;λ,G/ν)·J(A;µ, ν).

(UFC) 10 / 20

(35)

The isoperimetric problem on normed vector spaces

V a normed vector space andµvolume form, translation invariant;

F : Λn−1V→Ra norm with unit ballB

the isoperimetrix: I:=ιµ(B) ⊂V (ιµ: Λn−1V→V)

Alvarez-Paiva and Thompson:Isolves the isoperimetric problem for convex bodies.

WhenI=B1(k · k)?

Proposition

Precisely when F/µ=k · k ⇔C(f;F/µ,dt) =kfk,∀f ∈V

⇔µ(w∧v1∧. . .∧vn−1) =k[w]k ·F(v1∧. . .∧vn−1).

(UFC) 11 / 20

(36)

The isoperimetric problem on normed vector spaces

V a normed vector space andµvolume form, translation invariant;

F : Λn−1V→Ra norm with unit ballB

the isoperimetrix: I:=ιµ(B) ⊂V (ιµ: Λn−1V→V)

Alvarez-Paiva and Thompson:Isolves the isoperimetric problem for convex bodies.

WhenI=B1(k · k)?

Proposition

Precisely when F/µ=k · k ⇔C(f;F/µ,dt) =kfk,∀f ∈V

⇔µ(w∧v1∧. . .∧vn−1) =k[w]k ·F(v1∧. . .∧vn−1).

(UFC) 11 / 20

(37)

The isoperimetric problem on normed vector spaces

V a normed vector space andµvolume form, translation invariant;

F : Λn−1V→Ra norm with unit ballB

the isoperimetrix: I:=ιµ(B) ⊂V (ιµ: Λn−1V→V)

Alvarez-Paiva and Thompson:Isolves the isoperimetric problem for convex bodies.

WhenI=B1(k · k)?

Proposition

Precisely when F/µ=k · k ⇔C(f;F/µ,dt) =kfk,∀f ∈V

⇔µ(w∧v1∧. . .∧vn−1) =k[w]k ·F(v1∧. . .∧vn−1).

(UFC) 11 / 20

(38)

The isoperimetric problem on normed vector spaces

V a normed vector space andµvolume form, translation invariant;

F : Λn−1V→Ra norm with unit ballB

the isoperimetrix: I:=ιµ(B) ⊂V (ιµ: Λn−1V→V)

Alvarez-Paiva and Thompson:Isolves the isoperimetric problem for convex bodies.

WhenI=B1(k · k)?

Proposition

Precisely when F/µ=k · k ⇔C(f;F/µ,dt) =kfk,∀f ∈V

⇔µ(w∧v1∧. . .∧vn−1) =k[w]k ·F(v1∧. . .∧vn−1).

(UFC) 11 / 20

(39)

The isoperimetric problem on normed vector spaces

V a normed vector space andµvolume form, translation invariant;

F : Λn−1V→Ra norm with unit ballB

the isoperimetrix: I:=ιµ(B) ⊂V (ιµ: Λn−1V→V)

Alvarez-Paiva and Thompson:Isolves the isoperimetric problem for convex bodies.

WhenI=B1(k · k)?

Proposition

Precisely when F/µ=k · k ⇔C(f;F/µ,dt) =kfk,∀f ∈V

⇔µ(w∧v1∧. . .∧vn−1) =k[w]k ·F(v1∧. . .∧vn−1).

(UFC) 11 / 20

(40)

The isoperimetric problem on normed vector spaces

V a normed vector space andµvolume form, translation invariant;

F : Λn−1V→Ra norm with unit ballB

the isoperimetrix: I:=ιµ(B) ⊂V (ιµ: Λn−1V→V)

Alvarez-Paiva and Thompson:Isolves the isoperimetric problem for convex bodies.

WhenI=B1(k · k)?

Proposition

Precisely when F/µ=k · k ⇔C(f;F/µ,dt) =kfk,∀f ∈V

⇔µ(w∧v1∧. . .∧vn−1) =k[w]k ·F(v1∧. . .∧vn−1).

(UFC) 11 / 20

(41)

Anisotropy

Vnvector space withµvolume form, translation invariant.

F¯ :V→Ra Minkowski norm with unit ballWF (Wulff body).

the area density: F : Λn−1V→R.

the anisotropic area functional: Σ⊂V oriented hypersurface F(Σ) =R

Σ dF.

ifh·,·ionV, leth:V→Rbe the support function ofWF. h'F¯ underV 'V

R

Σ dF =R

Σh(ν)dHn−1

J(id;F;Hn−1) = F(v1∧. . .∧vn−1)

Hn−1(v1∧. . .vn−1) = F(v1∧. . .∧vn−1)

Ω(ν∧v1∧. . .vn−1) = ¯F)

(UFC) 12 / 20

(42)

Anisotropy

Vnvector space withµvolume form, translation invariant.

F¯ :V→Ra Minkowski norm with unit ballWF (Wulff body).

the area density: F : Λn−1V→R.

the anisotropic area functional: Σ⊂V oriented hypersurface F(Σ) =R

Σ dF.

ifh·,·ionV, leth:V→Rbe the support function ofWF. h'F¯ underV 'V

R

Σ dF =R

Σh(ν)dHn−1

J(id;F;Hn−1) = F(v1∧. . .∧vn−1)

Hn−1(v1∧. . .vn−1) = F(v1∧. . .∧vn−1)

Ω(ν∧v1∧. . .vn−1) = ¯F)

(UFC) 12 / 20

(43)

Anisotropy

Vnvector space withµvolume form, translation invariant.

F¯ :V→Ra Minkowski norm with unit ballWF (Wulff body).

the area density: F : Λn−1V→R.

the anisotropic area functional: Σ⊂V oriented hypersurface F(Σ) =R

Σ dF.

ifh·,·ionV, leth:V→Rbe the support function ofWF. h'F¯ underV 'V

R

Σ dF =R

Σh(ν)dHn−1

J(id;F;Hn−1) = F(v1∧. . .∧vn−1)

Hn−1(v1∧. . .vn−1) = F(v1∧. . .∧vn−1)

Ω(ν∧v1∧. . .vn−1) = ¯F)

(UFC) 12 / 20

(44)

Anisotropy

Vnvector space withµvolume form, translation invariant.

F¯ :V→Ra Minkowski norm with unit ballWF (Wulff body).

the area density: F : Λn−1V→R.

the anisotropic area functional: Σ⊂V oriented hypersurface F(Σ) =R

Σ dF.

ifh·,·ionV, leth:V→Rbe the support function ofWF. h'F¯ underV 'V

R

Σ dF =R

Σh(ν)dHn−1

J(id;F;Hn−1) = F(v1∧. . .∧vn−1)

Hn−1(v1∧. . .vn−1) = F(v1∧. . .∧vn−1)

Ω(ν∧v1∧. . .vn−1) = ¯F)

(UFC) 12 / 20

(45)

Anisotropy

Vnvector space withµvolume form, translation invariant.

F¯ :V→Ra Minkowski norm with unit ballWF (Wulff body).

the area density: F : Λn−1V→R.

the anisotropic area functional: Σ⊂V oriented hypersurface F(Σ) =R

Σ dF.

ifh·,·ionV, leth:V→Rbe the support function ofWF. h'F¯ underV 'V

R

Σ dF =R

Σh(ν)dHn−1

J(id;F;Hn−1) = F(v1∧. . .∧vn−1)

Hn−1(v1∧. . .vn−1) = F(v1∧. . .∧vn−1)

Ω(ν∧v1∧. . .vn−1) = ¯F)

(UFC) 12 / 20

(46)

Anisotropy

Vnvector space withµvolume form, translation invariant.

F¯ :V→Ra Minkowski norm with unit ballWF (Wulff body).

the area density: F : Λn−1V→R.

the anisotropic area functional: Σ⊂V oriented hypersurface F(Σ) =R

Σ dF.

ifh·,·ionV, leth:V→Rbe the support function ofWF. h'F¯ underV 'V

R

Σ dF =R

Σh(ν)dHn−1

J(id;F;Hn−1) = F(v1∧. . .∧vn−1)

Hn−1(v1∧. . .vn−1) = F(v1∧. . .∧vn−1)

Ω(ν∧v1∧. . .vn−1) = ¯F)

(UFC) 12 / 20

(47)

Anisotropy

Vnvector space withµvolume form, translation invariant.

F¯ :V→Ra Minkowski norm with unit ballWF (Wulff body).

the area density: F : Λn−1V→R.

the anisotropic area functional: Σ⊂V oriented hypersurface F(Σ) =R

Σ dF.

ifh·,·ionV, leth:V→Rbe the support function ofWF. h'F¯ underV 'V

R

Σ dF =R

Σh(ν)dHn−1

J(id;F;Hn−1) = F(v1∧. . .∧vn−1)

Hn−1(v1∧. . .vn−1) = F(v1∧. . .∧vn−1)

Ω(ν∧v1∧. . .vn−1) = ¯F)

(UFC) 12 / 20

(48)

The anisotropic Sobolev inequality

Theorem (Gromov) Let f ∈Cc(V;R).

Z

V

h(−gradfx)dµ≥nvol(WF)1n Z

V

|f|n−1n n−1n

Gromov proved this first using ideas of optimal transport.

We use the classical idea of Federer-Fleming: reduce it to an anisotropic isoperimetric inequality:

Dsmooth domain AreaF(∂D) :=

Z

∂D

dF ≥nvol(WF)1nvol(D)n−1n . The Brunn-Minkowski inequalityD,W ⊂V:

vol1n(D+tW)≥vol1n(D) +vol1n(tW)

(UFC) 13 / 20

(49)

The anisotropic Sobolev inequality

Theorem (Gromov) Let f ∈Cc(V;R).

Z

V

h(−gradfx)dµ≥nvol(WF)1n Z

V

|f|n−1n n−1n

Gromov proved this first using ideas of optimal transport.

We use the classical idea of Federer-Fleming: reduce it to an anisotropic isoperimetric inequality:

Dsmooth domain AreaF(∂D) :=

Z

∂D

dF ≥nvol(WF)1nvol(D)n−1n . The Brunn-Minkowski inequalityD,W ⊂V:

vol1n(D+tW)≥vol1n(D) +vol1n(tW)

(UFC) 13 / 20

(50)

The anisotropic Sobolev inequality

Theorem (Gromov) Let f ∈Cc(V;R).

Z

V

h(−gradfx)dµ≥nvol(WF)1n Z

V

|f|n−1n n−1n

Gromov proved this first using ideas of optimal transport.

We use the classical idea of Federer-Fleming: reduce it to an anisotropic isoperimetric inequality:

Dsmooth domain AreaF(∂D) :=

Z

∂D

dF ≥nvol(WF)1nvol(D)n−1n . The Brunn-Minkowski inequalityD,W ⊂V:

vol1n(D+tW)≥vol1n(D) +vol1n(tW)

(UFC) 13 / 20

(51)

The anisotropic Sobolev inequality

Theorem (Gromov) Let f ∈Cc(V;R).

Z

V

h(−gradfx)dµ≥nvol(WF)1n Z

V

|f|n−1n n−1n

Gromov proved this first using ideas of optimal transport.

We use the classical idea of Federer-Fleming: reduce it to an anisotropic isoperimetric inequality:

Dsmooth domain AreaF(∂D) :=

Z

∂D

dF ≥nvol(WF)1nvol(D)n−1n . The Brunn-Minkowski inequalityD,W ⊂V:

vol1n(D+tW)≥vol1n(D) +vol1n(tW)

(UFC) 13 / 20

(52)

The anisotropic Sobolev inequality

Theorem (Gromov) Let f ∈Cc(V;R).

Z

V

h(−gradfx)dµ≥nvol(WF)1n Z

V

|f|n−1n n−1n

Gromov proved this first using ideas of optimal transport.

We use the classical idea of Federer-Fleming: reduce it to an anisotropic isoperimetric inequality:

Dsmooth domain AreaF(∂D) :=

Z

∂D

dF ≥nvol(WF)1nvol(D)n−1n . The Brunn-Minkowski inequalityD,W ⊂V:

vol1n(D+tW)≥vol1n(D) +vol1n(tW)

(UFC) 13 / 20

(53)

The outer anisotropic Minkowski content

Theorem

D bounded, smooth domain (only need C2for the proof)

tlim→0

vol(D+tWF)−vol(D)

t =AreaF(∂D)

Da set of finite perimeter−−>Chambolle, Lisini and Lussardi.

(UFC) 14 / 20

(54)

The outer anisotropic Minkowski content

First assumehWF is smooth (in particularWF is strictly convex).

Letn:∂D→∂WF the oriented anisotropic Gauss map.

∂D→ν Sn−1grad−→hWF ∂WF hencenisC1at least.

φ: [0,t]×∂D→V, (s,b)→b+sn(b).

fort small,φis an oriented diffeo ontoD˜t := ¯D+tWF \D(use that theF¯ geodesics are lines).

volD˜t =R

[0,t]×∂DJ(dφ;ds×F, µ)ds⊗dF.

|Jφ(s,b)(dφ;ds×dF, µ)−1| ≤Ct fors ≤tandt small.

Jφ(s,b)= µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1)

(UFC) 15 / 20

(55)

The outer anisotropic Minkowski content

First assumehWF is smooth (in particularWF is strictly convex).

Letn:∂D→∂WF the oriented anisotropic Gauss map.

∂D→ν Sn−1grad−→hWF ∂WF hencenisC1at least.

φ: [0,t]×∂D→V, (s,b)→b+sn(b).

fort small,φis an oriented diffeo ontoD˜t := ¯D+tWF \D(use that theF¯ geodesics are lines).

volD˜t =R

[0,t]×∂DJ(dφ;ds×F, µ)ds⊗dF.

|Jφ(s,b)(dφ;ds×dF, µ)−1| ≤Ct fors ≤tandt small.

Jφ(s,b)= µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1)

(UFC) 15 / 20

(56)

The outer anisotropic Minkowski content

First assumehWF is smooth (in particularWF is strictly convex).

Letn:∂D→∂WF the oriented anisotropic Gauss map.

∂D→ν Sn−1grad−→hWF ∂WF hencenisC1at least.

φ: [0,t]×∂D→V, (s,b)→b+sn(b).

fort small,φis an oriented diffeo ontoD˜t := ¯D+tWF \D(use that theF¯ geodesics are lines).

volD˜t =R

[0,t]×∂DJ(dφ;ds×F, µ)ds⊗dF.

|Jφ(s,b)(dφ;ds×dF, µ)−1| ≤Ct fors ≤tandt small.

Jφ(s,b)= µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1)

(UFC) 15 / 20

(57)

The outer anisotropic Minkowski content

First assumehWF is smooth (in particularWF is strictly convex).

Letn:∂D→∂WF the oriented anisotropic Gauss map.

∂D→ν Sn−1grad−→hWF ∂WF hencenisC1at least.

φ: [0,t]×∂D→V, (s,b)→b+sn(b).

fort small,φis an oriented diffeo ontoD˜t := ¯D+tWF \D(use that theF¯ geodesics are lines).

volD˜t =R

[0,t]×∂DJ(dφ;ds×F, µ)ds⊗dF.

|Jφ(s,b)(dφ;ds×dF, µ)−1| ≤Ct fors ≤tandt small.

Jφ(s,b)= µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1)

(UFC) 15 / 20

(58)

The outer anisotropic Minkowski content

First assumehWF is smooth (in particularWF is strictly convex).

Letn:∂D→∂WF the oriented anisotropic Gauss map.

∂D→ν Sn−1grad−→hWF ∂WF hencenisC1at least.

φ: [0,t]×∂D→V, (s,b)→b+sn(b).

fort small,φis an oriented diffeo ontoD˜t := ¯D+tWF \D(use that theF¯ geodesics are lines).

volD˜t =R

[0,t]×∂DJ(dφ;ds×F, µ)ds⊗dF.

|Jφ(s,b)(dφ;ds×dF, µ)−1| ≤Ct fors ≤tandt small.

Jφ(s,b)= µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1)

(UFC) 15 / 20

(59)

The outer anisotropic Minkowski content

First assumehWF is smooth (in particularWF is strictly convex).

Letn:∂D→∂WF the oriented anisotropic Gauss map.

∂D→ν Sn−1grad−→hWF ∂WF hencenisC1at least.

φ: [0,t]×∂D→V, (s,b)→b+sn(b).

fort small,φis an oriented diffeo ontoD˜t := ¯D+tWF \D(use that theF¯ geodesics are lines).

volD˜t =R

[0,t]×∂DJ(dφ;ds×F, µ)ds⊗dF.

|Jφ(s,b)(dφ;ds×dF, µ)−1| ≤Ct fors ≤tandt small.

Jφ(s,b)= µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1)

(UFC) 15 / 20

(60)

The outer anisotropic Minkowski content

First assumehWF is smooth (in particularWF is strictly convex).

Letn:∂D→∂WF the oriented anisotropic Gauss map.

∂D→ν Sn−1grad−→hWF ∂WF hencenisC1at least.

φ: [0,t]×∂D→V, (s,b)→b+sn(b).

fort small,φis an oriented diffeo ontoD˜t := ¯D+tWF \D(use that theF¯ geodesics are lines).

volD˜t =R

[0,t]×∂DJ(dφ;ds×F, µ)ds⊗dF.

|Jφ(s,b)(dφ;ds×dF, µ)−1| ≤Ct fors ≤tandt small.

Jφ(s,b)= µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1)

(UFC) 15 / 20

(61)

The outer anisotropic Minkowski content

Jφ(0,b)=1 due to the multiplication property:

µ(n∧v1∧. . .∧vn−1) = ¯F(n)F(v1∧. . .∧vn−1).

φ(s,b) =b+sn(b)⇒ µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1) polynomial ins.

1 t

R

[0,t]×∂D1−J(dφ;ds×F, µ)ds⊗dF ≤ R

[0,t]×∂DM ds⊗dF→0.

forhWF not smooth use an approximation argument due to Schneider.

to prove the anisotropic Sobolev use the regular level sets of

|f|−1(t)and the coarea formula with

C(dx|f|;dt,F/µ) =hWF(−gradxf)

(UFC) 16 / 20

(62)

The outer anisotropic Minkowski content

Jφ(0,b)=1 due to the multiplication property:

µ(n∧v1∧. . .∧vn−1) = ¯F(n)F(v1∧. . .∧vn−1).

φ(s,b) =b+sn(b)⇒ µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1) polynomial ins.

1 t

R

[0,t]×∂D1−J(dφ;ds×F, µ)ds⊗dF ≤ R

[0,t]×∂DM ds⊗dF→0.

forhWF not smooth use an approximation argument due to Schneider.

to prove the anisotropic Sobolev use the regular level sets of

|f|−1(t)and the coarea formula with

C(dx|f|;dt,F/µ) =hWF(−gradxf)

(UFC) 16 / 20

(63)

The outer anisotropic Minkowski content

Jφ(0,b)=1 due to the multiplication property:

µ(n∧v1∧. . .∧vn−1) = ¯F(n)F(v1∧. . .∧vn−1).

φ(s,b) =b+sn(b)⇒ µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1) polynomial ins.

1 t

R

[0,t]×∂D1−J(dφ;ds×F, µ)ds⊗dF ≤ R

[0,t]×∂DM ds⊗dF→0.

forhWF not smooth use an approximation argument due to Schneider.

to prove the anisotropic Sobolev use the regular level sets of

|f|−1(t)and the coarea formula with

C(dx|f|;dt,F/µ) =hWF(−gradxf)

(UFC) 16 / 20

(64)

The outer anisotropic Minkowski content

Jφ(0,b)=1 due to the multiplication property:

µ(n∧v1∧. . .∧vn−1) = ¯F(n)F(v1∧. . .∧vn−1).

φ(s,b) =b+sn(b)⇒ µ(nb∧dbFφs(v(v1)∧...∧dbφs(vn−1))

1∧...∧vn−1) polynomial ins.

1 t

R

[0,t]×∂D1−J(dφ;ds×F, µ)ds⊗dF ≤ R

[0,t]×∂DM ds⊗dF→0.

forhWF not smooth use an approximation argument due to Schneider.

to prove the anisotropic Sobolev use the regular level sets of

|f|−1(t)and the coarea formula with

C(dx|f|;dt,F/µ) =hWF(−gradxf)

(UFC) 16 / 20

Referências

Documentos relacionados

A classification of the translation hypersurfaces with constant mean curvature in ( n + 1) -dimensional Euclidean space was made by Chen et

In this context, to offer a range of educational activities to develop investigation and problem-solving skills, the discovery of ecological principles and

Nessa perspectiva, uma das formas de abordagem da Acessibilidade informacional é, portanto, o estudo dos fatores e das melhores práticas que a favorecem. Do ponto de vista do núcleo

No differences were found between non-lethal and lethal shootings as to the part of the country where they occurred (North, Centre, South), the time of the occurrence, the number

Nos olhos foi aplicado primer para fixação e coloração melhor, no canto interno foi aplicado um tom de branco na pálpebra móvel foram aplicadas as seguintes cores

Nesta parte geral, Buzaid ainda regulou o problema de competência, mais ou menos nos termos do Direito atual, dizendo que ela é do Juiz da causa principal, quando já proposta

Assim, como a quantidade de dados estruturados para análise continua a crescer, o MapReduce apresenta-se como adequado para o processamento deste tipo de análises, apesar

ndiç os gon givais saudáveis e no rcstabeleeimont..... The tocthbrush; its use and