• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
6
0
0

Texto

(1)

Zero-Temperature Superonduting Transition in

Frustrated Josephson-Juntion Arrays

Enzo Granato

LaboratorioAssoiadodeSensoreseMateriais,

InstitutoNaionalde PesquisasEspaiais

12201-970S~aoJosedosCampos,S~aoPaulo,Brazil

Reeivedon28February,2002

The ritial behavior of zero-temperature superonduting transitions whih an our in

disor-dered two-dimensionalJosephson-juntion arrays are investigated by Monte Carlo alulation of

ground-stateexitationenergiesanddynamialsimulationoftheurrent-voltageharateristisat

nonzerotemperatures. Twomodelsofarraysinanappliedmagnetieldareonsidered: random

dilutionofjuntionsandrandomouplingswithhalf-uxquantumperplaquettef =1=2. Above

aritialvalueofdisorder,nite-sizesalingoftheexitationenergiesindiatesazero-temperature

transitionandallows anestimateoftheritial disorderandthethermalorrelation length

expo-nentharaterizingthetransition. Current-voltagesaling isonsistentwiththezero-temperature

transition. Thelinearresistaneisnonzeroatnitetemperaturesbutnonlinearbehaviorsetsinat

aharateristiurrentdensitydeterminedbythethermalritialexponent. Thezero-temperature

transitionprovidesanexplanationofthewashingoutofstrutureforinreasingdisorderatf=1=2

whileitremainsfor f=0,observedexperimentallyinsuperondoutingwirenetworks.

I. Introdution

Inhomogeneous superondutorsin the form of an

array of superonduting grains embedded in a

non-superonduting host, may exhibit many properties

that ariseessentially from thephase-ohereneamong

thegrains,duetosuperondutingoupling[1-8℄. The

oupling between the grains an our by Josephson

tunnelling through an insulating host or by

proxim-ity eet in a normal-metal host. These systems an

bephysiallyrealizedasgranularsuperondutorsand

are partiularly importantin high-T

superondutors

[2℄ where phase utuations eets from temperature

and disorder play an important role. They an be

artiially fabriated in two dimensions as arrays of

Josephsonjuntions [4,5℄,withwellontrolled

param-eters, and are also losely related to superonduting

wire networks [9, 10℄, where the nodes of the

net-work at like oupled eetive "grains". In the

sim-plest model only the phase oupling between the

su-peronduting orderparameter

j =j

j je

ij

ofpoint

grains, dened on a lattie labelled by j, are taken

into aount. Eah juntion between nearest-neighbor

grains ontributesto theenergy of the system as[11℄

E

ij = J

ij os(

i

j A

ij

). Intheaseof

Josephson-juntion arrays,theouplingJ anberelatedto the

juntion ritial urrent I

ij as J

ij = ~I

ij

=2e and for

wirenetworksitis proportionaltothe superondutor

ondensation energy of the wire material. The bond

variable A

ij =

2

o R

j

i ~

Adl is the line integral of the

vetorpotential ~

A betweengrains in units of theux

quantum

o

=h=2edue to anapplied magnetield

~

B=r ~

A. TheresultingHamiltonianoftheoupled

Josephsonjuntion arrayan thenbewrittenas

H= X

<ij> J

ij os(

i

j A

ij

) (1)

wherethesumistakenovernearestneighbors<ij >.

This model is equivalent to an XY (two-omponent)

spinsysteminwhihthegaugeeldA

ij

leadsto

frustra-tioneetsin thespinalignment[12℄. Thefrustration

introdued by themagneti eld on agiven plaquette

pof the lattie an be dened asf

p =

p =

o , where

p

is the ux threading the plaquette, giving in

gen-eralafrationalnumberofuxquanta. Inthismodel,

onealsoassumesthatquantum-phaseutuationsdue

to hargingeets [3℄an benegleted. Inagranular

material,disorderarisesnaturallyfromtherandom

lo-ationof grains leadingto randomnessin J

ij and A

ij

(orequivalentlyonf

p

). Ingeneral,dierentmodelsan

thenbeonsidered depending ontheassumedrandom

(2)

Evenwhenartiiallyfabriatedastwo-dimensional

periodilatties,inwhihasef

p

=f isaonstantand

themodel inEq. 1is periodiin f withperiodf =1,

Josephson-juntionarraysorwirenetworkswillalways

ontainsomedegreeof disorder[13℄. Forexample,

in-homogeneities in the links of a regular

superondut-ingwirenetwork ofYBa

2 CuO

7

hasbeensuggestedas

animportane soureof disorder[14℄. Asdisussed in

the present work, if suh disorder is modelled by Eq.

1with random J

ij

, it mayexplain thewashingoutof

resistaneminimaobservedathalf-integerf inthis

sys-tem,inontrasttotheasewithintegerf wheresharp

minimaisobserved.

Ontheother hand,disorderanalso be

intention-allyintroduedtostudyitseets[9,15,16℄and

om-pare with theoretial preditions [7, 13℄. In this

re-gard, random dilution of grains, in an otherwise

two-dimensional periodi array, is probably the simplest

way to introdue disorder in a ontrollable manner

[9, 16℄. Suh system an be modelled by Eq. 1

as-sumingthataonentrationxofjuntionsareremoved

randomly. Inthisase,reenttheoretialwork[17,18℄

indiates that forf =1=2, the superonduting

tran-sition should vanish above aritial valueof disorder

x

s

but belowtheperolationdilutionthresholdx

p . In

priniplethisanbeveriedexperimentallythrough

re-sistivitymeasurementsinarrays. Thedisappearaneof

strutureatf =1=2forinreasingdisorderalready

ob-servedexperimentallyindilutedwirenetworks[9℄

sup-portsthisresult.

Inexperimentsaswellinnumerialsimulations,the

superonduting transition is usually identied from

the behavior of the nonlinear urrent-voltage

hara-teristis. However,thedening propertyof the

super-onduting phaseisthevanishing linearresistivity. In

ordertoextratinformationofthelinearresponseand

underlying transition, asalinganalysis [2, 19℄ isthen

required from whih the ritial temperature and

re-latedexponentsanbedetermined. Theinterpretation

oftheexperimentaldataalsoreliesontheexpeted

be-havior of the model used to desribe the system. In

partiular,knowledgeofthesoalledlowerritial

di-mensionof themodel[20℄ isessentialforameaningful

appliation ofthe urrent-voltagesaling theory. This

is beause, below the lower ritial dimension, there

is a phasetransition only at zero temperature but its

eets an still show up at nite temperatures as a

rossoverbehavior,ratherthanathermodynami

tran-sition. Thus,itisimportanttostudyindetailthelower

ritialdimensionandtransportpropertiesofthebasi

models in order to providesupport for these

interpre-tations aswell asto makepreditionsfor therealisti

physialsystem.

Inthis work,models of two-dimensional

superon-duting arrays with possible zero-temperature

transi-tions relevant for Josephson-juntion arrays and wire

networks are onsidered. Monte-Carlo simulated

an-nealing is used to obtain the ground-state exitation

energiesin order to study thelower-ritialdimension

while Langevin-type simulation is used to study the

salingoftheurrent-voltageharateristisatnonzero

temperatures. Two dierent models of disordered

ar-rays in an applied magneti eld are onsidered:

ran-dom dilutionof juntions and random ouplingswith

half-uxquantumperplaquette. Abovearitialvalue

of disorder, nite-size saling of the exitation

ener-gies indiates that suh models are below the

lower-ritialdimensionandazero-temperaturetransitionis

expeted. At nonzero temperatures, the linear

resis-tane is nonzero but nonlinear behavior sets in at a

harateristi urrent densitydetermined by the

ther-mal ritialexponent. These resultsareapossible

ex-planationfor thewashingoutof struture at f =1=2

observedinsomewirenetworks[9,14℄.

II. Modelsand simulation

ThedilutedJosephson-juntionarrayan be

mod-elledbyEq. 1assumingajuntion dilution

onentra-tionxorrespondingtoJ

ij

beingzeroorJ

o

with

prob-abilitiesxand1 x,respetively,andisrelatedtothe

frationof juntionspresentpbyx=1 p. Sineany

losedloopsofnonzerobondsJ

ij

haveanareawhihis

anintegermultipleoftheelementaryareaS,the

prop-ertiesofthismodelremainperiodiinf =BS=

o with

period 1. Similarly, therandomoupling model is

de-nedbyEq. 1assumingJ

ij =J

o

D withequal

prob-ability. Asdened,thesetwomodelsarejustpartiular

asesofamoregeneralmodelwithrandomJosephson

ouplingswhereJ

ij

isgivenbyanarbitraryprobability

distribution. In both ases, we onsider in this work

a square lattie and an external magneti eld

orre-spondingtohalf-uxquantumperplaquette,f =1=2.

To studythe stability of the groundstate, the

en-ergy hange E(L) of a defet in the ground state,

orrespondingto alow-energyexitation,is alulated

forsmallsystemsizesLbyMonteCarlosimulated

an-nealing[17℄. Thedefet-energyrenormalization

analy-sis [20℄ is then used to inferthe behavior in the large

systemlimit. Stabilityofthegroundstateagainst

ther-malutuationsrequiresthat[E℄

d

,where[ ℄

d

denotes

a disorderaverage, is nite or inreaseswith L. In a

stronglydisorderedphase,asinthevortex-glassstate,

(3)

W L =f[(E) 2 ℄ d ([E℄ d ) 2 g 1=2

isexpetedtosaleas

W

L /L

(2)

for largeenough L. If thestiness exponent is

pos-itive there is long-range order in the system and a

nonzero ritialtemperature. However,if <0,there

exists a length sale where L

W

L

kT, beyond

whih thermal utuations destroy the order at any

nonzero temperature and so the ritial temperature

vanishes. Thislengthsaleanbeidentiedasa

orre-lation length /1=T

, with aritial exponentgiven

by

T

=1=jj. As disussed below,this ritial

expo-nentdeterminestheurrent-voltagesalingofthezero

temperaturetransition.

Theurrent-voltageharateristisanbeobtained

by numerial simulation of the resistivelly shunted

Josephson-juntion (RSJ) model for the urrent ow

betweengrains [21, 22, 23℄. The Langevin-type

equa-tionsforthismodelan bewrittenas

C o d 2 i dt 2 + 1 R o X j d( i j ) dt = I X j sin( i j A ij )+I

ext i + X j ij ;(3) whereI ext

istheexternalurrent,

ij

represents

Gaus-sianthermalutuationssatisfying

<

ij

(t)> = 0

< ij (t) k l (t 0

)> = 2k B T R o Æ ij;k l Æ(t t 0 ) (4)

and aapaitane to theground C

o

is allowed, in

ad-dition to the shunt resistane R

o

, in order to

faili-tate the numerial integration [22℄. The parameter

I R 2 o C o

= 0:5 used in the simulations orresponds to

theoverdampedregime.Hereafter,dimensionless

quan-tities are used in units where ~=2e = 1, R

o

= 1and

I

=1. Theaboveequationsanbeintegrated

numeri-allyandtheresultsaveragedoverdierentrealizations

of thedisorder.

Todeterminethenonlinearresistivity(orresistane

intwodimensions),

nl

=E=J,auniformexternal

ur-rent I is imposed with density J = I=L along oneof

theprinipal diretions ofthelattie usingutuating

boundaryonditions[24℄. TheaveragevoltagedropV

arossthesystemisomputedas

V = 1 L L X j=1 ( d 1;j dt d L;j dt ) (5)

and the average eletri eld by E = V=L. The

lin-ear resistane, R

L = lim

J!0

E=J, an also be

om-puted without nite urrent eets, diretly from the

long-timeequilibrium utuationsof the phase

dier-enearossthesystem[23℄(t)= P L j=1 ( 1;j L;j )=L as R L = 1 2T ((t) (0)) 2 =t (6)

whih an beobtained from Kuboformula of

equilib-riumvoltage-voltageutuations,

R L = 1 2T Z

dt<V(t)V(0)>; (7)

usingtheJosephsonrelationV =d=dt.

III. Resultsand disussion

IV. Defet-energy saling

To determine the stability of the ground state

against low-energy exitations, a defet is reated in

asystem of size L L by imposing ahange in the

boundary onditions in one diretion. The hange

E(L) in the ground state energy for small systems

isalulatedforalargenumberofsamplesbydiretly

searhing for the minimum energyusing Monte Carlo

simulated annealing. The defet energy is obtained

fromtheenergydiereneE =E

a E p between peri-odiE p

andantiperiodiE

a

boundaryonditionsinthe

phases

i

. Thisenergydiereneprovidesameasureof

phase oherene and an related to the renormalized

stinessonstantbyJ

(L)=2E= 2

. Inthe

thermo-dynamilimit, J

is nite in thephaseoherentstate

and vanishes in the inoherent state. In presene of

disorder,Eutuatesbetweensamples,witha

distri-butionthatanbeharaterizedbyitsmoments.

Sta-bilityof theground stateagainstthermalutuations

requiresthattheaverage[E℄,where[℄denotesa

dis-orderaverage,isnite orinreaseswithL.

Fig. 1(a)showsthebehaviorof[E℄asfuntion of

Lforthedilutedarrayonasquarelattieforinreasing

dilutionx. Thebehaviorissimilartothatobservedfor

thesamemodelontriangularlattie[17℄. Forsmallx,

it inreases with L and eventually saturates,

indiat-ing the existene of long-rangephase oherene. The

inreasing trend is a small size eet. Forlarge L, it

shouldsaleasthephasestinesswhihisproportional

toL d 1

wheredisthedimensionofthesystem. Onthe

otherhand, forsuÆiently largex itlearly dereases

for inreasing L, indiating a disordered phase. The

hangeinthebehavioryieldsanestimateofthe

(4)

valueisonsistentwiththeoneinferredfromthe

behav-iorofthezero-temperatureritialurrentin

dynami-alsimulations[18℄. Surprisingly, thesameestimateis

also obtained for the triangular lattie, x

s

= 0:14(1),

even though the perolation dilution thresholds [25℄,

x

p

=0:5 and 0:652,forthe squareand triangular

lat-tiesrespetively,arequitedierent. Sineitisknown

[25℄thatthetransitiontemperatureinabseneof

mag-neti eld, f = 0, vanishes at x

p

, there is a range of

disorderx

s

<x<x

p

wherethetransition forf =1=2

only ours at T =0 while it ours at nonzero

tem-peraturesforf =0. Measurementsofthe

temperature-magneti eld phaseboundary for inreasing disorder

indilutedwirenetworks[9℄areonsistentwithaphase

oherenethresholdx

s

forf =1=2,whihshowsupas

awashing outofthestruture at half-integerf, while

itremainsessentiallyunaetedforf integer.

0.0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

( b )

( a )

x

p

x

s

f = 1/2

L=4

L=6

L=8

L=10

E

x

10

1

f = 1/2

x = 0.35

θ = -1.00(2)

W

L

Figure 1. (a) Finite size behavior of defet energy [E℄

for inreasing dilution x and various system sizes L, on

asquare lattie. Arrows indiatethe phase-ohereneand

perolationdilutionthresholds. (b)Finitesize behaviorof

thewidthofdefetenergydistributionW atadilution

on-entrationx=0:35intherangex

s

<x<x

p .

The disorderedphase for x

s

< x < x

p

an be

re-garded asavortexglass, sineitalso lakslong-range

order in the vortex lattie [17℄. The stability of this

glassphaseagainst thermalutuationsisdetermined

by the size dependene of the seond moment of the

apower-lawbehaviorgivenbyEq. 2. AsshowninFig.

1(b), thepower-lawexponentforavalueofx=0:35

inthisregionisnegative. Asaonsequene,thisvortex

glassphaseisbelowitslower-ritialdimensionandthe

phasetransitiononlyoursatT =0. Fromthe

power-lawbehaviorofW(L)theexponent

T

=1=jjofthe

thermalorrelationlengthisestimated tobe

T 1.

The results of defet-energy saling for the array

withrandomJosephsonouplingsareshownin Fig. 2.

Thebehaviorissimilartothatobservedforthediluted

arraydisussedabove. Forsmalldisorder,Einreases

withL,indiatinglongrangephaseoherene,whilefor

suÆiently largeD itdereases for inreasingL,

indi-ating a disordered phase. The hange in the

behav-ioryieldsanestimateofthephase-oherenethreshold

D

s

= 0:6(4) for f = 1=2 and D

o

0:9 for f = 0.

Again,thepower-lawexponentforavalueofdisorder

D = 0:8 larger than the ritial value D

s

is negative

as shown in Fig. 2(b) and the vortex glass phasefor

D > D

s

is belowits lower-ritialdimension and

or-respondingly the phasetransition for f = 1=2 should

ouratT =0. Fromthepower-lawbehaviorofW(L)

the exponent ofthe thermalorrelation lengthis

esti-matedtobe

T

1. Asforthedilutedmodel,thereisa

rangeofdisorderD

s

<x<D

o

,wherethetransitionfor

f =1=2onlyoursatT =0whileitoursatnonzero

temperaturesforf=0. Thus,magnetoresistane

mea-surementsjustabovethef =0ritialtemperature,in

arrayswithdisorderinthisrange,should display

resis-taneminimaonlyatintegervaluesoff. Thisbehavior

hasbeenobservedinregularsuperondutingwire

net-work[14℄ofYBa

2 CuO

7

withhighinhomogeneityinthe

linkswhihinprinipleouldleadtoouplingdisorder

in thisrange.

V. Current-voltagesaling

ThenonlinearresistaneE=J asafuntion of

ur-rent density J and temperature T for the array with

random Josephsonouplingsis shownin Fig. 3(a)for

adegree ofdisorderD =0:75 abovetheritial value

D

s

estimated above. Similarbehaviorisfoundfor the

dilutedarray[18℄abovethephaseoherene threshold

x

s

. ThedatashowstheexpetedbehaviorforaT =0

superondutingtransition[2,19℄. InFig. 3(a),the

ra-tioE=J tendstoanitevalueforsmallJ,

orrespond-ing to the linear resistane R

L = lim

J!0

E=J, whih

depends strongly on the temperature. For inreasing

J, there is a smooth rossoverto nonlinear behavior

thatappearsatsmallerurrentsfordereasing

temper-atures. If the transition only ours at T =0, as

in-diated bythedefet-energysaling analysisdisussed

above, then the orrelation length should diverge for

dereasing temperature and a temperature-dependent

rossoverisexpeted. ThelinearresistaneR

L

(5)

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

D

0

D

s

f=0

f=1/2

L=4

L=6

L=8

L=10

E

D

10

1

( b )

( a )

θ = -1.05(6)

f = 1/2

D = 0.8

W

L

Figure2. (a)Finitesizebehaviorofdefetenergy[E℄for

f=1=2andf=0forinreasingdisorderDandvarious

sys-temsizesLforthearraywithrandomouplingsonasquare

lattie. Arrowsindiatetheorrespondingphase-oherene

thresholds. (b)Finite size behavior of thewidthof defet

energydistributionWatavalueofdisorderD=0:75above

Ds.

R

L

/exp( E

b

=kT),where E

b

isanenergy barrier. If

one assumes that the orrelation length diverges asa

power-law

T /T

T

thenthebehaviorofthe

nonlin-ear resistivity normalized to R

L

an be ast into the

saling form[2, 19℄

E

JR

L =g(

J

T 1+

T

) (8)

in d = 2 dimensions, where g is a saling funtion

with g(0)=1. Arossoverfromlinearbehavior,when

g(x) 1, to nonlinear behavior, when g(x) >> 1, is

expetedto ourwhenx1whihleadstoa

hara-teristiurrentdensityJ

nl

atwhihnonlinearbehavior

setsinthat dereaseswithtemperatureasapowerlaw

J

nl /T

1+T

.

Oneanthenproeedto verify thesaling

hypoth-esisandobtainanumerialestimateoftheritial

ex-ponent

T

. Fig. 3(b) shows asaling plot aording

to Eq. (8)obtainedby adjusting theparameter

T so

thatabestdataollapseisobtained. Thedataollapse

supportsthe salingbehaviorof Eq. (8) and provides

an estimate of

T

=2:2. This estimate diers

signif-iantly from the value obtained by the above

defet-thepresent, theoriginof this disrepanyis notquite

lear. It is possible that the trueasymptoti value of

T

anonlybeobtainedfromthedefet-energysaling

formuhlargersystemsizes,whihwouldrequiremore

auratedetermination oftheground-stateenergy.

0.1

1

1E-3

0.01

0.1

1

f = 1/2 D = 0.75

T=0.5

T=0.4

T=0.3

T=0.25

T=0.2

E/J

J

0.1

1

10

100

0.1

1

10

100

( b )

( a )

f = 1/2 D=0.75

ν

T

= 2.2 E

b

= 1.1

1 + ν

T

T=0.5

T=0.4

T=0.3

T=0.25

T=0.2

E /

J A ex

p(

-E

b

/T

)

J / T

Figure 3. (a) Nonlinear resistane E=J as a funtion of

temperature T for the array with random ouplings, for

D = 0:75 and system size L = 64, above the

phase-oherenethresholdD

s

. (b)Salingplotofthedatain(a)

forthelowesttemperaturesandurrentdensitiesaording

toaT =0transition.

VI. Conlusions

Theresultsofthegroundstatedefet-energy

alu-lationsanddynamialsimulationsdisussedhereshow

that disorder in two-dimensional Josephson-juntion

arrays has important eets whih show up in the

urrent-voltage harateristisas amanifestation of a

zero-temperaturesuperonduting transition. It is

in-terestingtonote that evenin theabseneof magneti

eld, arrays with random ouplings an display

sim-ilarurrent-voltage saling near perolation threshold

[26℄ and,without disorder,ifthe magnetield

orre-spondstoanirrationalfrustration[27℄. Forthediluted

and random-oupling arrays studied in this work we

ndthat,inpreseneofamagnetieldorresponding

to f = 1=2 ux quantum per plaquette and above a

(6)

exi-andallowsanestimate oftheritialdisorderandthe

thermalorrelationlengthexponentharaterizingthe

transition. Correspondingly,resistivity alulationsat

nonzerotemperatureshowsthatthelinearresistaneis

nonzerobut nonlinearbehaviorsets in at a

harater-istiurrentdensitydeterminedbythethermalritial

exponent. Sinetheritialdisorderissmallerthanthe

orresponding valueforf =0,there is arangeof

dis-order where the superonduting transition ours at

nonzero temperatures for f = 0 while it only ours

at zero temperaturefor f = 1=2. Some experimental

resultsonsuperondutingwirenetworkswith

inhomo-geneous[14℄anddilutedlinks[9℄supportthese

onlu-sions in thesense that awashingout ofthe struture

at f =n=2 (n integer) is found due to disorderwhile

thestrutureatf =nisessentiallyunaeted.

Never-theless,adetailed omparison betweentheoryand

ex-periment still awaits more aurate data and further

preditionsofmeasurablequantities.

ThisworkwassupportedbyFAPESPandCNPq.

Referenes

1. Perolation, Loalization and

Superondutiv-ity, Ed. A.M. Goldman and S.A. Wolf

(Plenum,NewYork,1984).

2. D.S. Fisher, M.P.A. Fisher, and D.A. Huse,

Phys. Rev. B43,130(1991).

3. E. Simanek, Inhomogeneous Superondutors,

(OxfordUniversityPress,NewYork,1994).

4. Artiles inPhysiaB152,(1988)andPhysia

B222,(1996).

5. R.S.Newrok,C.J.Lobb,U.Geigenmuller,M.

Otavio,SolidStatePhys. 54,263(2000).

6. E.Granato,in"Studiesofhigh-temperature

su-perondutors",E.A.B.Narlikar(NovaSiene

Publishers,NewYork,2001),Vol39,p. 149.

7. C. Ebner and d. Stroud, Phys. Rev. B 29,

5053(1983).

8. S. Johnand T.C.Lubensky,Phys. Rev. Lett.

55,1014(1985);Phys. Rev. B34,4815(1986).

9. F. Yu, A.M. Goldman, R. Rojko, C.M.

Souk-oulis, Q.Liand G.S.Grest, Phys. Rev. B42

10536(1990).

10. X.S.Ling, H.J.Leze, M.J.Higgins, J.S.Tsai,

J.Fujita,H.Numata,Y.Nakamura,Y.Ohiai,

C. Tang, P.M. Chaikin, and S. Bhataharya,

Phys. Rev. Lett. 76,2989(1996).

11. M. Tinkham, Introdution to

Superondutiv-ity,(MGraw-Hill,1975).

12. E.Fradkin,B.A.HubermanandS.H.Shenker,

Phys. Rev. B18,4789(1978).

13. E. GranatoandJ.M.Kosterlitz,Phys. Rev. B

33, 6533 (1986); Phys. Rev. Lett. 62, 823

(1989).

14. Ph. Flukiger,V.Marsio,P.K.Srivastava,Ch.

Leemann,andP.Martinoli,IEEETrans. Mag,

27, 1612(1991).

15. M.G. Forrester, H.J. Lee, M. Tinkham, and

C.J.Lob,Phys. Rev. B37,5966(1998).

16. D.C.Harris,S.T.Herbert,D.Stroud,andJ.C.

Garland,Phys. Rev. Lett. 67,3606(1991).

17. M. Benakli, E. Granato,S.R.Shenoy, andM.

Gabay,Phys. Rev. B57,10314(1998).

18. E. Granatoand D. Dom

inguez,Phys. Rev. B

63, 094507(2001).

19. R.A. Hyman, M. Wallin, M.P.A. Fisher, S.M.

Girvin, and A.P. Young, Phys. Rev. B 51,

15304(1995).

20. A.J. Bray and M.A. Moore, J. Phys. C17,

L463 (1984); W.L. MMillan, Phys. Rev. B

28, 5216(1983).

21. S.R.Shenoy,J.Phys. C18,5163(1985).

22. F.Falo,A.R. Bishop,andP.S.Londahl,Phys.

Rev. B41, 10983(1990).

23. E. Granato,Phys. Rev. B58, 11161(1998).

24. D. Domnguez, Phys. Rev. Lett. 82, 181

(1999).

25. D. Stauer and A. Aharony, Introdution to

Perolation Theory, (Taylor & Franis,

Lon-don, 1992).

26. E. Granatoand D. Domnguez,Phys. Rev. B

56, 14671(1997).

Imagem

Figure 1. (a) Finite size behavior of defet energy [E℄
Figure 2. (a) Finite size behavior of defet energy [E℄ for

Referências

Documentos relacionados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The author shows that not only is the foreign inscribed in the gaze, a gaze that cannot be reduced to the visible, but that it lies at the very heart of the human subject..

Este modelo permite avaliar a empresa como um todo e não apenas o seu valor para o acionista, considerando todos os cash flows gerados pela empresa e procedendo ao seu desconto,

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

O principal negociador de 1954, Pham Van Dong fora forçado pelos soviéticos e chineses a assinar um acordo, que, mais tarde, Mao admitiu que fora um erro (YANG, 2002). Le

Analisar a relação entre ambiente da prática de enfermagem e os resultados assistenciais, a segurança dos pacientes e o Burnout entre profissionais em unidades

Espaços informativos: cursos, palestras, seminários, workshops que se dediquem a divulgar e informar sobre os instrumentos de Resolução Alternativa de Disputas