• Nenhum resultado encontrado

High-level phylogeographic structuring of Neoleucinodes elegantalis Guenée (Lepidoptera, Crambridae) in Brazil: an important tomato pest

N/A
N/A
Protected

Academic year: 2021

Share "High-level phylogeographic structuring of Neoleucinodes elegantalis Guenée (Lepidoptera, Crambridae) in Brazil: an important tomato pest"

Copied!
5
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Systematics,

Morphology

and

Biogeography

High-level

phylogeographic

structuring

of

Neoleucinodes

elegantalis

Guenée

(Lepidoptera,

Crambridae)

in

Brazil:

an

important

tomato

pest

André

V.

P.

Maia

a

,

Cícero

Almeida

b,∗

,

Kleber

R.

Santoro

c

,

João

L.

A.

Melo

c

,

José

V.

Oliveira

a

,

Raul

N.

C.

Guedes

d

,

César

A.

Badji

c

aUniversidadeFederalRuraldePernambuco,DepartamentodeAgronomia,Recife,PE,Brazil

bUniversidadeFederaldeAlagoas,LaboratóriodeRecursosGenéticos,Arapiraca,AL,Brazil

cUniversidadeFederalRuraldePernambuco,UnidadeAcadêmicadeGaranhuns,Garanhuns,PE,Brazil

dUniversidadeFederaldeVic¸osa,DepartamentodeEntomologia,Vic¸osa,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15December2015

Accepted8March2016

Availableonline13May2016

AssociateEditor:HéctorVargas

Keywords:

Insectpest

Phylogeography

Smalltomatoborer

a

b

s

t

r

a

c

t

NeoleucinodeselegantalisisanimportanttomatopestinBrazil,occurringthroughoutthecountryand resultingineconomiclossesinagriculture.Inseveralspecies,biogeographicstudiesinBrazilindicatethe structuringofpopulations,followingtherefugemodel,withasplitbetweenthepopulationsofthe north-eastandthesoutheastregionsofBrazil.Theobjectiveofthisworkwastoanalyzethephylogeographyof N.elegantalisinBrazil,understandingitspopulationstructureandthedemographicpatterns.Larvaewere collectedfromeightlocationsthroughoutBrazil,andthemitochondrialcytochromecoxidasesubunit1 genewasanalyzed.Atotalof628bpin51individualswereobtained,showing12haplotypeswitha hap-lotypediversityof0.836.Spatialanalysisofmolecularvariance(SAMOVA)andclusteranalysisshowed twopopulations,indicatingpopulationstructuringbetweenindividualsfromthenortheast(population 1)andsoutheast(population2)regionsofBrazil.Phylogeneticanalysisindicatedthattheclades corre-spondingtothegroupsdefinedbySAMOVAhaveadivergencetimeof0.2–0.5millionyears,suggesting isolationduringclimaticeventsandaseparationofthetwopopulationscoincidingwiththepredicted refugestotheAtlanticforest.

PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Thesmalltomatoborer(NeoleucinodeselegantalisGuenée,1984, Lepidoptera:Crambridae)isapestthat hashadgreat economic impact in Brazil, Venezuela, and Colombia (Badji et al., 2003; Picanc¸oetal.,2007).Highinfestationlevelsofthispestmakethe fruitsunsuitableforconsumptionandindustrialprocessing(Badji etal.,2003; Benvengaet al.,2010;Picanc¸oet al.,2007).Losses resultingfromthedamagecanbeashighas90%ofthetotal pro-duction(Mirandaetal.,2005).

InBrazil,N.elegantalisisdistributedthroughoutthecountry, associatedwithhumanmigrationsintomato-producingregions. It extends from the cold regions of the southeast to the dry regionsofthenortheast,particularlyinareasofdryseasonalforests (Caatinga).These regions showdifferences in climate, topogra-phy,floristiccomposition,anddemographiceventsthatcanmodel thepopulationstructureofN.elegantalis.N.elegantalishasbeen

∗ Correspondingauthor.

E-mail:cicerocarlos@pesquisador.cnpq.br(C.Almeida).

controlledwiththeuseofchemical insecticidesand behavioral controlsusing sex pheromones (Badji et al., 2003).In controls usingsexpheromones,populationstructuringisveryimportantin determiningthespecificityofthepheromonetypes.Forexample, avariationincuticularhydrocarbonsassociatedwith geographi-caldistance(Bonellietal.,2015)wasdetectedinPolistesbiglumis (Hymenoptera:Vespidae).InN.elegantalis,unpublisheddata sug-gestthatpheromoneshavedifferenteffectsonthepopulationsof thesoutheastandthenortheastofBrazil,indicatingageographical associationwithpheromoneefficiency.Thesedifferencesmaybe associatedwithpopulationstructureduetotheinfluenceofclimate fluctuationsasthebiogeographicevents.

Biogeographicaleventssuchasclimatevariationsandchanges in habitat are significant factors in explaining the geographi-caldistributionofmany species,particularlyinclimacticevents in the Pleistocene. Using paleomodeling, Carnaval and Moritz (2008)showedthephylogeographiccenterofendemisminBrazil, suggesting distinct centers of endemism for different species, includingbutterflies.Thus,estimatesofthespatialdistributionof thepopulationsofN.elegantalis,includingdemographicpatterns andhistoricalpopulationparameters,enableanunderstandingof

http://dx.doi.org/10.1016/j.rbe.2016.03.004

0085-5626/PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

Phylogeographic studiesof insect species have beenconducted usingthecytochromecoxidasesubunit1(CO1)region,andithas becomeastandardizedregionfordispersionstudies.Theaimofthis studywastoanalyzethephylogeographicstructureofN.elegantalis inBrazilusingtheregionoftheCO1gene.Theresultsallowanalyze thehypothesisaboutpopulationstructuringresultingfromclimate changesthatmayhaveoccurredinthespecies,aswellas contribut-ingtoaclearerunderstandingofdistributionpatternsofspecies resultingfromsuccessiveclimaticcyclesduringthePleistocene.

Materialandmethods

SamplingandDNAextraction

Larvaewerecollectedineightlocations(51individuals) dis-tributedfromthesoutheasttothenortheastofBrazil(Fig.1).The sampleswerestoredin70%ethanolandconditionedat4◦C.Twoof thelocationswereinthesoutheast,inthestatesofSãoPauloand MinasGerais,andtheothersixlocationswereinthenortheastof Brazil,indryforestareasinthestateofPernambuco(Caatinga;map showninFig.1A).TheDNAwasextractedusingtheCTABprotocol (DoyleandDoyle,1987),quantifiedusingspectrophotometry,and analyzedforqualityusing1%agarosegel.

Amplificationandsequencing

TheregionofthemitochondrialCO1genewasamplifiedusing LepF1/LepR1 primers (Hebert et al., 2004).The reactionswere performed in a total of 50␮L, containing 5␮L reaction buffer, 1.5mMMgCl2,0.2mMdNTP,1.25UTaqDNApolymerase,0.5␮M

ofeachprimer,and100–150ngofDNA.Theamplificationwas per-formedwithaninitialdenaturationat94◦C for4min,followed by30cyclesat94◦C for40s,55◦Cfor35s,and72◦Cfor1min, andafinal extensionat74◦C for4min.ThePCRproductswere amplifiedusingaBigDye® Terminatorv3.1CycleSequencingKit (AppliedBiosystems®)inelectrophoresisina3500Genetic Ana-lyzer(AppliedBiosystemsInc.,FosterCity).

Analysisofthehaplotypes

Theforwardsequenceswereeditedusingthesoftwareprogram Mega5.2andalignedwithClustalWandMuscleimplementedin Mega5.2. Thealignmentwasperformedusingstandard adjust-mentsand manualoptimizationwhennecessary.Thehaplotype diversity(h)andnucleotidediversity(),alongwithFuandLi’s DandTajima’sDtests,werecalculatedusingDnaSP5.10.01 soft-ware(LibradoandRozas,2009).Estimateswithsignificantnegative valuesareexpectedfromtheFuandLi’sDandTajima’sDtestsin populationsthathaveundergonerecentdemographicexpansion.

Thebestadjustednucleotidesubstitutionmodelwasobtained usingthejModelTest2.1.4program(Darribaetal.,2012)tohelp selectthe molecularevolution model, and theHKY modelwas usedforposteriorphylogeneticinferenceusingBayesianAnalysis and MaximumLikelihood(ML). TheBayesiananalysiswas per-formedusingBeastv1.8.0(Drummondand Rambaut,2007)and theposteriordistributionwasapproximatedusingMarkovChain Monte Carlo (MCMC) for 50 million steps. The convergence of theparameterswascheckedusingTracer1.5software(Rambaut, 2009).Thetimetomostrecentcommonancestor(TMRCA)was calculatedassumingarelaxedmolecularclock(uncorrelated log-normal),followingtheparametersdescribedbyPapadopoulouetal. (2010):(ucld.stdev=0.2571;acoefficientofvariation=0.2609;and asubstitutionrateof0.0168permillionyearsago,Ma)(outgroup Lepidopterasp.–GenBank:JF843940).Genealogicalrelationships amongthehaplotypeswereestimatedusingthemedian-joining

1999).

Populationstructuring

Measurementsofpopulationdifferentiation(GSTandNST)were

calculatedusingDnaSP5.10.01(LibradoandRozas,2009).When theNSTestimatesweregreaterthanthoseoftheGST,

phylogeo-graphicstructuringwasassumed,withcloselyrelatedhaplotypes beingdetectedmorefrequentlyinthesameareathanremotely cor-relatedones.Thisapproachhasbeenusedinotherstudiestodetect phylogeographicalstructure(Guickingetal.,2011;Liuetal.,2012; Chiuetal.,2013).Aspatialanalysisofmolecularvariancewas con-ductedusingthespatialanalysisofmolecularvariation(SAMOVA) softwareprogram(Dupanloupetal.,2002).Thissoftwareuses sim-ulationtoidentifygroupsofpopulations(k)thataregeographically homogeneousandthosethatmaximizethedifferencesbetween groups,allowingvariationbetweenthegroups(FCT),betweenthe

locationswithineachgroup(FSC),andbetweenthelocationsin

rela-tiontothetotalsample(FST),tobeobtained.SAMOVAanalyses

wereconductedwith1000interactionsfork={2,...,8}groups. Aclusteranalysiswasconstructedusingthe“Bayesianapproach tophylogeographicclustering,”a Bayesianphylogeographicand ecologicalclustering(BPEC)package(Manolopoulouetal.,2011) implementedonRsoftware(Team,2012),usingtheparameters ds=0,maximumnumberofmigrations=5,and50millionstepsin MCMC.

Ecologicalnichemodeling

Ecological niche modeling was performed using MAXENT (Version 3.3.3k; Phillips et al., 2006). The climatic nichesused were the 19 BIOCLIM variable available in the WorldSIM data base(http://www.worldclim.org).Theenvironmentaldatacontain threedifferentperiods:bioclimlayersfortheperiodfrom1950to 2000ataresolutionof30arcs,thelastglacialmaximum(LGM; <21,000 years BP) in the climaticconditions at a resolution of 2.5arcmin,andthelastinterglacial(LIG:<120,000–140,000years BP)ataresolutionof30arcs.Toconstructtheecologicalniches, runswereconductedwiththeparametersconvergencethreshold (0.00001),maximumiterations(500),anddefaultprevalence(0.5). Thefigures wereproducedusingtheRsoftwareraster package (Team,2012).

Results

Haplotypedistributionandanalysis

TheregionoftheCO1genewassequencedin51individualsof N.elegantalis,andtheanalyzedfragmentswith628bpshowed17 polymorphicsiteswithatotalof12differenthaplotypes(Fig.1A), h=0.836±0.032 and =0.06608±0.00122. The haplotype dis-tributionshoweda cleardistinction betweenthesoutheastand northeast regionlocations in that haplotypesH6 and H10that occurred only in the populations from the southeast of Brazil, whereastheotherhaplotypesoccurredonlyinthenortheastregion (Fig.1A).Inthenortheastregionlocations,haplotypesH1andH5 occurredwithhigherfrequency,whereashaplotypesH2,H3,H9, andH12werelesscommon(Fig.1A).AccordingtotheNETWORK results,haplotypeH10hadthehighestnumberofsubstitutionsin relationtothemostfrequentlyoccurringhaplotypes(H1andH5) (Fig.1A).

Thephylogeneticanalysesshowedfourclades,twoofthem con-taininghaplotypesfromthesoutheastandtwoofthemwithonly haplotypesfromthenortheastofBrazil(Fig.1B).Theanalysisofthe

(3)

A

B

Haplotype networks H10 H2 H4 H1 H8 H6 H11 ES CM BE GA H4 H12 H2 H1 H7 H8 H5 H3 H11 H9 H6 H10

Group B

Group A

Lepidoptera sp. (JF843940) 92 94 100 100 100 0.2 substitutions/site 2.00 1.75 1.50 1.25 1.00

Million of years ago (Ma)

0.75 0.50 0.25 0.0 99 PT SJ CO SP

Haplotypes

H1 H2 H3 H4 H5 H6 H12 H11 H10 H9 H8 H7 H3 H5 H9 H7 H12

Fig.1.DistributionpatternsofhaplotypesforN.elegantalis.(A)Frequencyofhaplotypesforthecytochromecoxidasesubunit1(CO1)regionbystudysitesandthehaplotype

networkobtainedbymedian-joining.Thestudysitesareindicatedbyletters,andthesizeofthegraphicsisproportionaltothesamplesize.Thecolorscorrespondtothe

haplotypesasdescribedbythelegend:Garanhuns(GA),Petrolina(PT),Coimbra(CO),Camocim(CM),EncruzilhadadeSãoJoão(ES),SãoJosédoR.Pardo(SP),Bezerros(BE)

andSãoJoão(SJ).(B)PhylogeneticanalysisforthehaplotypesusingtheBayesianapproach.Thisanalysisshowsthetimeofdivergencebetweenthehaplotypesinmillions

ofyears(Ma)(95%confidencesareindicatedbyboldhorizontalbars)andthegroupsdefinedbySpatialAnalysisofMolecularVariance(SAMOVA).Thesupportvaluesare

estimatedwithposteriorprobabilitiesBY(hereinpercentages).

TMRCAshowedthathaplotypeH10hadadifferentiationof approx-imately0.6Ma,andhaplotypeH6ofaround0.3Mainrelationtothe otherhaplotypes(Fig.1B).

Populationstructuring

The GST estimate (0.136) was lower than the NST estimate

(0.669),indicatingpopulationstructuring.Thespatialanalysisof molecularvariance resulted in structuring of two groups, with statisticalsignificance(FCT=0.77andFST=0.78,Table1),showing

that77.12% ofthe variation wasbetweenthegroups. Group A

consisted of locations in the northeast of Brazil (Garanhuns, Petrolina,Camocim,EncruzilhadadeSãoJoão,Bezerros,andSão João) and Group B was exclusively consisted of locations in thesoutheast ofBrazil (SãoPauloeMinasGerais)(Fig.1A and

Table2).HaplotypeanalysisshowedthatforGroupA,h=0.78and =0.0026,whereasforGroupB,h=0.5and=0.0079(Table2).

Clusteranalysisusing BPECshowedthreeclusters;one with southeastlocationsandothertwowithlocationsinthenortheastof Brazil(Fig.2).However,inthisanalysisapproach,colorsrepresent theclustersand the backgroundor shadedcolors show uncer-taintyabouttherespectiveclusters.In theresultsofthisstudy,

Table1

Spatialanalysesofmolecularvariance(SAMOVA)betweentwothegroups.

Sourceofvariation d.f. Percentageofvariation p-Value Amonggroupsa 1 77.12 FCT=0.77 <0.0001

Amongpopulationwithingroups 6 1.07 FSC=0.05 <0.0001

Withinpopulations 43 21.81 FST=0.78 <0.0001

Total 50 100.00

(4)

Foreachgroupsofpopulations,haplotypediversity(h),nucleotidediversity(),FuandLi’sD,Tajima’sDandnumbersofhaplotypes.

Groups Samplesize h  Haplotypesno. FuandLi’sD Tajima’sD GroupA(GA,PT,CM,ES,BEeSJ) 42 0.78 0.0026 10 −0.95 −1.31 GroupB(COeSP) 9 0.50 0.0079 2 1.47* 1.67 Total 51 0.272 −0.58

thereisalackofclarityintermsofthetwoclustersinthe north-eastregionofBrazil;thus,theyareconsideredtogetherasasingle cluster.

Ecologicalnichemodeling

Thedistributionestimateshowsgoodspeciesdistribution rep-resentation(Fig.3).Comparingthepredictionsforthepresentand theLGM,weobserveadecreaseindistributioninthepresentwitha lossofhabitatsuggestingcontraction.Ontheotherhand, compar-ingtheLGMandLIGdistributions,theresultssuggestanexpansion ofthehabitatintheLGM.Ananalysisofthethreeecologicalniche predictionsshows anexpansionfromtheLIGtotheLGMand a retractionfromtheLGMtothepresent(Fig.3).

Fig.2. Theclusteranalysiswasbuiltusingthe“Bayesianapproachto

phylogeo-graphicclustering.”Thecolorsrepresenttheclusters,andthebackgroundorshaded

colorsindicateuncertaintyabouttherespectiveclusters.Thepointsmarkthe

samp-lingsites.

Discussion

N.elegantalishasbeenportrayedasanimportanttomatopest in Brazil,occurringthroughoutthecountrystretching fromthe southtothenorth.Itishighlyadaptabletodifferenttypesof envi-ronments,living incoldAtlanticforestregionstosemi-ariddry forestregions(Caatinga)ofthenortheastof Brazil.Accordingly, populationstudiesareextremelyimportantforunderstandingthe populationstructuresanddemographichistoryofthespecies.In thisstudy,theregionofthemitochondrialCO1genewassequenced in individuals from different locations distributed throughout Brazil for analyze the hypothesis about populationstructuring resultingfromclimatechanges,aswellascontributingtoaclearer understandingofdistributionpatternsofspeciesresulting from successiveclimaticcyclesduringthePleistocene.

Theresultsofthisstudydemonstrateaclearpopulation struc-ture, separating individuals originating in the southeast and northeastregionsof Braziland identifyingthetwopopulations. Thehaplotypesfoundinthesoutheastwerenotobservedinthe northeast nor were the haplotypes of the northeast observed in the southeast, showing that there has been no recent gene flow. This evidence is interesting because of the fact that N. elegantalisattacks thefruits,and commercializationcouldbe a dispersionfactor throughoutBrazil,which wasnot observedin thisstudy.Itispossiblethattheinsectisunabletocompleteits cycleunderfruit storageconditionsand/orthat eliminatingthe damaged fruit prior tomarketing impedes gene flow. Another explanation maybethat differences in sexpheromones hinder reproductionbetweenindividualsfromdifferentregions. Unpub-lisheddatasuggestthatbehavioralcontrolusingsexpheromonesis notmucheffectivewhenappliedtoindividualsofthesoutheastand northeastpopulations,suggesting differencesindistinct genetic groups.

The divergence time betweenthe two haplotypes from the southeast and the ten haplotypes from thenortheast of Brazil is 0.3–0.6Ma,suggesting tworefuges forthespecies.In theory, climaticfluctuationsinthePleistocenecouldhavecausedthe frag-mentationofhabitats,creatingisolatedfragmentsandresultingin refugesformanyspecies.TheresultsoftheTRMCAshowedthat cladescontaininghaplotypesofthesoutheastdivergedfrom hap-lotypesofthenortheastduringthePleistocene,indicatingthatthe populationstructureisaresultofclimaticvariations.The hypoth-esis of the emergence of refuges is validated by the resultsof ecologicalnichemodeling,inwhich thedistributionshowsthat therewasanexpansionfromtheLIGtotheLGMandacontraction fromtheLGMtothepresent,suggestingthatacontractionmay haveoccurredpriortotheLIG.

Theseparationbetweenpopulationsofthesoutheastandthe northeastofBrazilisobservedinmanystudies.Forexample,studies byMartins(2011)invertebratesshowaseparationbetween popu-lationsofthenorthandthesouthoftheAtlanticforestbetween 0.4and0.5Ma.Thecenterofendemismforbutterfliesshowsfour regions;twointhesoutheastandoneinthenortheast(stateof Pernambuco)(CarnavalandMoritz,2008).AstudyofN. elegan-talisinColombiashowsapopulationstructureassociatedwiththe AndesMountains,whichactasabarriertogeneflow(Diaz-Montilla etal.,2013),ascenariosimilartothisstudy.

(5)

20 0 –20 –40 –60 20 0 –20 –40 –60 20 0 –20 –40 –60 –100 –80 Now LGM LIG 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 –60 –40 –20 –100 –80 –60 –40 –20 –100 –80 –60 –40 –20

Fig.3.PotentialdistributionastheprobabilityofoccurrenceofN.elegantalisinthepresent(Now,0yearsBP),lastglacialmaximum(LGM;<21,000yearsBP),andlast

interglacial(LIG,120,000–140,000yearsBP).

Themovementordispersionofinsectsacrosslargegeographical distancesisveryimportanttoplantpestmanagementstrategies, includingthe identificationof breeds that couldhave different pheromonecompositionsand inwhichgeneticvariationscould differentiatethepest’sresponsetocontrolstrategies.For exam-ple,thepopulationstructureofinsectpestsenablesthedefinition ofpatternsof resistanceassociated withthegeographical envi-ronment(Labbeetal.,2005).Insectstudieshavedemonstratedan associationbetweengeneticvariationandcuticularhydrocarbon variation(Nestmaterecognitionmediator,acommonpheromone insocialinsects)(Dapportoetal.,2009;Dronnetetal.,2006).In this context,this study shows a populationstructure ofN. ele-gantalisassociatedwithgeographicaldistance.Futurestudiesare needed to study association betweeninterpopulation variation and pestcontrol strategies, suchasbehavioral and/or chemical insectcontrol,becausean understandingofdispersionpatterns andgeneticdiversityisnecessaryforeffectivecontrol,considering thattheadaptationabilityofanorganismdependsonitsgenetic variability.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TotheUniversidadeFederaldoAlagoasforthelaboratoriesand scientificsupportandtheFundac¸ãodeApoioàPesquisadeAlagoas forfundingthisproject.

References

Badji,C.A.,Eiras,A.E.,Cabrera,A.,Jaffe,K.,2003.Evaluationofsexualpheromoneof

NeoleucinodeselegantalisGuenee(Lepidoptera:Crambidae).Neotrop.Entomol. 32,221–229.

Bandelt,H.J.,Forster,P., Rohl,A.,1999. Median-joiningnetworks forinferring

intraspecificphylogenies.Mol.Biol.Evol.16,37–48.

Benvenga,S.R.,DeBortoli,S.A.,Gravena,S.,Barbosa,J.C.,2010.Monitoringthetomato

fruitborerpopulationforthecontroldecision.Hortic.Bras.28,435–440.

Bonelli,M.,Lorenzi,M.C.,Christides,J.-P.,Dupont,S.,Bagneres,A.-G.,2015.

Popula-tiondiversityincuticularhydrocarbonsandmtDNAinamountainsocialwasp. J.Chem.Ecol.41,22–31.

Carnaval,A.C.,Moritz,C.,2008.Historicalclimatemodellingpredictspatternsof

currentbiodiversityintheBrazilianAtlanticforest.J.Biogeogr.35,1187–1201.

Chiu,Y.,Bor,H.,Tan,M.,Lin,H.,Jean,C.,2013.Phylogeographyandgenetic

differen-tiationamongpopulationsofthemoonturbansnailLunellagranulataGmelin, 1791(Gastropoda:Turbinidae).Int.J.Mol.Sci.14,9062–9079.

Dapporto,L.,Liebert,A.E.,Starks,P.T.,Turillazzi,S.,2009.Therelationshipsbetween

cuticularhydrocarboncomposition,faunalassemblages,inter-islanddistance, andpopulationgeneticvariationinTuscanArchipelagowasps.Biochem.Syst. Ecol.37,341–348.

Darriba,D.,Taboada,G.L.,Doallo,R.,Posada,D.,2012.jModelTest2:moremodels,

newheuristicsandparallelcomputing.Nat.Methods9,772.

Diaz-Montilla,A.E.,Suarez-Baron,H.G.,Gallego-Sanchez,G.,Saldamando-Benjumea,

C.I.,Tohme,J.,2013.GeographicdifferentiationofColombianNeoleucinodes

elegantalis(Lepidoptera:Crambidae)haplotypes:evidenceforsolanaceaehost plantassociationandholdridgelifezonesforgeneticdifferentiation.Ann. Ento-mol.Soc.Am.106,586–597.

Doyle,J.J.,Doyle,J.L.,1987.ArapidDNAisolationprocedureforsmallquantitiesof

freshleaftissue.Phytochem.Bull.19,11–15.

Dronnet,S.,Lohou,C.,Christides,J.P.,Bagneres,A.G.,2006.Cuticularhydrocarbon

compositionreflectsgeneticrelationshipamongcoloniesoftheintroduced ter-miteReticulitermessantonensisFeytaud.J.Chem.Ecol.32,1027–1042.

Drummond,A.J.,Rambaut,A.,2007.BEAST:Bayesianevolutionaryanalysisby

samp-lingtrees.BMCEvol.Biol.,7.

Dupanloup,I.,Schneider,S.,Excoffier,L.,2002.Asimulatedannealingapproachto

definethegeneticstructureofpopulations.Mol.Ecol.11,2571–2581.

Guicking,D.,Fiala,B.,Blattner,F.R.,Slik,F.,Mohamed,M.,Weising,K.,2011.

Compar-ativechloroplastDNAphylogeographyoftwotropicalpioneertrees,Macaranga giganteaandMacarangapearsonii(Euphorbiaceae).TreeGenet.Genomes7, 573–585.

Hebert,P.D.N.,Penton,E.H.,Burns,J.M.,Janzen,D.H.,Hallwachs,W.,2004.Ten

speciesinone:DNAbarcodingrevealscrypticspeciesintheneotropicalskipper butterflyAstraptesfulgerator.Proc.Natl.Acad.Sci.U.S.A.101,14812–14817.

Labbe,P.,Lenormand,T.,Raymond,M.,2005.Ontheworldwidespreadofan

insec-ticideresistancegene:aroleforlocalselection.J.Evol.Biol.18,1471–1484.

Librado,P.,Rozas,J.,2009.DnaSPv5:asoftwareforcomprehensiveanalysisofDNA

polymorphismdata.Bioinformatics25,1451–1452.

Liu,Y.,Yang,S.,Ji,P.,Gao,L.,2012.PhylogeographyofCamelliataliensis(Theaceae)

inferredfromchloroplastandnuclearDNA:insightsintoevolutionaryhistory andconservation.BMCEvol.Biol.12,92.

Manolopoulou,I.,Legarreta,L.,Emerson,B.C.,Brooks,S.,Tavare,S.,2011.ABayesian

approachtophylogeographicclustering.InterfaceFocus1,909–921.

Martins,F.D.M.,2011.HistoricalbiogeographyoftheBrazilianAtlanticforestand

theCarnaval-MoritzmodelofPleistocenerefugia:whatdophylogeographical studiestellus?Biol.J.Linn.Soc.104,499–509.

Miranda,M.M.,Coutinho,P.M.,Zanuncio,J.C.,daSilva,E.M.,2005.Impactof

inte-gratedpestmanagementonthepopulationofleafminers,fruitborers,and naturalenemiesintomato.Cienc.Rural35,204–208.

Papadopoulou,A.,Anastasiou,I.,Vogler,A.P.,2010.Revisitingtheinsect

mitochon-drialmolecularclock:themid-Aegeantrenchcalibration.Mol.Biol.Evol.27, 1659–1672.

Phillips,S.J.,Anderson,R.P.,Schapire,R.E.,2006.Maximumentropymodelingof

speciesgeographicdistributions.Ecol.Model.190,231–259.

Picanc¸o,M.C.,Bacci,L.,Crespo,A.L.B.,Miranda,M.M.M.,Martins,J.C.,2007.Effectof

integratedpestmanagementpracticesontomatoproductionandconservation ofnaturalenemies.Agric.For.Entomol.9,327–335.

Rambaut,A.D.A.,2009.Tracerv1.5.http://tree.bio.ed.ac.uk/software/tracer/.

TeamR.C.,2012.R:ALanguageandEnvironmentforStatisticalComputing.R

Referências

Documentos relacionados

The results showed a low intra-population genetic variability in populations of maize, and high variability for the population of teosinte, suggesting that the maize populations

Na esteira deste compromisso, o Programa Tertúlias Pedagógicas Inclusivas no Pampa, promovido pelo Grupo INCLUSIVE (Grupo de Estudos e Pesquisas em Inclusão e Diversidade

ANEXO 6 – ANÁLISE DE VARIÂNCIA PARA A PORCENTAGEM DE EXPLANTES COM BROTAÇÕES, NÚMERO MÉDIO DE BROTAÇÕES POR EXPLANTE E PORCENTAGEM DE ALONGAMENTO, EM

Ed^icio majestoso, reunindo os aperfeiçoamentos mais mo demos para a prática do desporto* o Ginásio Dr# João Carlos Gastai T por si so, evidencia a grande visão do

Como vimos ao longo das Seções 2 e 3, na prescrição dos modelos análogos, perturbações acústicas em um fluido em movimento podem ser descritas por uma equação do tipo Klein-

Considerando o preço fixo do café direcionado para o mercado doméstico dado pela interação da oferta e da demanda de café em grãos internamente, tendo como referência as

Resende (2003) avaliando plantas F2 selecionadas para altos e baixos teores de acil-açúcares quanto à resistência à mosca branca e à traça do tomateiro, demonstraram o