• Nenhum resultado encontrado

Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

N/A
N/A
Protected

Academic year: 2021

Share "Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest"

Copied!
9
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Isolation,

identification,

and

biocontrol

of

antagonistic

bacterium

against

Botrytis

cinerea

after

tomato

harvest

Jun-Feng

Shi

a,∗

,

Chang-Qing

Sun

b

aInstituteofAgriculturalProductStorageandFreshKeeping,ShanxiAcademyofAgriculturalScience,Taiyuan,China bInstituteofCropSciences,ShanxiAcademyofAgriculturalScience,Taiyuan,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16May2016 Accepted1March2017 Availableonline3June2017 AssociateEditor:FernandoAndreote

Keywords: Antagonisticbacterium Antifungalactivity Identification Tomato

a

b

s

t

r

a

c

t

Tomatoisoneofthemostimportantvegetablesintheworld.Decayafterharvestisamajor issueinthedevelopmentoftomatoindustry.Currently,themosteffectivemethodfor con-trollingdecayafterharvestisstorageoftomatoatlowtemperaturecombinedwithusage ofchemicalbactericide;however,long-termusageofchemicalbactericidenotonlycauses pathogenresistancebutalsoisharmfulforhumanhealth andenvironment. Biocontrol methodforthemanagementofdiseaseaftertomatoharvesthasgreatpracticalsignificance. Inthisstudy,antagonisticbacteriumB-6-1strainwasisolatedfromthesurfaceoftomato andidentifiedasEnterobactercowaniibasedonmorphologicalcharacteristicsand physiolog-icalandbiochemicalfeaturescombinedwithsequenceanalysisof16SrDNAandropBgene andconstructionofdendrogram.Effectsofdifferentconcentrationsofantagonistic bac-teriumE.cowaniisuspensiononantifungalactivityaftertomatoharvestwereanalyzedby myceliumgrowthratemethod.Resultsrevealedthatantifungalactivitywasalsoenhanced withincreasingconcentrationsofantagonisticbacterium;inhibitoryratesof1×105 colony-formingunits(cfu)/mLantagonisticbacterialsolutiononFusariumverticillioides,Alternaria tenuissima,andBotrytiscinereawere46.31%,67.48%,and75.67%,respectively.Byusinginvivo inoculationmethod,itwasfurtherconfirmedthatantagonisticbacteriumcouldeffectively inhibittheoccurrenceofB.cineraeaftertomatoharvest,biocontroleffectof1×109cfu/mL zymoticfluidreachedupto95.24%,andantagonisticbacteriumE.cowaniihasbiocontrol potentialagainstB.cinereaafterharvestoffruitsandvegetables.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Accordingto thedatabase ofFood and Agriculture Organi-zation of the United Nations, tomato yield, an important

Correspondingauthor. E-mail:sjfty@126.com(J.Shi).

economic product, inChinaranks first inthe world. How-ever, tomatodecayafterharvesthasbeenamajorissuein the developmentoftomato industry.Currently, thecontrol of tomato diseases after harvest is mainly through pre-vention and cureusing chemicals. Nevertheless,long-term

http://dx.doi.org/10.1016/j.bjm.2017.03.002

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

use ofchemicides leads tomany drawbacks suchas envi-ronmental pollution, effects on human health, and drug resistance.Withincreasingawarenessonfoodsafety, restric-tionontheuseofchemicidesisalsoincreasing.1 Biological

control methods have been developed in laboratories and commerciallyapplied.2Astudyhasdemonstratedthat

antag-onisticmicrobestocontroldiseasesisanewalternativewith great potential. In the biocontroltechnique for preventing pathogenicdecayaftertheharvestoffruitsandvegetables, themainactionis throughantagonistic interaction among microbes,by changingthe microbiological environmenton fruitsurfacetopromotereproductionofantagonistic bacte-riaandinhibitingthegrowthofpathogenicmicroorganisms, consequentlyreducingdecay.Duetoitsexcellentbiocontrol effect,noharmtohumansoranimals,noenvironmental pol-lutionorresidue,andmaintenanceofgoodqualityagricultural products,this methodisconsidered tobeoneofthe most importantmethodsforreplacingchemicides.3–5 Tilldate, a

numberofantagonisticmicroorganismshavebeenselected from>10typesoffruitssuchasorange,apple,peach, pear, kiwifruit,andfreshjujube,andbiocontrolorganismsisolated are mainly small filamentous fungi,6 bacteria,7,8 yeast,9,10

etc. At present, some companies outside China have suc-cessfully selected antibacterial agents, and some of them havebeendevelopedasproductsforcommercialusesuchas American“Aspire” (Candidaoleophila strain-182), “Biosave-100”, “Biosave-110,” and “Yield Plus” (Cryptococcus albidus), etc.

Researchers have foundthat the mainpathogens caus-ingthe decayafterharvestwere botrytiscausedbyBotrytis cinerea,alternaria caused byAlternaria tenuissima, and fruit decaycausedbyFusariummoniliforme.BecauseB.cinereacan toleratelowtemperature,producelargesporeyield,andhas shortperiodofonsetoffruitdiseases,botrytisisthe most severe disease aftertomato harvest, and hence prevention and cure of botrytis is a key approach for the protection anddevelopmentoftomatoproductsworldwide.11Recently,

there are some reports12–14 regarding biocontrol againstB.

cinereaoftomato.IthasbeenreportedthatCryptococcus lau-rentiieffectivelyreducedB.cinereainpost-harvesttomatoand post-harvestdecaycaused byPythium12;Wang et al. found

thatinoculationof1×108cfu/mLcellsuspensionofseayeast Rhodosporidiumpaludigenum reduced disease rate oftomato by42.1%, when comparedwith control group5 days after inoculationat25◦C.Duanet al.,13 showedthatinoculation

ofsuspensionof1×106cfu/mLPaenibacilluspeoriaeBC-39can

effectively controlB.cinerea inpost-harvesttomato;5days afterinoculationat25◦C,therateofprotectiveeffectagainst decaywas 88.4%and the rateoftherapeuticeffect against decaywas79.9%.Moreover,rateofweightlosswas signifi-cantlylowerthanthecontrolaftertomatoesweresoakedin thepreparedsuspension.14Althoughsomeeffectivebacterial

biocontrolagentshavebeenreported,thenumberofidentified biocontrolbacteriaafterharvestisevidentlyinsufficient com-paredwithotherfieldsofbiocontrolmeasures.Inthisstudy, botrytiswasusedasatargetagentafterharvestoftomatoes, andtheselectedB-6-1strainwithantibacterialactivitywas successfullyisolated.B-6-1strainwasidentifiedaccordingto themorphologicalcharacteristics,physiologicalandbiological features,andbysequenceanalysisof16SrDNAandropBgene

anddendrogramconstructionmethods.Thebiocontroleffect ofantagonistic bacterial strain afterthe harvestof tomato wasexploredtoprovideevidenceforthepreventionof botry-tisintomatoandtodevelopresearchonbiocontrolagentsof tomato.

Materials

and

methods

Materials

Theseedsoftomato(LycopersiconesculentumMill.,hezuo909) were from Changzheng tomato seed testing ground at Shanghai.TheseedswerepickedupfromXiaodiandistrict, TaiyuancityinShanxiProvinceandwereusedforisolation, inoculation, and preservative experiments. Cherry tomato seeds (L. esculentum var. cerasiforme, Hongshengnv) were fromKeFeng SeedIndustryCo.,Ltd(Changchuncity ofJilin Province)andwerepickedupfromXiaodiandistrict,Taiyuan city in Shanxi Province for the selection of antagonistic bacteria.

Antagonistic bacteria were isolated from the surface of tomatoesandpurified.TomatoeswereboughtfromXiaodian district,TaiyuancityinShanxiProvince.Pathogensincluding B.cinerea,A.tenuissima,andF.moniliformewereisolatedfrom diseasedtomatoes,identifiedbyHenle–Kochlawand molec-ularmethods,andpreservedinthelaboratory.

Experimentalmethods

Isolationandselectionofantagonisticbacteriafromthe surfaceoftomatoes

Tomatoeswerekeptmoistatroomtemperaturefor20days. AccordingtothemethodofJanisiewiczandRoitman,15 five

randomly selected tomatoes were placed into a 1000-mL beakerand0.2Mphosphatebufferwasadded.Itwasensured thatthesurfaceofthebufferwashigherthanthetomatoes. Washingsolutionwasdiscardedafterbeingshakenat100rpm for10min,andlaterphosphatebufferwasaddedfollowedby ultrasoniccleaningtwicefor30s.Thesolutionobtainedafter washing wasdilutedto10-,100-,and 1000-fold,and100␮L fromeachsolutionwassmearedonpotatodextroseagar(PDA) culturemediumandculturedat26◦Cfor2–3days;allsingle colonieswereculturedonPDAplatesusingstreaking inocula-tionmethod.

Singlecolonieson PDAculturemediumwerepickedfor shaking culture at 200rpm and 28◦C for 24h, and made into1×l010cfu/mLsuspension;thesurfacesofcherry

toma-toes were sterilized for2minand washed clean using tap water,andthenairdriedundersterileconditions.Awound (3mm×3mm)wasmadeonthesurfaceofatomatousinga sterilizedinoculationneedle,50-␮Lantagonisticbacterial sus-pensionwas inoculatedinto the wound2hlater,and then 15␮L1×106spore/mLpathogenicsporesuspensionwas

inoc-ulated.Sterilewaterwasusedasacontrolandtomatoeswere airdried,placedinplasticboxes,andkeptmoistforculture at26◦C.Rateofincidencewasmeasuredafter6days(tomato haddiseasewhenobviousbacterialgrowthanddecaywere observed), and themeasurements were repeatedthrice for every30tomatoes.

(3)

Identificationofantagonisticbacteria

DNAextraction

Sodiumdodecylsulfate-proteinaseKlysismethodwasused forDNA extraction,cetyltrimethylammonium bromidewas usedforprecipitationofcellfragmentandpolysaccharide,and isopropanolprecipitationwasusedforextraction.

16SDNAgeneamplification

Bacterial 16SrDNA wasamplifiedaccording tothe method of Coenye et al.,16 primers were as follows: 27 forward:

5-AGAGTTTGATCC TGG CTCAG-3 and 1541reverse:5 -AAG GAG GTG ATC CAC CC-3. Polymerase chain reaction (PCR)amplificationconditionwasasfollows:pre-denaturation was performed at 94◦C for 5min; denaturation at 94◦C for 40s; annealing at 55◦C for 50s; extension at 72◦C for 1min 15s; the total number of cycles was 35;termination wasdoneat72◦Cfor10min.PCR:0.8␮LTaq(5U/␮L);10␮L 10× PCR buffer (Mg2+ Plus); 8␮L deoxynucleotide

triphos-phate (dNTP) mixture (2.5mM each); 2.5ng template DNA; 2␮L primer F1 (10␮moL/L); 2␮L primer R1 (10␮moL/L); ddH2Owassupplementedupto100␮L.DNAfragmentswere

recoveredandpurified,andsequencemeasurementwas per-formed by Shanghai Invitrogen Biotechnology Co. Ltd. in Beijing.

ropBgeneamplification

ropB genewas amplifiedaccordingtothe methodofBrady et al.,17 forward primer of CM7-f: 5

-AACCAgTTCCgCgTT-ggCCTg-3 and reverse primer of CM7-r: 5 -CCTgAACAAC-ACgCTCggA-3. PCR amplification reaction condition: pre-denaturationwasperformedat95◦Cfor5min;denaturation at95◦Cfor35s;annealingat55◦Cfor1min15s;extensionat 72◦Cfor1min15s;thetotalnumberofcycleswas30; termina-tionwasdoneat72◦Cfor7min.ropBgenesequencereaction volumewas100␮L:0.8␮LTaq(5U/␮L);10␮L10×PCRbuffer (Mg2+Plus);8␮LdNTPmixture(2.5mMeach);2.5ngDNA

tem-plate;2␮LF1primer(10␮mol/L);2␮LR1primer(10␮mol/L); ddH2O was supplemented up to 100␮L. DNA fragments

were recovered and purified, and then sequence measure-mentwasperformedbyShanghaiInvitrogenBiotechnology Co.Ltd.

Homologyanalysisandconstructionofdendrogram

AftersequencingDNAgenes,homologicalBLASTwas com-paredintheNationalCenterforBiotechnologyInformation database.MEGA4.0neighbor-joiningmethodwasusedforthe constructionofdendrogram,and1000timesofsimilaritywere calculated.Dendrogramnodeshowedthatthevalueof boot-strapwas>50%.18

Analysisofphysiologicalandbiochemicalparameters

Physiologicalandbiochemicalmeasurementswereperformed fortwobacterialstrainsaccordingtothe9theditionofBergey’s ManualofDeterminativeBacteriology.19

BiocontroleffectofantagonisticbacteriaEnterobacter cowaniiB-6-1

Antibacterialactivityofdifferentconcentrationsof antagonisticbacterialsolution

AfterE.cowaniiwaspurifiedusingbacteria-platemethod,a singlecolonywasinoculatedinto100mLlysogenybroth(LB) culturemediumforshakingcultureat200rpmand30◦Cfor 24h;concentrationwasmeasuredusingdilutionplatemethod and then1×105,1×106, 1×107,1×108,and 1×109cfu/mL

bacterialsuspensionswerepreparedusingsterilewater.PDA culturemediumwasaddedandsolidifiedonacultureplateof diameterwithin9cm,and30␮Lofdifferentconcentrationsof antagonisticbacterialsuspensionwasaddedseparatelyand evenlysmearedontheplate.Afterairdrying,adiameterof 5mmpathogenic fungiwas inoculatedatthe centerofthe plate,andtheantagonisticbacteriawerereplacedwith ster-ile water asa control. Cultured ata constant temperature of28◦C,the diameteroffungal colonywasmeasuredafter 5–7days.Inhibitionratewascalculatedandeverytreatment was repeated thrice, and experiments were also repeated thrice.Inhibitionrate(%)=(dC−dT)/(dC−5)×100,wheredC is the diameter (mm) of fungal colony in the control and dT is the diameter (mm) of fungal colony with different treatments.

ConfrontationcultureofE.cowaniiB-6-1strainand pathogenicfungiaftertomatoharvest

AfterantagonisticbacteriumB-6-1strainwasinoculatedin astraightlineatadistanceof2.25cmfromthecenterona diameterof9cmPDAplateusinganinoculatingloop accord-ingtothemethodofWalkeretal.,20fungalpathogenssuch

as F. verticillioides, A. tenuissima, and B. cinerea were inoc-ulated at the center of the plate at a diameter of 5mm, respectively, andcultured inthe darkat26◦C for5–7 days. Measurement was performed until one side of pathogens grewtowardtheedgeofthecultureplate.Inhibitoryeffectof antagonisticbacteriumonfungalpathogenswascalculated. Experimentswererepeatedthriceandthreerepeatswere per-formed each time. Inhibitionrate (%)=(diameter ofcolony farfromantagonisticbacterium−diameterofcolonycloseto antagonisticbacterium)/diameterofcolonyfarfrom antago-nisticbacterium×100.

BiocontroleffectofB-6-1strainonB.cinerea

Healthytomatoeswerepickedandtheirsurfaceswere ster-ilized using 2%NaClO. A wound(3mm×3mm)was made at the equatorial site, with two woundsper fruit. Antago-nistic bacteriumE.cowanii B-6-1strain wasinoculated into the LB culturemediumforshaking cultureat200rpmand 30◦C for 24h, and different treatment solutions were pre-paredasfollows:A:zymoticfluidof1×107cfu/mL;B:zymotic

fluidof1×108cfu/mL;C:zymoticfluidof1×109cfu/mL;D:

supernatantcollectedafterfilteringbacteriumusing0.22-␮m filtermembrane;E:bacterialsuspensionof1×107cfu/mLafter

centrifugingthezymoticfluidandwashingtwicewith ster-ile water; F: culturemedium of1×107cfu/mL sterilized at 121◦Cfor20min;Control:sterilewater.Avolumeof40␮Lof

(4)

Table1–Incidencerateandthediameteroflesionafter

inoculationofthewoundsoftomatoeswithantagonistic

bacteriaandyeastagainstB.cinerea.

Strains Incidencerate(%) Diameteroflesions(mm) CK 100.00±0.00a 4.27±0.15a B-1 0.00±0.00f 0.00±0.00f B-6-1 0.00±0.00f 0.00±0.00f B-12 4.67±1.76f 0.90±0.20ef B-13 41.33±7.08cd 2.50±0.29cd B-15 71.04±4.33b 3.43±0.23abc B-20 28.67±3.47de 1.78±0.12de Y-7 75.34±2.91b 3.67±0.24ab Y-10 63.50±2.88bc 2.89±0.43bc Y-18 11.98±3.61ef 0.93±0.18ef Y-19 48.57±3.17cd 2.87±0.07bc Y-12 0.00±0.00f 0.00±0.00f SD=standarddeviation.

Datainthetableareexpressedasmean±SD.Differentlowercase lettersinthesamerowindicatesignificantdifferenceatP<0.05 levelbyDuncan’snewmultiplerangetest(P<0.05).

theabovesolutionwasinoculatedintothewoundof toma-toes,airdried,and2hlater15␮L1×105spore/mLofB.cinerea

sporesuspensionwasinoculated,and storedmoistat26◦C for6days.Theincidenceofdiseaseswasrecordedand cal-culated,which was repeated thrice forevery 20 tomatoes. Grading criteria forfruit diseases21 were asfollows: Grade

0,nodisease;Grade1,lesionareaaccountsfor<5%offruit area;Grade3,lesion areaaccountsfor6–10% offruitarea; Grade5,lesionareaaccountsfor11–25%offruitarea;Grade7, lesionareaaccountsfor26–50%offruitarea;Grade9,lesion areaaccountsfor>50% offruitarea.Diseaseindex=



(the number of rotten fruits at all levels×the representative value of the grade)/(the total number of fruits×the high-est representative value)×100; control efficiency=(control disease index-treatment of disease index)/control disease index×100.

Statisticalanalysis

Statisticalanalysisofexperimentaldatawasanalyzedusing SAS9.0software.AnalysisofvariancewasusedforDuncan multiplevarianceanalysis.AvalueofP<0.05wasconsidered significant.

Results

Selectionofantagonisticbacteria

Aftercomparisonandidentificationofthetomatosurface,the rateofincidenceoflesioninthecontrolgroupwas100%. Com-paredwiththe control, 11 strains(6 bacterial and 5yeast) isolatedhadsignificantantagonisticeffect(P<0.05;Table1). Threestrainshadthebestantagonisticeffectandtheywere B-1, B-6-1,and Y-12.AftertreatmentwithB-6-1strain, the incidenceratewas0%andcancompletelyinhibitB.cinerea (Fig.1).

Identificationofantagonisticbacterium

Colonialmorphology

Morphological features of B-6-1 strain are as follows: The body of B-6-1 strain was short, rod-shaped, with a size of0.6–1.0␮m×1.2–3.0␮m. B-6-1strainon thecultureplate appeared round with irregular edges, light yellowish, and semi-transparent,withabulgedsurfaceandwassmoothand appearedsemi-liquid.

Physiologicalandbiochemicalfeatures

B-6-1 strain was negative for Gram staining with anaero-bicgrowthanditcannothydrolyzestarchbutcanhydrolyze nitritereductase.Methylred reactionwasnegative,contact enzymegrowthtestwaspositive,andoxidasereactionwas negative.ResultsareshowninTable2.

Homologyanalysisanddendrogramconstructionof16S rDNAinB-6-1strain

Thewholelengthof16SrDNAamplifiedusing27Fand1541R primerswas1441bp.Homologyanalysiswasperformedafter sequence BLAST,andDNAMENsoftwarewasusedfor mul-tiple sequence alignment.Homologyofsequences ofB-6-1 strainandtypestrainE.cowaniiT (AJ508303),Salmonella sub-terraneaFRC1S,SalmonellaentericaATCC,SalmonellabongoriBr, andE.cloacaeLMGwas99.6%,98.4%,98.1%,97.9%,and97.6%, respectively.

Bacillus licheniformis was used as an outgroup. MEGA4.0 softwarewasusedtoconstructB-6-1and related16SrDNA dendrogrambyneighbor-joiningmethod(Fig.2).B-6-1andE. cowanii(registrationnumberAJ508303)clusteredatthesame branch,andclusteringbootstrapsupportratewas97%;itwas initiallyconsideredthatthisantagonisticstrainwas Enterobac-ter.

HomologyanalysisanddendrogramconstructionofropBof B-6-1strain

ToaccuratelyidentifyB-6-1strain,ropBgenewasfurther ver-ified. Thelength ofthe fragment sequence ofCM7 primer amplificationwas752bp.Homologyanalysiswasperformed after sequence BLAST, and DNAMEN software was used for multiple sequence alignment of ropB gene. Homology with E. cowanii was 98.9%, followed by homology with E. cloaca (CP002886) and E. nimipressuralis at 92.3%;homology withE. cancerogenus(AJ56694) was92.2%,homology withE. asburiae(AJ543727)was91.9%,homologywithE. nimipressur-alis(AJ566948)was91.6%,andhomologywithEscherichiacoli (JN707682)wasthelowestat91.4%.

DendrogramofB-6-1strainandropBgenewasconstructed usingneighbor-joiningmethod(Fig.3).B-6-1strainandtype strainCIP107300(registrynumberAJ566944)ofE.cowanii clus-tered atthesame branch,andclusteringbootstrapsupport ratewas100%.Ithasbeenreportedthathomologyof16SrDNA sequenceofbacterialcoloniesreachedupto>97%,andhence itcanbeconsideredasisogeny.22Therefore,combinedwith

bacterialmorphology,physiologicalandbiochemicalfeatures, 16SrDNAandropBgenesequenceanalysis,B-6-1straincanbe identifiedasE.cowanii.

(5)

CK

B-6-1

Fig.1–InhibitoryeffectofantagonisticbacteriaB-6-1strainonB.cinerea.

Table2–PhysiologicalandbiochemicalcharacteristicsofB-6-1.

Characteristics Results Characteristics Results

Catalase + Oxidase −

Methylredreaction − Nitratereduction +

␤-Galactosidase + Argininedoublehydrolysis −

Lysinedecarboxylase − Ornithinedecarboxylase −

Citricaciduse + H2Sproduction −

Urease − Tryptophandeaminase +

Indoleproduction − VPreaction +

Gelatinase − Inositol +

Melezitose − Glycerin +

Mannitol + Raffinose +

Erythritol − Sorbitol +

d-Arabinose − Starch −

␣-Methyl-d-mannoseglycosides − Glycogen −

␣-Methyl-d-glucoside − Xylitol − N-Acetyl-glucosamine + Gentiobiosyl + Amygdalin + d-Turanose − Arbutin + d-Lyxose + Aesculin + d-Tagatose − Salicin + d-Fucose + Cellobiose + l-Fucose − Maltose + d-Arabitol − Lactose − l-Arabinitol − Melibiose + Gluconate + Sucrose + 2-Keto-gluconate w Trehalose + 5-Keto-gluconate − Inulin − ␤-Methyl-d-xyloside − l-Arabinose + d-Galactose + d-Ribose + d-Glucose + d-Xylose + d-Fructose + l-Xylose − d-Mannose +

Adonalcohol − l-Sorbose +

l-Rhamnose + Dulcitol +

(6)

97 65 71 87 99 0.02

E. cowanii CIP 107300T(AJ508303)

B-6-1

E. cloacae LMG 2683T(Z96079)

Salmonella enterica ATCC 700720T(NR074910) Salmonella subterranea FRC1T(AY373829)

Salmonella bongori BR 1859T(AF029227) Escherichia/Shigella dysenteriaeT(X96966)

Escherichia/Shigella flexneriT(X96963) Bacillus licheniformis CICC 10101T(AY859477)

Fig.2–Dendrogrambasedon16SrDNAsequencesofstrainB-6-1constructedusingneighbor-joiningmethod.

Note:Thenumberatthenodemeansthepercentageofoccurrencein1000boot-strappedtrees;thescalebarmeans0.5% sequencedifference;“T”intheupperright-handcornerindicatesthetypeofstrain.

49 E. nickellidurana LMG 23000T(AM076893)

E. asburiae ATCC35953T(AJ543727)

E. cloacae EcWSU1(CP002886)

E. cancerogenus ATCC 33241T(AJ566943)

S. enterica subsp. enterica Dublin strain D25(JQ728847)

Escherichia coli E141(JN707682)

E. nimipressuralis ATCC 9912T (AJ566948)

E. cowanii CIP 107300T (AJ566944) B-6-1 27 41 96 39 100 0.01

Fig.3–DendrogrambasedonropBgenesequencesofstrainB-6-1constructedbyneighbor-joiningmethod.

Note:Thenumberatthenodemeansthepercentageofoccurrencein1000boot-strappedtrees;thescalebarmeans0.5% sequencedifference;“T”intheupperright-handcornerindicatesthetypestrain.

InhibitoryactivityofpathogensaftertomatoharvestbyE. cowaniiB-6-1

EffectofE.cowaniiB-6-1onthegrowthofthreefungal pathogensaftertomatoharvest

AllofdifferentconcentrationsofB-6-1bacterialsuspension inhibitedthegrowth ofF. verticillioides,A.tenuissima,andB. cinerea. Inhibitory effects among different pathogens were different: inhibitory effect on B. cinerea was the strongest, followed by a stronger effect on A. tenuissima, and the weakest effect on F. verticillioides. At a concentration of 1×105cfu/mL,the inhibition rate ofE. cowanii against the

myceliumofB.cinereawas67.48%.Theantagonisticbacterium at1×109cfu/mLcouldcompletelyinhibititsgrowth(Table3). ConfrontationcultureofB-6-1withfungalpathogensafter tomatoharvest

ResultsofconfrontationcultureofB-6-1andfungalpathogens F.verticillioides,A.tenuissima,andB.cinereaareshowninTable4. Growthofpathogenswassignificantlyinhibitedwhenthree

Table3–Inhibitoryeffectofdifferentconcentrationsof

antagonisticbacteriaonthreefungalpathogens

(P<0.05).

Concentration (cfu/mL)

Inhibitionrate(%)

F.verticillioides A.tenuissima B.cinerea

1×105 46.31±1.14b 67.48±1.39b 75.67±1.49b

1×106 48.12±2.13b 68.29±1.24b 76.53±1.63b

1×107 48.72±3.03b 69.38±1.99b 78.00±0.39b

1×108 53.33±1.03b 74.53±2.25ab 80.12±1.90b

1×109 69.75±2.08a 78.32±1.91a 100.00±0.00a

SD=standarddeviation.

Datainthetableareexpressedasmean±SD.Differentlowercase lettersinthesamerowindicatesignificantdifferenceatP<0.05 levelbyDuncan’snewmultiplerangetest(P<0.05).

(7)

Table4–Resultsofconfrontationcultureofantagonistic

bacteriaE.cowaniiB-6-1withfungalpathogens.

Typesofpathogens Inhibitionrate(%)

A.tenuissima 34.59±0.52

B.cinerea 35.79±1.13

F.verticillioides 26.57±0.95 SD=standarddeviation.

Datainthetableareexpressedasmean±SD.Differentlowercase lettersinthesamerowindicatesignificantdifferenceatP<0.05 levelbyDuncan’snewmultiplerangetest(P<0.05).

typesoffungal pathogenswereclosetothesideof antago-nisticbacterium,andobviousinhibitionzonewasobserved at the junction between antagonistic bacterial and fungal pathogens.InhibitoryeffectsofB-6-1onB.cinereaandA. tenuis-simawerestrongerbuttheeffectonF.verticillioideswasweaker.

BiocontroleffectsofdifferentconcentrationsofB-6-1 antagonisticbacterialliquidsonB.cinerae

Afterinoculationoftreatmentsolutionofdifferent concen-trations ofE. cowanii, incidence ofdisease was calculated. Withincreasingconcentrationsofculturemedium,the dis-easeindexoftomatobotrytisdiseasewasreduced.Disease indexoftomatobotrytisdisease inthe controlwas93.38%, whilethat of1×109cfu/mL zymotic fluid was only 4.44%;

biocontrolratereachedupto95.24%andtheincidencerate significantlydecreased.Ontheotherhand,biocontroleffects ofbacterialsuspensionandzymoticfluidweresimilar;no sig-nificancewasobservedbetweenthetwotreatments.Filtrate controleffectreached77.40%,andheatkillfluidontreatment hadnoobviouseffectontomatograymold(Table5).

Discussion

Currently,manyantagonisticbacterialstrainsforinhibiting botrytis disease inpost-harvest fruitshave been used.23–27

Acremonium breve has inhibitoryeffect on apple and grape fruit;Bacillussubtilishasinhibitoryeffectonbotrytisdiseaseof strawberryandcherry;Candidaguilliermondii,C.oleophila,and C.sakecan inhibitB.cinereaofpear,nectarine,andtomato fruits; Cryptococcuslaurentii, C. flavus, and C. albidus inhibit botrytisdiseaseofpost-harvestapple,strawberry,tomato,and

pearfruits;MetschnikowiafructicolaandM.pulcherrimainhibit botrytisdiseaseofappleandgrapefruits;Pseudomonascepacia, P.corrugate,andP.syringaehaveinhibitoryeffectsonpearfruits andapplefruits;Rhodotorulaglutinisinhibitsbotrytisdiseaseof strawberry,pear,andapplefruits;Trichosporonpullulans sup-pressesB.cinereaofcherryfruits.Thenumberofantagonistic bacteriaonpost-harvesttomatowaslessthanothertypesof fruits.Inthisstudy,thediscoveryofE.cowanii,whichhasnot beenreportedearlier,providesmorechoiceformicrobiological controlofpathogensinpost-harvesttomato.

Intheecosystemoffruitdiseasesandmicrobiology,when fruitdiseasesaresevere,pathogensoccupyafavorable posi-tion, whereas antagonistic bacteria is at inhibitory status. Therefore,fruitsdidnotdevelopdiseaseorhavemilddisease wheneffectiveantagonisticbacteriacontrolthedevelopment offruitdiseases,andselectionofantagonisticbacteriafrom these fruits is easier toproduce better inhibitory effectof antagonisticbacteria.28Inthisexperiment,fruitsusedfor

iso-lation ofantagonistic bacteriawere randomlyselected and keptmoistatroomtemperatureforaperiodoftime.Fruits without diseases were selectedforthe isolationof antago-nisticbacteriatomakeantagonisticbacteriabetteradaptto theecologicalenvironmentofpathogens.Manyresearchers haveselectedantagonisticbacteriabycombininginvitroand in vivomethods. In vitro selection is moreconvenient and rapidforexaminingtheinhibitoryeffectofstrains.However, instrainsselectedforinhibitoryeffect,invitroconditionmight notproducethesameinhibitoryeffectasinvivoexperimental condition.29Inthisstudy,invivoselectionmethodwasdirectly

used toobtain good bacterialstrain toavoidinconsistency betweeninvitroandinvivoexperiments.

Enterobacteria widely exist in nature, and it has been reportedthatsomestrainsinEnterobacterhaveverygood bio-controleffects.E.cloacaehasverystrongantagonisticeffects onPythiummyriotyluminvitro.30Yangetal.,31isolatedE.

cloa-caefromriceseedlingroot,sprayingitszymoticfluidonthe leavesofriceatbootingstagecansignificantlyimprove antag-onisticeffectonbacterialblight,andbiocontroleffectreached up to38%.In1995, Hintonand Bacon32 foundthat E.

cloa-caefromcornnotonlyeffectivelycolonizedcornseedlingbut alsodistributed onthemiddlecolumnand thecortexcells ofmaizeroot.Thebacteriumhaveamarkedlyantagonistic actiononF.moniliformeandseveralothertypesofcornfungal pathogens.Yang33foundE.cowaniiduringtheisolationof19

Table5–InhibitoryeffectsofvarioustreatmentsolutionofantagonisticbacteriaE.cowaniionB.cinereaofpost-harvest

tomatoes.

Treatment Diseaseindex Biocontroleffect(%)

Fermentationbroth(1×107cfu/mL) 71.14±3.15b 23.82±1.81d

Fermentationbroth(1×108cfu/mL) 48.89±1.76c 47.64±1.02c

Fermentationbroth(1×109cfu/mL) 4.44±0.68e 95.24±2.07a

Bacterialsuspension(1×107cfu/mL) 49.42±3.59c 47.08±0.40d

Filtrationfluid 21.11±1.79d 77.40±1.03b

Heatkillfluid 94.23±2.86a –

Control 93.38±1.93a –

SD=standarddeviation.

Datainthetableareexpressedasmean±SD.DifferentlowercaselettersinthesamerowindicatesignificantdifferenceatP<0.05levelby Duncan’snewmultiplerangetest(P<0.05).

(8)

endophyticbacterialstrainsfromdifferenttissuesandorgans ofcole,andstudieshaveshownthatthisstrainhascertain inhibitoryeffectsonfungalpathogensofcole.Fu34isolated

endophyticbacterialstrainE. cowaniifm50fromMiscanthus floridulusandCymbopogoncaesius,whichhavehigher biolog-icalactivitiesofnitrogenaseasanenzymeandperoxidase, andpromotesgrowthofrice.Bradyetal.,35isolatedE.cowanii

strainfromeucalyptuswithbacterialblightandbudblight, Heinferred thatE. cowaniimightexist ineucalyptusas an endophyticbacteriaandhasantagonisticeffect.Ontheother hand,itisreportedthatglycoproteininEnterobactercloacaecan inhibitnormalgrowthofpulmonarycells.36

Inthisstudy,filtrationliquidofE.cowaniiB-6-1caninhibit theoccurrence ofB.cinerae,which issimilar tothe results of a previous study on E. cloacae. Mukhopadhyay et al.,29

foundthatinNBorPDBculturemedium,filtrationliquidof E.cloacaehasinhibitoryeffectsonRhizoctoniasolani,Pythium myriotyum,Gaeumannomycesgraminis,andHeterobasidion anno-sum,demonstratingthatantifungalmetabolitesexistinthe liquid.E.cowaniiB-6-1heatkillingbacterialsolutiondidnot haveinhibitoryeffects,demonstratingthatantibacterial sub-stancesdonottoleratehigh temperature.Thesimilarity of antibacterialsubstanceE.cowaniiB-6-1andantibacterial sub-stanceproducedbyE.cloacaewasthatE.cloacaefiltrationliquid didnot have antibacterial activity after heatingfor10min at60◦C or boilingfor5min.On theother hand, inhibitory effectsoftheantagonisticbacteriumcorrelatedwiththe con-centrationofculturemedium:thehighertheconcentration, thebettertheinhibitoryeffect,whichisconsistentwiththe resultsofpreviousresearch.7

Insummary, B-6-1strain wasisolated from the surface oftomato,andidentifiedasE.cowaniiaccordingtobacterial morphology,culturefeatures,physiologicalandbiochemical characteristics,and16SrDNAandropBgenesequence analy-sis.E.cowaniiB-6-1notonlyhasstronginvitroinhibitoryeffect onF.verticillioides,Atenuissima,andB.cinereaaftertomato har-vestbut alsoeffectivelyinhibits theoccurrenceofbotrytis. Theviabilityatlowtemperatureandbiocontrolefficiencyin combinationwithotherpreservationmeasuresandbiocontrol mechanismsofE.cowaniiaredirectionsforfutureresearch.

Conflicts

of

interest

The authors declare that there is no conflict of interest regardingthepublicationofthispaper.

Acknowledgment

TheauthorsaregratefultoPostDocFundofShanxiAcademyof AgriculturalScience(No.BSH-2015JJ-003)andShanxiProvince ScienceandTechnologyResearchProject(No.20140311025-2).

r

e

f

e

r

e

n

c

e

s

1.AttilioV,GiovanniV,SwizlyA,FrancescoDS,LucaR. Determinationofcarbendazim,thiabendazoleand thiophanate-methylinbanana(Musaacuminata)samples importedtoItaly.FoodChem.2004;87:383–386.

2.WisniewskiME,WilsonCL.Biologicalcontrolofpostharvest diseasesoffruitsandvegetables:recentadvance,vegetables: recentadvance.HortScience.1992;27:94–98.

3.FravelDR.Commercializationandimplementationof biocontrol.AnnuRevPhytopathol.2005;43:337–359.

4.JanisiewiczWJ,KorstenL.Biologicalcontrolofpostharvest diseasesoffruits.AnnuRevPhytopathol.2002;40:

411–441.

5.MassartS,Martinez-MedinaM,JijakliMH.Biologicalcontrol inthemicrobiomeera:challengesandopportunities.Biol Control.2015;89:98–108.

6.MercierJ,JiménezJI.Controloffungaldecayofapplesand peachesbythebiofumigantfungusMuscodoralbus. PostharvestBiolTechnol.2004;31:1–8.

7.NunesC,UsallJ,TeixidoN,FonsE,VinasI.Post-harvest biologicalcontrolbyPantoeaagglomerans(CPA-2)onGolden Deliciousapples.JApplMicrobiol.2002;92:247–255.

8.ZhouT,NorthoverJ,SchneiderKE,LuX.Interactions betweenPseudomonassyringaeMA-4andcyprodinilinthe controlofbluemoldandgraymoldofapples.CanJPlant Pathology.2002;24:154–161.

9.DrobyS,WisniewskiM,ElGhaouthA,WilsonC.Influenceof foodadditivesonthecontrolofpostharvestrotsofappleand peachandefficacyoftheyeast-basedbiocontrolproduct Aspire.PostharvestBiolTechnol.2003;27:127–135.

10.VeroS,MondinoP,BurguenoJ,SoubesM,WisniewskiM. Characterizationofbiocontrolactivityoftwoyeaststrains fromUruguayagainstbluemoldofapple.PostharvestBiol Technol.2002;26:91–98.

11.DikA,EladY.ComparisonofantagonistsofBotrytiscinereain greenhouse-growncucumberandtomatounderdifferent climaticconditions.EurJPlantPathol.1999;105:123–137.

12.XiL,TianSP.Controlofpostharvestdiseasesoftomatofruit bycombiningantagonisticyeastwithsodiumbicarbonate.

SciAgricSinica.2005;38:950–955.

13.WangY,YuT,XiaJ,YuD,WangJ,ZhengX.Biocontrolof postharvestgraymoldofcherrytomatoeswiththemarine yeastRhodosporidiumpaludigenum.BiolControl.

2010;53:178–182.

14.DuanJN,HuangH,LuoJ,ZhaiF,AnD.Thecontrolefficacyof

PeanibacillusporiaeBC-39totomatograymoldandits bioantisepsis-preservationontomatofruits.ActaPhytophy Sin.2014;41:61–66.

15.JanisiewiczW,RoitmanJ.Biologicalcontrolofbluemoldand graymoldonappleandpearwithPseudomonascepacia. Phytopathology.1988;78:1697–1700.

16.CoenyeT,FalsenE,VancanneytM,etal.Classificationof

Alcaligenesfaecalis-likeisolatesfromtheenvironmentand humanclinicalsamplesasRalstoniagilardiisp.nov.IntJSyst Bacteriol.1999;49:405–413.

17.BradyC,CleenwerckI,VenterS,VancanneytM,SwingsJ, CoutinhoT.PhylogenyandidentificationofPantoeaspecies associatedwithplants,humansandthenatural

environmentbasedonmultilocussequenceanalysis(MLSA).

SystApplMicrobiol.2008;31:447–460.

18.KumarS,TamuraK,NeiM.MEGA3.Integratedsoftwarefor molecularevolutionarygeneticsanalysisandsequence alignment.BriefBioinform.2004;5:150–163.

19.HoltJG,KriegNR,SneathPHA.Bergey’sManualof DeterminativeBacteriology.Baltimore:Williams&Wilkins Company;1994.

20.WalkerGM,McleodAH,HodgsonVJ.Interactionsbetween killeryeastsandpathogenicfungi.FEMSMicrobiolLett.

1995;127:213–222.

21.WangQ,HuC,KeF,HuangS,LiQ.[Characterizationofa bacterialbiocontrolstrain1404anditsefficacyincontrolling postharvestcitrusanthracnose].WeiShengWuXueBao.

(9)

22.StackebrandtE,GoebelB.Taxonomicnote:aplacefor DNA–DNAreassociationand16SrRNAsequenceanalysisin thepresentspeciesdefinitioninbacteriology.IntJSystEvol Microbiol.1994;44:846–849.

23.BattaYA.Controlofpostharvestdiseasesoffruitwithan invertemulsionformulationofTrichodermaharzianumRifai. PostharvestBiolTechnol.2007;43:143–150.

24.MikaniA,EtebarianH,SholbergP,O’GormanD,StokesS, AlizadehA.Biologicalcontrolofapplegraymoldcausedby BotrytismaliwithPseudomonasfluorescensstrains.Postharvest BiolTechnol.2008;48:107–112.

25.SchenaL,NigroF,PentimoneI,LigorioA,IppolitoA.Control ofpostharvestrotsofsweetcherriesandtablegrapeswith endophyticisolatesofAureobasidiumpullulans.Postharvest BiolTechnol.2003;30:209–220.

26.SharmaR,SinghD,SinghR.Biologicalcontrolofpostharvest diseasesoffruitsandvegetablesbymicrobialantagonists:a review.BiolControl.2009;50:205–221.

27.ZhangH,ZhengX,WangL,LiS,LiuR.Effectofyeast antagonistincombinationwithhotwaterdipson postharvestRhizopusrotofstrawberries.JFoodEng.

2007;78:281–287.

28.ChalutzE,WilsonC.Postharvestbiocontrolofgreenandblue moldandsourrotofcitrusfruitbyDebaryomyceshansenii. PlantDis.1990;74:134–137.

29.WangYF,BaoYH,ShenDH,etal.BiocontrolofAlternaria alternataoncherrytomatofruitbyuseofmarineyeast

RhodosporidiumpaludigenumFell&Tallman.IntJFood Microbiol.2008;123:234–239.

30.MukhopadhyayK,GarrisonNK,HintonDM,etal.

Identificationandcharacterizationofbacterialendophytes ofrice.Mycopathologia.1996;134:151–159.

31.YangH,SunX,SongW.Currentdevelopmentoninduced resistancebyplantgrowthpromotingandendophytic bacteria.ActaPhytopatholSinica.2000;30:107–110.

32.HintonDM,BaconCW.Enterobactercloacaeisanendophytic symbiontofcorn.Mycopathologia.1995;129:117–125.

33.YangRX.IdentificationofEndophyticBacteriafromBrassica napususing16SrDNASequenceAnalysis.Northwest AgricultureandForestryUniversity;2005.

34.FuQM.SeparationandCharacteristicsStudyofEndophytic Nitrogen-FixingBacteriafromMiscanthusandGreenLemongrass.

SouthChinaAgriculturalUniversity;2010.

35.BradyCL,VenterSN,CleenwerckI,etal.Isolationof

EnterobactercowaniifromEucalyptusshowingsymptomsof bacterialblightanddiebackinUruguay.LettApplMicrobiol.

2009;49:461–465.

36.GangC,JiannongY,JianxiaZ.Anoveloxidaseelectrodefor determinationofglucosegou2pledwithcapillary

Referências

Documentos relacionados

Y éstas han sido todas las actividades presentadas y trabajadas en el taller supramencionado; por algunas tuvimos que pasar “en volandas” debido a la escasez de tiempo destinado a

Activities of peroxidase (POX) (a), polyphenoloxidase (PPO) (b), β -1,3-glucanase (GLU) (c) and chitinase (CHI) (d) in the leaf tissue of tomato plants inoculated with

The objectives of this study were to isolate and identify bacteria from Psychotria hoffmannseggiana with potential cellulase and pectinase production and with antagonistic

The chemical control reduced the blossom infection of pear trees by only 29-39% in two orchards in 1999 and did not reduce incidence of fire blight in 2000; thus it can be

Abstract: The objective of this study was to evaluate the in vitro effects, including surface morphological characteristics and chemical elemental properties, of

O objetivo da pesquisa é analisar as possíveis causas destas dificuldades no processo de ensino aprendizagem em sala de aula através de questionários aplicados aos

Lesion length (A), sporulating site percentage (B) and broken stem percentage (C) in tomato plants inoculated with Botrytis cinerea on different ages (days after sowing) and

Characteristics evaluated in response to rates of nitrogen: Commercial tomato fruit number (a) and commercial tomato yield grown on sunn hemp straw (b); fresh mass of inflorescence