• Nenhum resultado encontrado

ICCC 2003

N/A
N/A
Protected

Academic year: 2022

Share "ICCC 2003"

Copied!
8
0
0

Texto

(1)

ICCC 2003

IEEE International Conference on Computational Cybernetics

Siófok, Hungary

August 29-31, 2003

(2)
(3)

Fractional-Order Position/Force Control of Two Cooperating Manipulators

N. M. Fonseca Ferreira J. A. Tenreiro Machado

Institute of Engineering of Coimbra Institute of Engineering of Porto

Coimbra Polytechnic Porto Polytechnic

Dept. of Electrical Engineering, Rua Pedro Nunes - Quinta da Nora 3030-199 COIMBRA

Dept. of Electrical Engineering, Rua Dr. António Bernardino de Almeida 431 4200-072 PORTO

Portugal Portugal

nunomig@isec.pt jtm@dee.isep.ipp.pt

Abstract In this paper it is studied the implementation of fractional-order algorithms in the position/force control of two cooperating robotic manipulators. The system performance is analyzed in terms of time and frequency response for different operating conditions.

I. INTRODUCTION

Two robots carrying a common object are a logical alternative for the case in which a single robot is not able to handle the load [1 - 2]. Nevertheless, with two cooperative robots the resulting interaction forces have to be accommodated rather than rejected. Consequently, in addition to position feedback, force control is also required to accomplish the task [3 - 4].

There are two basic methods for force control, namely the hybrid position/force and the impedance schemes. The first algorithm was proposed by Raibert [4] and separates the task into two orthogonal subspaces corresponding to the force and the position subspaces. Once established the subspace decomposition two independent controllers are designed. The second algorithm was first proposed by Hogan [1]. In this method, by a proper choice of the arm impedance the interaction forces can be controlled to obtain an adequate response.

This paper studies the position/force control of two cooperative manipulators, carrying a common load, using fractional-order (FO) controllers [6 - 8].

In this line of thought the paper is organized as follows.

Section two develops a FO algorithm for the position/force control of two robotic arms. Section three presents several experiments for the system performance evaluation.

Finally, section four outlines the main conclusions.

II. POSITION FORCE CONTROL OF TWO ARMS

When two robots grasp an object (Fig. 1), and move it from one location to another, a coordinated motion is required. In order to get good performances it is necessary to specify no only the desired motion of each robot but also the corresponding handling force.

In the system under study the contact of the robot gripper with the load is modeled through a linear system with a mass M, a damping B and a stiffness K.

On the other hand, the dynamics of a robot with n links interacting with the environment is modeled as:

(q)F J G(q) ) q C(q, q H(q)

IJ T (1)

whereW is the nu 1 vector of actuator torques, q is the nu 1 vector of joint coordinates, H(q) is the nun inertia matrix,C(q,q) is the nu 1 vector of centrifugal/Coriolis terms and G(q) is the nu 1 vector of gravitational effects. The n um matrix JT(q) is the transpose of the Jacobian matrix of the robot and F is the mu 1 vector of the force that the (m-dimensional) environment exerts in the robot gripper.

Fig. 1 Two 2Rcooperating robots for the manipulation of an object with length l0 and orientation T0.

We consider 2R manipulators with dynamics given by:

»»

»»

»

¼ º

««

««

«

¬ ª

g m g m

J J

r C m

r r m r m

C r r m

r m J J C r r m

r m r m m

2 2

2 2 2 2

2 1 2 2 2 2

2 2 1 2

2 2 2 1 1 2 2 1 2

2 2 2 2 1 2 1

q 2

H (2a)

»»

¼ º

««

¬

ª

2 1 2 2 1 2

2 1 2 2 1 2 2 2 2 2 1

2 2

q S r r m

q q S r r m q S r r m

q q,

C (2b)

»¼

« º

¬

ª

12 2 2

12 2 2 1 1 2 1 1 1

C r gm

C r m C r m C r m q g

G (2c)

«¬ª »¼º

12 2 12

2

12 2 11 1 12 2 1 1

C r S

r

C r C r S r S q r

JT (2d)

whereCij = cos(qi + qj) and Sij = sin(qi + qj).

(x2,y2) y

(x1,y1)

x l0

T0

lb

Robot 1

Robot 2

(4)

Position Controller

Kinematics

xd Fd

x

W ņ

ņ

+ + +

Position Velocity

Position/Force Trajectory Planning

F

Force Controller

Object Kinematics

Forces Robots

Cp CF

The numerical values adopted for the 2R robots and the object are m1= 0.5 kg, m2= 6.25 kg, r1= 1.0 m, r2= 0.8 m, J1m= J2m= 1.0 kgm2, J1m= J2m= 4.0 kgm2 lb = l0= 1.0 m and T0= 0 deg, B1= B2= 1 Ns/m and K1= K2 = 104N/m.

The controller architecture (Fig. 3) is inspired on the impedance and compliance schemes. Therefore, we establish a cascade of force and position algorithms as internal an external feedback loops, respectively, where xd

and Fd are the payload desired position coordinates and contact forces.

Fig. 2. The position/force controller.

We adopt FO algorithms, both at the position and force control loops, namely of the type C(s)=K0sD with gain K0

and fractional order 1 < D < 1. The corresponding discrete time approximations C(z) are implemented through the 4thorder Pade equations:

n n

n n

Į

b z

b

a z

K a z C s K s

C

|

Ÿ ...

...

0 0 P P

P0 P

P (3a)

n n

n n

Į

d z

d

c z

K c z C s K s

C

|

Ÿ ...

...

0 0 F F

F0 F

F (3b)

where KPandKF are the position/force loop gains and ai,bi,ci,di, ƒ.

The FO controllers were tuned by trial and error, establishing a compromise between fast transients and large overshoots leading to the parameters KPi= 104, KFi= 104,DPi= ½,DFi=½, (i= 1, 2).

III. CONTROLLER PERFORMANCES This section analyses the system performance both in the time and the frequency domains.

A) TIME RESPONSE

We consider different working situations in order to study the effect of changing the payload mass and the contact surface between the gripper and the object.

Therefore, the parameters M, Bi and Ki (i = 1, 2) are varied shown in Table I.

In all experiments the controller sampling frequency is fc = 10 kHz for the operating point A { {x,y}{{1,1} of the object and a contact force of each gripper of {Fxi,Fyi}{{0.5,5}Nm.

0 0.5 1 1.5

-0.05 0 0.05 0.1 0.15

X(m)

Time (s)

dxd dx

0 0.5 1 1.5

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

Y(m)

Time (s)

dxd dy

0 0.5 1 1.5

-800 -600 -400 -200 0 200 400 600 800

Fx(N)

Time (s)

dxd dFx

0 0.5 1 1.5

-200 -150 -100 -50 0 50 100 150 200

Fy(N)

Time (s)

dxd dFy

Fig. 3. Time response Gx(t), Gy(t), GFx(t), GFy(t) for a reference position perturbation Gxd = 0.1 m and a payload with the parameters of case S2.

(5)

0 0.5 1 1.5 -0.015

-0.01 -0.005 0 0.005 0.01 0.015

X(m)

Time (s)

dyd dx

0 0.5 1 1.5

-0.05 0 0.05 0.1 0.15

Y(m)

Time (s)

dyd dy

0 0.5 1 1.5

-200 -150 -100 -50 0 50 100 150 200

Fx(N)

Time (s)

dyd dFx

0 0.5 1 1.5

-800 -600 -400 -200 0 200 400 600 800

Fy(N)

Time (s)

dyd dFy

Fig. 4. Time response Gx(t), Gy(t), GFx(t), GFy(t) for a reference position perturbation Gyd = 0.1 m and a payload the parameters of case S2.

0 0.5 1 1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5x 10-7

X(m)

Time (s)

dFyd dx

0 0.5 1 1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1x 10-5

Y(m)

Time (s)

dFyd dy

0 0.5 1 1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5x 10-3

Fx(N)

Time (s)

dFyd dFx

0 0.5 1 1.5

-0.05 0 0.05 0.1 0.15

Fy(N)

Time (s)

dFyd dFy

Fig. 5. Time response Gx(t), Gy(t), GFx(t), GFy(t) for a reference force perturbation GFyd = 0.1 N and a payload with the parameters of case S2

(6)

0 0.5 1 1.5 -1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1x 10-5

X(m)

Time (s)

dFxd dx

0 0.5 1 1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1x 10-6

Y(m)

Time (s)

dFxd dy

0 0.5 1 1.5

-0.05 0 0.05 0.1 0.15

Fx(N)

Time (s)

dFxd dFx

0 0.5 1 1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5x 10-3

Fy(N)

Time (s)

dFxd dFy

Fig. 6. Time response Gx(t), Gy(t), GFx(t), GFy(t) for a reference force perturbation GFxd = 0.1 N and a payload with the parameters of case S2.

Bearing this fact in mind, we introduce, separately, stepwise perturbations in the position and force references of the robot 1, namely Gxd= 0.1 m, Gyd= 0.1 m, GFxd= 0.1 N and GFyd= 0.1 N, at t= 1 sec with a duration Gt= 1 sec.

Figures 3-6 shows the resulting perturbations at the different outputs for the case S2 and Figure 7 shows the time responses for the different load parameters of Table 1.

It is clear that positioning errors increase with the contact friction Bi. Furthermore, the larger the contact stiffness Ki the smaller the position overshoot. On the other hand, the force response presents a large peak for high values of Ki/Bi, revealing differential-like behaviors.

TABLE I – The 2R robot parameters.

Simulation M (kg) Bi (Ns/m) Ki(N/m)

S1 1 10 103

S2 1 10 104

S3 1 102 103

S4 1 102 104

S5 2 10 103

S6 2 10 104

S7 2 102 103

S8 2 102 104

B) FREQUENCY RESPONSE

Based on the time response to small perturbations at the position and force references we can establish the frequency response, corresponding to linearized transfer functions around the operating point A.

Figure 8 show the frequency response of the robot 1 position and force, namely |X(Z)/Xd(Z)|, |Y(Z)/Yd(Z)|,

|Fx(Z)/Fxd(Z)| and |Fy(Z)/Fyd(Z)|. Furthermore, the charts reveal that we have a limited variation for a dramatic change on the load parameters. Therefore, we conclude that the FO algorithms reveal au adequate stability and a good robustness.

IV. CONCLUSIONS

This paper studied the position/force control of two robots working in cooperation using a fractional-order control algorithm. The dynamic performance of two arms holding an object was analyzed both in the time and the frequency domains. The results revealed that the fractional-order algorithm has a good performance and a high robustness.

V. REFERENCES

[1] N. Hogan, “Impedance control: An Approach to Manipulation, Parts I-Theory, II-Implementation, III-Applications”, ASME J. of Dynamic Systems, Measurement and Control, vol. 107, No. 1, pp. 1- 24, 1985.

[2] E. Whitney, “Historical Perspective and State of the Art in Robot Force Control”, IEEE Conf. on Robotics and Automation, St Louis, 1985.

[3] B. Siciliano and L. Villani, “Robot Force Control”, Kluwer Academic Publishers, 1999.

[4] M. H. Raibert and J. J. Craig, , “Hybrid Position/Force Control of Manipulatores”, ASME J. of Dynamic Systems, Measurement, and Control” vol. 2, No. 2, pp.126-133, vol. 1, 1981.

[5] N. M. Fonseca Ferreira and J. A. Tenreiro

(7)

Machado, “Manipulation Analysis of Two Cooperating Arms”, 10th IEEE Int. Conf. on Advanced Robotics, Budapest, Hungary, 2001.

[6] A. Oustaloup, La Commande CRONE:

Commande Robuste d’Ordre Non Entier, Editions Hermes, 1991.

[7] J. Tenreiro Machado, “Analysis and Design of

Fractional-Order Digital Control Systems”, J. of Systems Analysis, Modelling and Simulation, vol.

27, pp. 107122, 1997.

[8] I. Podlubny, “Fractional-Order Systems and PIODP-Controllers”, IEEE Trans. on Automatic Control, vol. 44, No. 1, pp. 208213, 1999.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0

0.05 0.1

X(m)

Time (s)

dxd dx (S1) dx (S2) dx (S5) dx (S6)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0

0.05 0.1

Y(m)

Time (s)

dyd dy (S1) dy (S2) dy (S5) dy (S6)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0

0.05 0.1

X(m)

Time (s)

dxd dx (S3) dx (S4) dx (S7) dx (S8)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0

0.05 0.1

Y(m)

Time (s)

dyd dy (S3) dy (S4) dy (S7) dy (S8)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Fx(N)

Time (s)

dFx dFx (S1) dFx (S2) dFx (S5) dFx (S6)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Fy(N)

Time (s)

dFy dFy (S1) dFy (S2) dFy (S5) dFy (S6)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Fx(N)

Time (s)

dFx dFx (S3) dFx (S4) dFx (S7) dFx (S8)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Fy(N)

Time (s)

dFy dFy (S3) dFy (S4) dFy (S7) dFy (S8)

Fig. 7. Time response Gx(t), Gy(t), GFx(t) and GFy(t) for reference position perturbations Gxd = 0.1 m, Gyd = 0.1 m, GFxd = 0.1 N, GFyd = 0.1 N, and a payload with the different parameters of cases S1 to S8.

(8)

10-1 100 101 102 103 104 -60

-50 -40 -30 -20 -10 0

|Fx(w)/Fxd(w)|

w(rad/s)

dFx (S3) dFx (S4) dFx (S7) dFx (S8)

10-1 100 101 102 103 104

-35 -30 -25 -20 -15 -10 -5 0 5

|x(w)/xd(w)|

w(rad/s)

dx (S1) dx (S2) dx (S5) dx (S6)

10-1 100 101 102 103 104

-35 -30 -25 -20 -15 -10 -5 0 5

|x(w)/xd(w)|

w(rad/s)

dx (S3) dx (S4) dx (S7) dx (S8)

10-1 100 101 102 103 104

-60 -50 -40 -30 -20 -10 0

|Fx(w)/Fxd(w)|

w(rad/s)

dFx (S1) dFx (S2) dFx (S5) dFx (S6)

10-1 100 101 102 103 104

-140 -120 -100 -80 -60 -40 -20 0

|Fy(w)/Fyd(w)|

w(rad/s)

dFy (S1) dFy (S2) dFy (S5) dFy (S6)

10-1 100 101 102 103 104

-35 -30 -25 -20 -15 -10 -5 0 5

|x(w)/xd(w)|

w(rad/s)

dy (S3) dy (S4) dy (S7) dy (S8)

10-1 100 101 102 103 104

-140 -120 -100 -80 -60 -40 -20 0

|Fy(w)/Fyd(w)|

w(rad/s)

dFy (S3) dFy (S4) dFy (S7) dFy (S8)

Fig. 8. Frequency response |X(Z)/Xd(Z)|, |Y(Z)/Yd(Z)|, |Fx(Z)/Fxd(Z)| and |Fy(Z)/Fyd(Z)| for reference perturbations Gxd = 0.1 m, Gyd = 0.1 m, GFxd = 0.1 N, GFyd = 0.1 N and a payload with the different parameters of cases S1 to S8.

10-1 100 101 102 103 104

-35 -30 -25 -20 -15 -10 -5 0 5

|x(w)/xd(w)|

w(rad/s)

dx (S3) dx (S4) dx (S7) dx (S8)

Referências

Documentos relacionados

Entretanto, para alguns idosos a sexualidade não é um componente que faz parte de sua vivência atual, seja por não possuírem companheiro(a), seja por não terem interesse. A

Do ponto de vista da ergonomia, a avaliação do desconforto é uma necessidade, de forma a melhorar equipamentos e a sua manipulação(26). Uma das áreas crescentes

Terra e Rodrigues (2000) apresentam um roteiro que envolve o relacionamento entre o profissional e o cliente, composto por: a) levantamento: medição do espaço a

A pesquisa teve por objetivo identificar e descrever as percepções de atores locais chave em Parintins, sobre os impactos socioambientais gerados em seu

A ausência de um amplo consenso nas ciências sociais torna o significado dos textos clássicos balizado pelos interesses contemporâneos, para além de uma

Os autores defi- nem dois eixos de mediação parental relativamente à utilização de dispositivos di- gitais no lar - o controlo parental e o entusiasmo parental (warmness em

O paradigma do conforto tanto do veículo em si, como da facilidade de condução, parecem ter sido alcançados neste modelo, que do ponto de vista da autoria, pontua a marca, como um

cinerea de diferentes hospedeiros em frutos de morangueiro; através do isolado mais agressivo, avaliar a influência da concentração de inóculo 103, 104, 105, 106, e 107