• Nenhum resultado encontrado

Guidelines for fertilizer use in vineyards based on nutrient content of grapevine parts

N/A
N/A
Protected

Academic year: 2021

Share "Guidelines for fertilizer use in vineyards based on nutrient content of grapevine parts"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Guidelines

for

fertilizer

use

in

vineyards

based

on

nutrient

content

of

grapevine

parts

Margarida

Arrobas

,

Isabel

Q.

Ferreira,

Sara

Freitas,

João

Verdial,

M.

Ângelo

Rodrigues

MountainResearchCentre(CIMO),PolytechnicInstituteofBraganc¸a,Ap1172,5301-855Braganc¸a,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23January2014

Receivedinrevisedform14April2014 Accepted16April2014

Availableonline4May2014 Keywords:

Vitisvinifera

Tissuenutrientconcentration Tissuenutrientcontent Fertilizerrecommendation

a

b

s

t

r

a

c

t

Plantanalysisplaysamajorroleinfertilizerrecommendationsforperennialtreecropsandvines.Plant

analysis,however,doesnotquantifytherateofnutrientstoapply.Theapproachdevelopedinthiswork

takesintoaccountthecontentofthenutrientsingrapevinepartsandtheirdynamicwithintheplant

toassistintheestimationoftheamountoffertilizertoapply.Groupsofthreevineswerecutatground

levelonfourdifferentdatesfromSeptember14thtoNovember28th.Onthefirstsamplingdatethe

vineswereseparatedintotrunk,cordons,canes,leavesandclustersfordeterminationofdrymatter

contentandelementalcomposition.Onthefollowingdatesthevineswereseparatedintotheplantparts

thatwerestillpresent,sincetheclusterswereonlypresentonthefirstsamplingdateandtheleaves

onthefirsttwo.Toassessthemobilityofnutrientswithintheplant,samplesofphloemvesselsand

sawdustoftheentiretrunkweretakenaswellassamplesofchloroticandgreenleaves.Nitrogen(N),

potassium(K),phosphorus(P)andboron(B)showedmobilitywithintheplantwhereascalcium(Ca)

andmagnesium(Mg)didnot.TheremovalofnutrientsinclustersiscriticalforestimatingNandK

fertilizerrates.Clustersremoved19.9kgNha−1and28.7kgKha−1.InthecaseofN,itisalsoimportant

toassessthesystem’sabilitytorecyclethenutrientcontainedintheleavesandcaneswhichamounted

to49.4kgNha−1.Phosphorus,calciumandmagnesiumapplicationsmightnotjustifybeingtakeninto

accountintheannualfertilizationplan.Thus,theestablishmentofthefertilizationprogrammeshould

beanutrient-specificexercisewhichtakesintoaccountallsourcesofinformation,includingtargetyield

andnutrientcontentinclusters,thevineyardmanagementstrategiesinfluencingnutrientuseefficiency

fromfallenleavesandpruningsandsoiltestingandplantanalysis.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Adequate nutrition is essential for the growth and yield of grapevinesasforanycrop.Nitrogenisthemajornutrient affect-inggrapevinevigourandmustquality(Brunettoetal.,2007;Akin et al., 2012; Pérez-Álvarez et al., 2013).The addition of K can increasesgrapeyield, astheresultof increasedclusternumber andweight(AmiriandFallahi,2007).Astrongcorrelationbetween Kgrapevinenutritionalstatusandmustattributeshasalsobeen observed.ExcessKlevelsingrapeberriescanresultinahighjuice pH,withadetrimentalimpactonwinequality(Mpelasokaetal., 2003;Fogac¸aetal.,2007;AssimakopoulouandTsougrianis,2012; Cuéllaretal.,2013).

∗ Correspondingauthor.Tel.:+351273303255;fax:+351273425675. E-mailaddress:marrobas@ipb.pt(M.Arrobas).

Invines,asinothercrops,anyexcessoffertilizerusemustbe avoided.Thepriceoffertilizershasincreased,particularlythose containingNandP.ThepriceofNhasbeendirectlyinfluencedby theincreasethepriceofcrudeoil,andthepriceofPhasreflected thepriceinstabilityassociatedthefinitesupplyofphosphaterocks fromwhichPfertilizersareobtained(Smil,2001;Gilbert,2009). It shouldalsobestressedtheenvironmentalimpactpotentially associatedtotheexcessiveuseoffertilisers,particularlyofthose containingN(Powlson,1993).

Soilanalysishasbeenroutinelyusedtoassesssoilconditions forplantgrowthandtheneedforsupplementalfertilizers(Havlin etal.,2005).Chemicalsoilanalysisindicatesthepotential avail-abilityofsomenutrientsthatrootsmaytakeupunderconditions favourableforplantgrowth(Römheld,2012).Soilanalysiscanalso beinformativeconcerningpossibletoxicitiesofsaltandboron.Soil pHcanalsobeusefulinpredictingmineralnutritionalproblems. Inspiteoftheimportanceofsoilanalysisinthefertilizer recom-mendationprogrammesforannualcrops,ithaslostfavouroverthe http://dx.doi.org/10.1016/j.scienta.2014.04.016

(2)

Table1

SelectedsoilpropertiesinSeptember2012inthe0–20cmsoillayer.

Soilproperties Sand(%) 62.7 Silt(%) 19.5 Clay(%) 17.8 OrganicC(Walkley–Black)(gkg−1) 1.4 pH(Soil:water,1:2.5) 6.7 Exchangeablebasesa K(Cmolckg−1) 1.16 Na(Cmolckg−1) 0.15 Ca(Cmolckg−1) 7.51 Mg(Cmolckg−1) 4.79

Exchangeableacidity(Cmolckg−1) 0.23

Cationexchangecapacity(Cmolckg−1) 13.85

ExtractableP(mgkg−1)b 66

ExtractableK(mgkg−1)b 196

ExtractableB(mgkg−1)c 1.1

aAmmoniumacetate,pH7.

b Extractedbyammoniumlactateplusaceticacid,bufferedatpH3.7. c Boilingwaterandazomethine-Hprocedures.

yearsforperennialdeep-rootedcrops,suchasfruittreesandvines, becauseofthedifficultyindefiningwithsufficientaccuracythe rootzonesfromwhichdeep-rootingplantstakeupmostoftheir nutrients(Winkleretal.,1974;Römheld,2012).

Plantanalysisisoftenthemostreliablemethodofassessingcrop nutritionalstatus,currentlybeingthebasisofthefertilizer recom-mendationprogrammesfortreecropsandvines.Severalstudies havebeendoneinordertoestablishthemostappropriatetissue foranalysis.Leafbladeandpetiolehavebeenthemajor compet-ingones(Brunettoetal.,2007;AssimakopoulovandTsougrianis, 2012;Benitoetal.,2013).Althoughthepreferenceforpetioleshas beenincreasing,leafbladeanalysiscontinuestobeused.Several differentsamplingdateshavealsobeenused.Thesamplingdate isofmajorimportance,sincetissuenutrientconcentrationsvary greatlyduringthegrowingseason(Römheld,2012).Invines,the mostpopularsamplingdatesarefloweringandveraison(Winkler etal.,1974;Porroetal.,1995;Mullinsetal.,2007;Benitoetal., 2013).Otherresearchersconsidertheissueevenmorecomplex. AccordingtoPorroetal.(1995),thechoiceofthesamplingtime shouldbemadeaccordingtothediagnosticpurpose.Benitoetal. (2013)proposedtheuseofdifferenttissuesanddifferent samp-lingdatesdependingonthenutrienttobeanalyzed.Inspiteof theeffortthathasbeenmadeinthestandardizationoftheprocess ofsampling,studieshaveshownthatnutrientconcentrationsin planttissuesfrequentlyfalloutsidetherangescurrentlyconsidered normaloradequateinpublishedstandards(Winkleretal.,1974; Davenportetal.,2012).Thegreatvariabilityinplantanalysisresults hasledtotheestablishmentofstandardsforlocalgrowing condi-tions(Porroetal.,2001;Davenportetal.,2012;García-Escudero etal.,2013),importantcommercialcultivars(Fallahietal.,2005; García-Escuderoetal.,2013),orevenrootstock-scioncombinations (LehoczkyandKocsis,1998).However,themajorlimitationofplant analysistechnologyisitsinabilitytoprovidequantifiedratesof nutrientstobeapplied.

Theresultsofplantanalysisareusuallyinterpretedby com-paring actual data with previous established critical values or sufficiencyranges(MillsandJones,1996).Inordertoimprovethe accuracyofthediagnosisofthenutritionalstatusofcrops,other formsofinterpretationhavebeendeveloped.DRIS(Diagnosisand RecommendationIntegratedSystem)hasprobablybeenthemost popular.DRISusesratiosofnutrients,whichreducesthesensitivity oftissueanalysistoplantage(Römheld,2012).Martínetal.(2013)

establishedpreliminaryDRISnormsforleafbladeandpetiolesof TempranillocultivargraftedonRichter-110,atbothfloweringand veraison,inLaRioga,Spain.InspiteofDRIShavingbeen devel-opedbyBeaufilsin1973,andnormsforseveralcropshavingbeen

established (Summer, 1997; Beverly et al., 1984; Goh and Malakouti,1992)mostlaboratorieshavenotyetadoptedit.The majorproblemis theregionalsensitivity ofthenorms(Mackay etal.,1987).Theoutputisalsonoteasytomanage.DRISorders theelementnutrientsaccordingtotheirdegreeofdeficiency,but itdoesnotprovideinformationonthefertilizerratestoapply.

Insummary,therehasbeenabundantworkusingplantanalysis asameansofmonitoringplantnutritionalstatus.However,the effortinthequantificationoftheratesofnutrientstoapplytothe cropshasbeenmarkedlyless.Theapproachheredevelopedtriesto definethemagnitudeoffertilizerratestoapply,byestimatingthe nutrientsremovedinclustersatharvestandtakingintoaccount thecapabilityofthesystemtorecyclethenutrientscontainedin thefallenleavesandprunings.

2. Materialsandmethods

2.1. Experimentalsite

TheexperimenttookplaceintheStaApolóniafarminBraganc¸a (41.797288–6.766033)North-easternPortugal.Theregion bene-fitsfroma MediterraneanclimatewithsomeAtlanticinfluence. Meanannualtemperatureandannualprecipitationare12.3◦Cand 7583mm,respectively.ThevineyardisplantedinaeutricCambisol loamytextured.Selectedsoilpropertiesrecordedatthebeginning oftheexperimentarepresentedinTable1.

Thegrapevinesusedinthisstudywererandomlyselectedfrom anon-irrigatedvineyardofcv.ViosinhoBlancgraftedon Richter-110.Thecv.Viosinhohadmediumvigour,theclustersandberries aresmallandthepelliculeisyellowishgreen.ItisgrowninDouro ValleyinPortwineproductionandinotherregionstoproducetable wine.Thevineyard plantationdatesfrom1997.Thevineswere spacedat2.5mbetweenrowsand1.4mwithinrows(∼2860vines perhectare).ThevineyardhasbeenprunedasGuyotdouble,with anaveragecroploadof24budspervine.Theshootsweresupported bythreehorizontalwiresplacedat60,90and120cmheightfrom thesoil.Thefarmermanagedthewinterweedsbyanapplicationof aglyphosatebasedherbicidebyMarch.Theweedsemerginginthe springhaveusuallybeencontrolledbyMayusingacultivator.The fertilizationmadebythefarmerusuallyincludestheapplicationof acompoundNPKfertilizeratanapproximaterateof20kg(N,P2O5,

andK2O)ha−1localizedinanarrowstripof1mwidealongtherow.

Tocontrolfungusdiseases,namelypowderymildew(Erisiphe neca-tor)and/ordownymildew(Plasmoparaviticola),thefarmersprayed fungicides,differingintheactiveingredientandinthenumberof applicationsfromoneyeartoanother,accordingtotheregional advisorysystemforvineprotection.

2.2. Experimentalsetupandlaboratoryanalysis

Atveraison,threesamplesofleafpetiolesweretakenfromthe leavesoppositetotheclustersintheplotwherethestudywilltake placetoassessthevinenutritionalstatusatthestandardizeddate ofsampling.Atthattime,twelvegrapevinesofsimilarvigourwere markedforfurtherexperimentaluse.Thepre-selectedvineswere thereaftercutatthegroundlevelingroups ofthreedistributed overfourdifferentdatesfromharvestuntiltheleaveshave com-pletelyfallen(September14th,October16th,November2nd,and November28th).

Onallofthefoursamplingdates,theperennialstructureofthe vineswasdividedintotrunkandcordons.Samplesofsawdustwere recordedfromtheentiresectionoftrunkandcordons,after remov-ingthedeadbark,byusingahandsaw.Thesawdustwasthereafter driedat70◦Ctobeanalyzedforelementalcomposition.Alsofrom thetrunkandthecordons,samplesofthephloemvesselswere

(3)

obtained.Thedeadbarkwasfirstlyremovedandthereafter thin-nerbladesoflessthan1mmofphloemtissuewereseparatedfrom thewoodymaterial(xylem)witha sharpknife.Thesamplesof phloemvesselswerealsooven-driedat70◦Candground. Addi-tionally,intactportionsoftrunkandcordonswereoven-driedat constantweightallowingestimatingthedrymatterpercentagein thoseplantparts.

Onthetwofirstsamplingdatesthecanesweredividedinto threeparts(basal,middleandtop)andtheleaveswereseparated fromthewood.Thereafter,leavesandwoodofthethreepartswere weighedfresh.Asubsampleofeachpartwasalsoweighedfresh beingthereafteroven-dried at70◦C todeterminethedry mat-tercontentoftheplanttissues.Thesubsampleswerethereafter ground.Onthethirdandfourthsamplingdatesonlythecaneswere preparedaccordingasabove.Fewleaveswerepresentonthevines atthethirdsamplingdateandnoneatallatthefourthsampling date.

Theclusterswereweighedonthefirstdateofsampling.The clustersofeachindividualvinewerecutandweighedfresh.The rachiswasseparatedfromtheberriesandtheseedsremovedfrom theberries. Allthese three components of theclusters(rachis, seeds,pulppluspellicule)wereweighedfresh.Rachisandseeds wereoven-driedat70◦C,weigheddryandgroundandanalyzed forelementalconcentration.Thepulp(pluspellicule)wasanalyzed forfresh.Theremainingmaterialwasthereafterdriedatthesame temperaturetoallowestimationofitsdrymattercontent.

OnOctober16th,threesamplesof50chloroticandgreenleaves (blade+petiole)werecollectedfromvinessurroundingthosethat weremarkedtobeuprooted.Thechloroticandthegreenleaves werecollectedfromasimilarpositioninthecanopyfromthebasal partofthecanes.

Allthetissuesamplesabovementionedwereanalyzedfor car-bon,nitrogen,phosphorus,potassium,calcium,magnesium,boron, copper,zinc,ironandmanganeseconcentrations.Tissueanalyses wereperformedbyWalkley–Black(C),Kjeldahl(N),colorimetry (BandP),flameemissionspectrometry(K)andatomicabsorption spectrophotometry(Ca,Mg,Cu,Zn,FeandMn)methods(Walinga etal.,1989).

2.3. Statisticalanalysis

For each sampling date three vines (three replicates) were uprooted.Threereplicateswerealsotakenwhenleafpetioleswere collectedatveraisontoassesstheinitialvinenutritionalstatusand whenchloroticandgreenleavesweresampledonOctober16th. Thestandarddeviationwasthestatisticusedtoshowhowmuch variationfromtheaverageexists.

Table2

Nutrientconcentrationinleafpetioles(mean±SD)takenfromtheoppositeleaves totheclustersatveraison.

Macronutrients(gkg−1) Micronutrients(mgkg−1) Nitrogen 7.9±0.9 Boron 19.3±1.1 Phosphorus 4.0±0.4 Iron 69.4±7.5 Potassium 10.9±0.6 Manganese 45.7±6.1 Calcium 25.7±2.8 Copper 30.6±4.3 Magnesium 8.7±0.6 Zinc 32.8±5.1 3. Results

Calcium wasthemostconcentrated nutrientin leafpetioles takenatveraison(25.7gkg−1).Phosphoruswasthe macronutri-entleastabundantinleafpetioleswithanaverageconcentration of4.0gkg−1(Table2).

Atharvesttheleavesarethemostconcentratedtissuesofthe vineinN,particularlytheyoungerleavesofthetopofthecanes. Leaf N concentrations were 16.9, 18.3and 19.6gkg−1, respec-tively inbasal, middle and topleavesof thecanes(Table3).A moderatelyhighNconcentrationwasalsopresentin theseeds (14.8gkg−1).Thewoodyparts(trunk,cordonsandcanes),hadN concentrationslowerthan4gkg−1.PulpalsoshowedlowN con-centrations(4.5gkg−1)incomparisontotheothertissuesofthe vine.Phosphorus appearedinhighconcentrationsintheleaves, inparticular inthoseofthebasal partof thecanes(2.0gkg−1). Seeds(1.9gkg−1)and rachis (1.8gkg−1) arealso tissues show-ingahighconcentrationofP.RachisshowedaparticularlyhighK concentration(28.6gkg−1).Inthepulp,Kconcentrationis moder-atelyhigh(8.3gkg−1),whereasintheseedsitwasparticularlylow (2.4gkg−1).LeavesshowedKconcentrationsvaryingfrom7.6to 10.2gkg−1.Inthewoodyparts,Kconcentrationdecreasedfromthe leasttothegreaterlignifiedtissues,varyingfrom7.3to3.0gkg−1, respectively in theapex of thecane and in thetrunk.Calcium andmagnesiumconcentrationsinvinetissuesfollowedasimilar trend.Calciumwaspresentinahighconcentrationintheleaves,in particularinthoseatthebaseofthecane(30.8gkg−1).Grape clus-tershadlowCaconcentrations,particularlythepulp(1.8gkg−1). Calcium concentrations in the woody parts varied from 5.0 to 7.3gkg−1.Magnesiumconcentrationinbasalleaveswas6.4gkg−1 andinthepulp0.6gkg−1.Boronappearedinhighconcentrationsin theleaves,inparticularintheyoungerones(19.5mgkg−1). How-ever,Bconcentrationsinthecaneswerealsoappreciable,varying from16.6to19.1mgkg−1.Ingrapeclusters,Bconcentrationdid notsignificantlyvaryamongthedifferenttissues,with10.2,11.7 and12.3mgkg−1,respectivelyinpulp,seedsandrachis.Thetrunk Table3

Tissuenutrientconcentrations(mean±SD)inthedifferentplantpartsofagrapevinesampledatharvestonSeptember14th.

C N P K Ca Mg B(mgkg−1) (gkg−1) Plantpart Trunk 562.8±8.3 2.7±0.2 0.5±0.1 3.0±0.4 6.2±1.7 1.6±0.1 5.6±2.0 Cordons 563.0±4.8 3.6±0.5 0.6±0.2 3.3±0.1 7.3±1.7 1.9±0.3 8.4±0.2 Cane Basal 569.8±3.1 3.3±0.2 0.7±0.0 4.1±0.7 5.0±0.7 1.7±0.2 16.8±1.2 Middle 567.5±1.9 3.3±0.2 0.7±0.0 4.7±2.0 5.9±0.7 2.2±0.4 16.6±0.2 Top 560.7±4.7 4.0±0.4 0.8±0.2 7.3±1.5 6.5±0.8 2.9±1.0 19.1±1.2 Leaves Basal 501.6±3.4 16.9±1.0 2.0±0.3 7.6±0.7 30.8±2.0 6.4±2.4 17.7±2.2 Middle 513.3±3.2 18.3±0.7 1.7±0.3 9.0±1.0 22.9±2.3 4.7±1.6 18.7±2.3 Top 519.0±7.3 19.6±0.9 1.6±0.2 10.2±2.4 23.6±2.5 5.0±1.4 19.5±2.5 Grape Pulp 543.7±9.9 4.5±0.3 0.8±0.0 8.3±0.8 1.8±0.2 0.6±0.1 10.2±6.2 Seed 571.7±2.4 14.8±0.4 1.9±0.4 2.4±0.3 5.5±0.5 1.4±0.1 11.7±0.8 Rachis 521.4±8.4 9.1±1.4 1.8±0.5 28.6±5.5 5.9±0.5 1.4±0.4 12.3±1.8

(4)

Table4

Drymatter(DM)andtissuenutrientcontent(mean±SD)ofthedifferentplantpartsofavinesampledatharvesttimeonSeptember14th.

Plantpart DM(Mgha−1) N P K Ca Mg B(gha−1) (kgha−1) Trunks 5.1±0.8 14.3±3.6 2.8±0.9 15.5±2.8 33.4±13.1 8.4±0.9 30.5±13.3 Canes 2.3±0.7 7.7±2.2 1.6±0.5 10.8±0.7 12.9±4.6 4.8±0.8 38.6±11.2 Leaves 2.2±0.4 41.7±8.6 3.8±1.2 20.3±1.2 55.9±15.7 11.4±2.9 41.7±4.7 Clusters 3.5±0.6 19.9±3.7 3.2±0.8 28.7±2.1 8.2±1.2 2.5±0.4 36.1±17.7 Total 13.0±2.4 83.5±18.0 11.4±3.3 75.3±4.1 100.4±33.5 27.0±4.3 146.8±29.2

showedthelowestBconcentration(5.6mgkg−1)amongstallthe tissuesofthevine.

Theabovegroundpartofthevinesaccountedfor13.1Mgha−1 dry matter (DM) at harvest (Table 4). The woody parts, trunk/cordonsandcanes,accountedfor7.4Mgha−1,theleavesfor 2.2Mgha−1andclustersfor3.5Mgha−1.Thefreshweightof clus-terswas14292kgha−1.ThetotalamountsofN,P,K,Ca,MgandB thatwerefoundintheabovegroundpartofthevineswere, respec-tively,83.6,11.4,75.3,100.4,27.1kgha−1and146.9gha−1.Halfof Nintheplantwaspresentintheleaves(41.7kgha−1).Theclusters alsocontaineda significantamountofN(19.9kgha−1), whereas thewoodypartscontainedonly14.3kgha−1(trunkandcordons) and 7.7kgha−1 (canes). Phosphorus appeared more evenly dis-tributedinall tissuesthan N,although leaves(3.8kgha−1)and clusters(3.2kgha−1)containedthehighest amounts.Potassium waspresentinsignificantamountsinalltheabovegroundparts ofthevine.The clusters,however,containedthemajorportion (28.7kgKha−1)followedby theleaves(20.3kgKha−1).Calcium wasthenutrientmostabundantintheabovegroundpartofthe vine. The leaves accountedfor more than 50% of the nutrient. TheclusterswereamodestpoolofCa(8.2kgha−1),whereasthe woodyplantpartscontainedrelativelyhighamountsofthe nutri-ent(46.3kgha−1).ThedistributionofMginthevineswassimilarto thatofcalcium.Inatotalof27.1kgMgha−1,theleavesaccounted for 11.4kgha−1, the trunk/cordons plus canes for 13.2kgha−1 andtheclustersfor2.5kgha−1.Boronalsoappearedevenly dis-tributedbetweentheabovegroundpartsofthevine.Leaves,canes,

clustersandtrunk/cordonscontainedrespectively41.7,36.1,38.6 and30.5gha−1.

Inonlytwoofthefoursamplingdates(September14thand October16th),vinesstillhadleaves.LeafNconcentrationgreatly decreasedinthemonth,betweenthetwosamplingdates.The pat-ternwassimilar amongthe leavesofthe differentlocationsof thecane.Inthemiddlepartofthecane,forinstance,leafN con-centrationdecreasedfrom18.3gkg−1 to13.3gkg−1(Fig.1).Leaf Pconcentrations variedover time in a similarmannerasN. In themiddlepartofthecane,leafPconcentrationdecreasedfrom 1.7gkg−1to1.2gkg−1betweenSeptember14thandOctober16th. LeafKconcentrationvariedlittlefromSeptember14thtoOctober 16th.Meanvalueswereverycloseto10gkg−1.LeafCa concentra-tionsgreatlydifferedamongthedifferentpartsofthecaneinthe samplingofSeptember14th.Thehighervalueswerefoundinthe basalleaves(30.8gkg−1).OnOctober16th,allthethreegroupsof leavespresentedsimilarCaconcentrations,rangingfrom24.2to 26.2gkg−1.LeafMgconcentrationpresentedasimilarvariationto thatobservedtoCa.InSeptemberthevaluesrangedfrom4.7to 6.4gkg−1andinOctoberfrom4.8to5.7gkg−1.LeafB concentra-tiondecreasedfromSeptembertoOctoberinallgroupsofleaves, aswasobservedforNandP.ThevaluesinSeptemberrangedfrom 17.7to19.5gkg−1andinOctoberfrom17.1to17.6gkg−1.

Chlorotic leavesshoweda consistentdecrease in N concen-tration in comparison togreen leavescollectedfrom thesame vines.Nitrogenconcentrationingreenleaveswas11.9gkg−1and inchloroticleaves6.2gkg−1(Table5).Chloroticleavesalsoshowed

6

9

12

15

18

21

Leaf N conc. (g kg

-1

)

Basal

Middle

Top

Sep, 14 Oct, 16

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Leaf P conc. (g kg

-1

)

Basal

Middle

Top

Sep, 14 Oct, 16

6

7

8

9

10

11

12

Leaf K conc. (g kg

-1

)

Basal

Middle

Top

Sep, 14 Oct, 16

10

15

20

25

30

35

40

Leaf Ca conc. (g kg

-1

)

Basal

Middle

Top

Sep, 14 Oct, 16

3

4

5

6

7

8

9

Leaf Mg conc. (g kg

-1

)

Basal

Middle

Top

Sep, 14 Oct, 16

12

14

16

18

20

22

Leaf B conc. (g kg

-1

)

Basal

Middle

Top

Sep, 14 Oct, 16

(5)

Table5

Nutrientconcentrationsinchloroticandgreenleaves(mean±SD)collectedfromadjacentvinestothatwerecutandinsimilarpositioninthecanopyonthesamplingdate ofOctober16th.

Leaves N P K Ca Mg B(mgkg−1)

(gkg−1)

Green 11.9±1.3 1.5±0.2 10.3±0.9 26.2±2.6 5.7±1.8 18.1±1.0 Chlorotic 6.2±0.4 1.4±0.4 6.9±1.4 31.2±3.6 6.7±1.5 20.1±1.3

lowKconcentrationscomparedwithgreenleaves.RegardingleafP concentrations,therewasfoundtobeaslightdecreaseastheleaves weregettingchlorotic;forCa,MgandBaslightincreasewasfound. CaneNconcentrationsincreasedovertimefromripeninguntil late November (Fig. 2). Regarding P, it seems that there was a decrease innutrient concentrations betweenthe samplingof SeptemberandOctober,andstabilizationoraslightincreaseasthe seasonprogressedtotheautumn.TheconcentrationofKincanes followedanoppositepatterntoP.Initially,fromSeptember14thto October16th,Kconcentrationsincreasedandthereafterdecreased untillateNovember.Calcium,magnesiumandboronshowedlittle variationincanesfromharvestuntiltheendofNovember.

Wood(trunkandcordons)Nconcentrationsslightlyincreased fromSeptember14thtoOctober16th,remainingthereafterfairly constant(Fig.3).Nitrogenconcentrationsin thephloemvessels were higher than those observed in the xylem. It seems that therewasanincreaseinNconcentrationsfromSeptember14th toNovember2nd,andthereafterapronounceddecrease,whenall theleaveshadfallen.Phosphorusconcentrationsinthewooddid notsignificantlyvaryovertime.However,inthephloemvessels thetrendwassimilartothatincanes,firstshowingadecreaseand thereafteranincrease.Potassiumconcentrationsinphloemvessels andwoodpresentedasimilartrend,firstexperiencinganincrease and,onthelastsamplingdates,adecrease.Calciumand magne-siumconcentrationsinphloemvesselswerehigherthanthosein wood.Boronconcentrationsincreasedfromthefirsttothefourth samplingdatesinthewoodypartandalsointhephloemvessels. TheincreaseinBconcentrationsinthewoodypartwasprobably duealsotothepresenceofphloemtissuesinthewoodysample

whichincludedtissuefromtheentiretrunkexcludingthedead bark.

4. Discussion

Ingrapevines,ithasbeenusualtofindtissuenutrient concen-trationsoutsidethepublishedstandardrangeseveninvineyards withapparentnormalgrowth.However,thepetiolenutrient con-centrationsatveraisonherereportedwerenotgreatlydissimilar tothosefoundintheliterature(MillsandJones,1996;Fallahietal., 2005;Davenportetal.,2012;García-Escuderoetal.,2013),which suggestedthatthenutritionalstatusofthevineyardusedinthis studyiswithintheadequaterangeforthenutrientsconsidered.

LeaveswerethetissuesofthehighestNconcentrationsinthe vines.Thesamewastruefortheothernutrients,Kconcentrations inrachisbeingtheonlyexception.Nitrogenformspartofseveral cellconstituents,suchasproteins,nucleicacidsandchlorophyll, whichjustifiesitsrelativeabundanceintheleaves(Hawkesford etal.,2012).Inthiswork,nutrientconcentrationwasdeterminedin thewholeleaf(blade+petiole)fromsub-samplesincludingallthe leavesofacanesection.Asfarasweknow,therearenopublished dataanalyzingsamplesofwholevineleavestakenatharvest.Even so,recordedleafnutrientconcentrationsareofthesameorderof magnitudeasthosefoundintheliteratureforbladesoftheleaves opposite totheclusterand takenat veraison(Davenport etal., 2012;García-Escuderoetal.,2013).Previousstudieshaveshown thatgrapesarethemajorsinkforKafterberrygrowthcommences (Mpelasokaetal.,2003;Ponietal.,2003;Mullinsetal.,2007). How-ever,clusterscontainedthehighest(rachis)andthelowest(seeds)

0

1

2

3

4

5

6

C

ane

N

c

onc.

(g

k

g

-1

)

Sep,

Oct, Nov,

Nov,

14

16

02

28

0.0

0.2

0.4

0.6

0.8

1.0

Ca

ne

P

con

c.

(

g

k

g

-1

)

Sep,

Oct, Nov,

Nov

,

14

16

02

28

0

1

2

3

4

5

6

7

8

Ca

ne

K

con

c.

(g

k

g

-1

)

Sep,

Oct, Nov,

Nov,

14

16

02

28

0

1

2

3

4

5

6

7

C

ane

Ca

c

on

c.

(

g

k

g

-1

)

Sep,

Oct,

Nov,

Nov,

14 16 02 28

0

1

1

2

2

3

3

C

ane

Mg

con

c.

(

g

k

g

-1

)

Sep,

Oct, Nov,

Nov,

14

16

02

28

0

3

6

9

12

15

18

21

C

ane

B

con

c.

(

g

k

g

-1

)

Sep,

Oct, Nov, Nov

,

14

16

02

28

(6)

0

1

2

3

4

5

6

7

8

Tissue N conc. (g kg

-1

)

Wood

Phloem

Sep, Oct, Nov,Nov,

14 16 02 28

0.0

0.3

0.6

0.9

1.2

1.5

1.8

Tissue P conc. (g kg

-1

)

Wood

Phloem

Sep, Oct, Nov,Nov,

14 16 02 28

0

1

2

3

4

5

6

Tissue K conc. (g kg

-1

)

Wood

Phloem

Sep, Oct, Nov,Nov,

14 16 02 28

0

3

6

9

12

15

18

Tissue Ca conc. (g kg

-1

)

Wood

Phloem

Sep, Oct, Nov,Nov,

14 16 02 28

0

1

2

3

4

Tissue Mg conc. (g kg

-1

)

Wood

Phloem

Sep, Oct, Nov,Nov,

14 16 02 28

0

5

10

15

20

25

Tissue B conc. (mg kg

-1

)

Wood

Phloem

Sep, Oct, Nov,Nov,

14 16 02 28

Fig.3.Nutrientconcentrationsinthesawdustoftrunkandcordons(wood)andintheouterlayerofthetrunk,mainlycomposedbyphloemvessels(phloem),forfour samplingdatesfromripening,September14thtolateNovember28th.

Kconcentratedtissuesofthevine.Thepulppresentedamoderately highKconcentration.Themostplausibleexplanationforthehigh Kconcentrationintherachisistheroleofthenutrientinthe trans-portationofphotosynthatesfromleaftoberry(Mpelasokaetal., 2003;Fogac¸aetal.,2007;Hawkesfordetal.,2012).Nutrient con-centrationsinwoodyplantpartsgenerallyincreasedfromtrunk tocordonsandcanes,whichmeanthattheoldertissuesareless concentratedinessentialnutrientsthantheyoungerones.

Theclusterscontained19.9kgNha−1,representing1.4kgNper tonne of freshfruit. On average, N removed per tonne of fruit wasofsimilarmagnitudetothevaluesreportedbyMullinsetal. (2007).However,theseareverylowvalues(∼10%)ifcompared toamountsofNusuallyremovedbyannualcrops,suchasmaize andpotato,whichcanamounttomorethan200kgNha−1(Kirda etal.,2005;Badretal.,2012).Theamountsoftheothernutrients removedingrapewere3.2,28.7,8.2and2.5kgha−1and36.1gha−1, respectivelyforP,K,Ca,MgandB.Thenutrientsremovedinthe grapeareanintegrallosstothesoil–plantsystem.About50%ofN (41.7kgha−1)intheabovegroundpartofthevinewasintheleaves atharvesttime.Nitrogenintheleavescanberemobilizedtothe perennialpartsandreusedinthenextseason(White,2012). Nitro-gencanalsobelostthroughvolatilizationdirectlyfromcanopy totheatmosphere, inparticularattheend ofthegrowing sea-son(WetselaarandFarquhar,1980;EichertandFernández,2012). Nitrogenstill presentinthefallenleavescansuffer mineraliza-tioninthesoilandbetakenupbytherootsorlostthroughNH3

volatilization,leachingordenitrification.Nitrogenpresentincanes (7.7kgha−1)canfollowthesameroutesifpruningsareleftonthe ground.IfpruningsareremovedtheirNislostfromthesoil–plant system.Potassiumplaysasignificantroleinplantmetabolismbut itdoesnotintegrateorganicstructures(Hawkesfordetal.,2012). Potassiumpresentinleaves(20.3kgha−1)canberemobilizedto theperennialstructureduringsenescence,duetoitshighmobility (Mpelasokaetal.,2003;Hawkesfordetal.,2012).Otherportioncan beleacheddirectlyfromthelivingleaves(EichertandFernández, 2012)or releasedtothesoil duringthemineralization ofdead

leaves.Potassiuminthecanescanalsoreturnornottothesoil dependingonthedestinationoftheprunings.Phosphorus,calcium, magnesiumandboronpresentintheleavesandcanesamounted to5.4,68.8and16.2kgha−1and80.3gha−1.Thesenutrientswill returntothesoilsolutioninthecourseofthemineralizationofcrop residues.

Tofollowthedynamicofthenutrientsinthegrapevine, tis-suesfromdifferentplantparts, collectedat differenttimeafter grapeharvest,wereanalyzed.Thetimeof samplingwasshown toaffectleafconcentrationsofallmineralelements.Nitrogen con-centrationinvineleavesusuallydecreasesasthegrowingseason progress(Porro etal.,1995;Peuke, 2009), likelyduetodilution effectsorremobilizationtofruitsandseeds.Afterharvest,plant growthisreducedornil,andremobilizationstofruitsends.The decreaseinleafNconcentrationobservedfromSeptember14thto October16thmaybeattributedtoNremobilizationtothe peren-nialstructuresortogaseousNlossestotheatmosphere.Thelower Nconcentrationfoundinchloroticleavesincomparisontogreen leaves,wouldbetheresultofthesamephenomena.Theincrease inNconcentrationincanesandtrunkandcordonsobservedfrom September14thtoNovember2ndsupportsthethesisthatatleast partoftheNpresentinleaveswasremobilizedtoperennial struc-tures.Itiswell-knownthatremobilizationofnutrientsfromthe leavesto woody parts is a typicalfeature of perennial species beforeleafdrop(White,2012).Trunkandcordonsshoweda sud-dendecreaseinNconcentrationfromNovember2ndtoNovember 28th, which maymean that N remobilization continuedtothe roots.Previousstudieshaveshownthatingrapevine,Nreserves arelocatedpredominantlyintherootsandarecomprisedofamino acids(mostlyarginine)andproteins(Zapataetal.,2004) Phospho-rusisamobileelementwhichcanbereadilytranslocatedwithin aplant(Mullisetal.,2007;White,2012).Invineleaves, P usu-allydecreasesoverthegrowingseason(Benitoetal.,2013).The resultsofthetemporaldynamicofPinleavesshowedadecreasein leafPconcentrationfromSeptember14thtoOctober16thandalso betweengreenleavesandchloroticleaves.Thewoodyplantparts,

(7)

canesand trunk,showed minimumP concentrationin October 16th.TheseresultsseemtoindicatepossibleremobilizationofP torootsoccurredearlierintheautumnincomparisontothe remo-bilizationofN.

Potassiumischaracterizedbyhighmobilityinplantsatalllevels, withinindividualcellsorinlong-distancetransportviathexylem andphloem(Mpelasokaetal.,2003;White,2012).Potassium con-centrationintheleavesdidnotchangegreatlybetweenSeptember 14thandOctober26th.However,chloroticleavesshowed signif-icantlylowerKlevelsthangreenones.Potassiumconcentration incanesandtrunkincreasedfromSeptember14thtoOctober16th anddecreasedfromNovember2ndtoNovember28th.Inthetrunk, KconcentrationincreasedfromSeptember14thtoNovember2nd anddeceasedthereafter.Thissequenceofrecordsseemsto indi-catealaterremobilizationofKfromleavestothewoodypartsin comparisontoN.Aconcurrentorcomplementaryexplanationfor thelowKconcentrationfoundinchoroticleavesisleachingfrom thecanopy.

Therewasnogreatevidencethatsignificantremobilizationof CaandMghadoccurredfromtheleavestothewoodyplantparts. ChloroticleaveshadhigherCaandMgconcentrationsthangreen ones.Inthewoodyparts,thedynamicofCaandMgconcentrations wasalsonotrelevant.Theresultslikelyreflectthelowmobilityin thephloemofbothnutrients(White,2012).

ThereductioninleafBconcentrationoccurringfromSeptember 14thtoOctober16thwasnotconfirmedbyareductioninB con-centrationinchloroticleavesincomparisontogreenleaves.The analysis of theB in the woodyparts showedan increase in B concentrationfromSeptember14thtoNovember28th.The mobil-ityof Bin planttissuesisgenerally consideredasintermediate (White,2012).However,itseemsthatBmobilitygreatlydepends onplant species and cultivars (Brownand Shelp, 1997). Peuke (2009)reportedchangesinboronleavessimilartothatobservedto Nduringthegrowingseason.OurresultsseemtoconfirmB mobil-ityingrapevineinspiteofalackofBconcentrationmeasuredin chloroticleaves.

In a tentative estimation of the nutrient balance in a vine-yard,nutrient removal from thesystem and nutrient recycling within thesystem shouldbe taken into account. The vineyard lost1.4kgNha−1 pertonneoffreshfruit,representingatotalof ∼20kgNha−1 forthis study.Starting from∼42kgNha−1 inthe leavesatharvest, approximately50%disappearedduring senes-cence,whichmaymeanthatitwasremobilizedtotheperennial structuresand/orlostthroughvolatilizationfromthecanopy.The otherhalfpart(∼21kgNha−1)waspresentinthefallenleaves.The fateofthisNisverydifficulttopredict:itcanbelostby ammo-niavolatilizationiftheleavesundergomineralizationatthesoil surfaceandsoilpHishighor,onceinthesoil,itcanbelostby leachingordenitrification.Thegroundmanagementofthe vine-yardmayalsobeofgreat importance.Covercrops,forinstance, cancompetewiththegrapevinefortheinorganicN inthesoil (Celette et al.,2009; Celetteand Gary, 2013)reducing the effi-ciencyofNrecycling.Nitrogen in thecanes (∼8kgNha−1)may haveasimilardestinationtothatreferredtoforleavesthat min-eralizeinthesoilorarelostifthepruningsareremovedfromthe vineyard.

Thevineyardlost28.7kgKha−1intheclusters.Thisamount rep-resents∼2.0kgKha−1yr−1pertonneoffreshfruit.Ifpruningsare removed,thevineyardmayloseanother∼11kgKha−1.Potassium containedintheleaveswillreturntothesoil,whetheritisleached outfromsenescingleavesorreleasedduringthemineralization processinsoil.Potassiumdoesnotundergogaseouslossesandthe riskofKleachingfromthesoilismuchlessthanthatofN.Thus, thecomponentofrecyclingiseasiertoestablishforKthanforN.To establishanaccurateKfertilizationprogramme,itisalsonecessary toknowtheKavailabilityinthesoilandtheKnutritionalstatusof

thevineyard,sinceanyexcessinKapplicationshouldbeavoided duetothenegativeimpactinwinequality.

TheamountsofP,CaandMgremovedfromthesystemin clus-tersaresmall,andthenutrientscontainedin theleavescanbe recycledinthesoil.Therecommendationsystemshouldinvolve monitoringsoilfertilityandplantnutritionalstatusofvinesinorder todecideifanyabnormalsituationshouldbecorrected.Aregular additionofP,CaandMgshouldnotbeneeded.

TheamountofBinvolvedinplantmetabolismis verysmall. However,thereisalongexperienceofobservingsymptomsofB deficiencyinperennialcrops,suchasvine,almondandolive,inthis regionandinseveralotherpartsoftheworld.Therecommendation systemshouldconsistofmonitoringvineBnutritionalstatus.Since Bisamobileelementinthesoil,theapplicationshouldbeannual afteritisprovedthatthesoildoesnotsupplyenoughBforvine metabolism.

5. Conclusions

The establishment of a suitable fertilization programme for vineyardsmust considerdifferentstrategies for each individual nutrient.InthecaseofN,itisofparticularimportancetotakeinto accounttheamountofnutrientremovedinthefruitasiscurrently donebymostsoiltestingandplantanalysislaboratories.Thisstudy showedthatisalsoimportanttotakeintoaccounttheprobableloss ofNcontainedinleavesandcanesatharvest,whichmayrepresent alossgreaterthanthatfromfruits,dependingonhowNisrecycled withintheagrosystem.ForK,itisnotonlyimportanttoconsider theamountofnutrientremovedinfruit,butalsotheamountof Knaturallyavailableinthesoil,sincesoilscansupply consider-ableamountsofK.Potassiuminleavesisentirelyrecycledsince thenutrientdoesnotintegrateinorganicstructures,which facili-tatesitsleachingfromleavestothesoil,andalsobecauseitdoes notformvolatilecompounds.Phosphorus,calciumandmagnesium maynotjustifyyearlyapplications,butprobablyonlycorrections inspecificsituations,relatingtopHorlowPavailabilityinthesoil, sincenutrientremovalsaresmall.TheamountofBinvolvedinplant metabolism,andremovedinfruits,isverysmall.However,Bshould beappliedregularly,sinceitisamobileelementinthesoil,butonly afterithasbeendiagnosedbyplantanalysisthatthesoildoesnot supplyenoughofthiselementforplantmetabolism.

Thus, to establish an accurate fertilization programme, the decision-makingprocessshouldhaveinformationontargetyield andvineyardmanagementstrategiesinfluencingtheefficiencyof useofnutrientspresentinleavesandcanes.Datafromsoiltesting andplantanalysiscontinuestobeofparamountimportance.By integratingallsourcesofdataitwillbepossibletoprescribe fertil-izerratestoensureanadequatenutritionalstatusofvines,without potentiallydetrimentaleffectsonwinequalityorenvironmental damage.Inpractice,forarationaluseoffertilizers,nutrient-specific fertilizationplansareneeded.

Acknowledgment

SupportedbytheMountainCentre(CIMO),PolytechnicInstitute ofBraganc¸a,Portugal(PEst-OE/AGR/UI0690/2011StrategicProject –UI690–2011-2012).

References

Akin,A.,Dardeniz,A.,Ates,F.,Celik,M.,2012.Effectsofvariouscroploadsandleaf fertilizerongrapevineyieldandquality.J.PlantNutr.35,1949–1957. Amiri,M.E.,Fallahi,E.,2007.Influenceofmineralnutrientsongrowth,yield,berry

quality,andpetiolemineralnutrientconcentrationsoftablegrape.J.PlantNutr. 30,463–470.

(8)

Assimakopoulou, A., Tsougrianis, C., 2012. Correlation between yield, must attributesandnutritionalstatusofthegreekredwinegrapevarietyAgiorgitiko. J.PlantNutr.35,1022–1036.

Badr,M.A.,El-Tohamy,W.A.,Zaghloul,A.M.,2012.Yieldandwateruseefficiencyof potatogrownunderdifferentirrigationandnitrogenlevelsinanaridregion. Agric.WaterManag.110,9–15.

Benito,A.,Romero,I.,Domínguez,N.,García-Escudero,E.,Martín,I.,2013.Leafblade andpetioleanalysisfornutrientdiagnosisinVitisviniferaL.cv.Garnachatinta. Aust.J.GrapeWineRes.19,285–298.

Beverly,R.B.,Stark,J.C.,Ojala,J.C.,Embleton,T.W.,1984.Nutrientdiagnosisof Valen-ciaorangesbyDRIS.J.Am.Soc.Hort.Sci.109,649–654.

Brown,P.H.,Shelp,B.J.,1997.Boronmobilityinplants.PlantSoil193,85–101. Brunetto,G.,Ceretta,C.A.,Kaminski,J.,Melo,G.W.B.,Lourenzi,C.R.,Furlanetto,V.,

Moraes,A.,2007.Applicationofnitrogeningrapevinesinthecampaignofthe RioGrandedoSul:productivityandchemicalcharacteristicsofthegrapemust. Cienc.Rural37(2),389–393.

Celette,F.,Gary,C.,2013.Dynamicsofwaterandnitrogenstressalongthegrapevine cycleasaffectedbycovercropping.Eur.J.Agron.45,142–152.

Celette,F.,Findeling,A.,Gary,C.,2009.Competitionfornitrogeninanunfertilized intercroppingsystem:thecaseofanassociationofgrapevineandgrasscoverin aMediterraneanclimate.Eur.J.Agron.30,41–51.

Cuéllar,T.,Azeem,F.,Andrianteranagna,M.,Pascaud,F.,Verdeil,J.L.,Sentenac, H.,Zimmermann, S., Gaillard,I.,2013. Potassium transport indeveloping fleshy fruits: the grapevine inward K(+) channel VvK1.2 is activated by CIPK–CBLcomplexesandinducedinripeningberryfleshcells.PlantJ.73, 1006–1018.

Davenport,J.R.,Lunden,J.D.,Winkler,T.,2012.Winegrapetissuenutrient con-centrationsintheInlandPacificNorthwest.Commun.SoilSci.PlantAnal.43, 21–27.

Eichert,T.,Fernández,V.,2012.Uptakeandreleaseofelementsbyleavesandother aerialplantparts.In:Marschner,P.(Ed.),Marschner’sMineralNutritionof HigherPlants.AcademicPress,UK,pp.71–84.

Fallahi,E.,Shafii,B.,Stark,J.C.,Fallahi,B.,Hafez,S.L.,2005.Influenceofwinegrape cul-tivarsongrowthandleafbladeandpetiolemineralnutrients.HortTechnology 15(4),825–830.

Fogac¸a,A.O.,Daudt,C.E.,Dorneles,F.,2007.PotassiumingrapesII–analysisof peti-olesandtheircorrelationwiththepotassiumcontentofwinegrapes.Ciênc. Tecnol.Aliment.Campinas27(3),597–601.

García-Escudero,E.,Romero,I.,Benito,A.,Domínguez,N.,Martín,I.,2013. Refer-encelevelsforleafnutrientdiagnosisofcvTempranilloGrapevineintheRioja appellation.Commun.SoilSci.PlantAnal.44,645–654.

Gilbert,N.,2009.Thedisappearingnutrient.Nature461,716–718.

Goh,K.M.,Malakouti,M.J.,1992.Preliminarynitrogen,phosphorus,potassium, cal-ciumandmagnesiumDRISnormsandindicesforappleorchardsinCanterbury, NewZealand.Commun.SoilSci.PlantAnal.23,1371–1385.

Havlin,J.L.,Beaton,J.D.,Tisdale,S.L.,Nelson,W.L.,2005.SoilFertilityandFertilizers: AnIntroductiontoNutrientManagement,7thed.PearsonPrenticeHall,New Jersey,pp.515.

Hawkesford,M.,Horst,W.,Kichey,T.,Lambers,H.,Schjoerring,J.,Møller,I.S.,White, P.,2012.Functionsofmacronutrients.In:Marschner,P.(Ed.),Marschner’s Min-eralNutritionofHigherPlants.AcademicPress,UK,pp.135–189.

Kirda,C.,Topcu,S.,Kaman,H.,Ulger,A.C.,Yazici,A.,Cetin,M.,Derici,M.R.,2005. GrainyieldresponseandN-fertiliserrecoveryofmaizeunderdeficitirrigation. FieldCropRes.93,132–141.

Lehoczky,E.,Kocsis,L.,1998.Nutrientcontentofgrapevineleavesinvariousgraft combinations.Commun.SoilSci.PlantAnal.29(11–14),1983–1989. Mackay,D.C.,Carefoot,J.M.,Entz,T.,1987.EvaluationoftheDRISprocedurefor

assessingthenutritionalstatusofpotato(SolanumtuberosumL.).Commun.Soil Sci.PlantAnal.18(12),1331–1353.

Martín,I.,Benito,A.,Romero,I.,Domínguez,N.,García-Escudero,E.,2013. Prelimi-narydiagnosisandrecommendationintegratedsystemnormsforleafnutrient diagnosisofTempranillograpevineintheRiojaappellation.Commun.SoilSci. PlantAnal.44,655–667.

Mills,H.A.,JonesJr.,J.B.,1996.PlantAnalysisHandbookII.MicroMacropublishing, Athens,GA,pp.422p.

Mpelasoka,B.S.,Schachtman,D.P.,Treeby,M.T.,Thomas,M.R.,2003.Areviewof potassiumnutritioningrapevineswithspecialemphasisonberryaccumulation. Aust.J.GrapeWineRes.9,154–168.

Mullins,M.G.,Bouquet,A.,Williams,L.E.,2007.BiologyoftheGrapevine.University Press,Cambridge,UK,pp.239p.

Pérez-Álvarez,E.P.,Martínez-Vidaurre,J.M.,Martín,I.,García-Escudero,E., Pereg-rina,F.,2013.Relationshipsamongsoilnitratenitrogenandnitrogennutritional status,yieldcomponents,andmustqualityinsemi-aridvineyardsfromRioja AOC,Spain.Commun.SoilSci.PlantAnal.44,232–242.

Peuke,A.D.,2009.Nutrientcompositionofleavesandfruitjuiceofgrapevineas affectedbysoilandnitrogenfertilization.J.PlantNutr.SoilSci.172,557–564. Poni,S.,Quartieri,M.,Tagliavini,M.,2003.PotassiumnutritionofCabernet

Sauvi-gnongrapevines(VitisviniferaL.)asaffectedbyshoottrimming.PlantSoil253, 341–351.

Porro,D.,Stefanini,M.,Failla,O.,Stringari,G.,1995.Optimalleafsamplingtimein diagnosisofgrapevinenutritionalstatus.ActaHort.383,135–142.

Porro,D.,Stringari,G.,Failla,O.,Scienza,A.,2001.Thirteenyearsofleafanalysis appliedtoItalianviticulture.ActaHort.564,413–420.

Powlson,D.S.,1993.Understandingthesoilnitrogencycle.SoilUseManag.9(3), 86–94.

Römheld,V.,2012.Diagnosisofdeficiencyandtoxicityofnutrients.In:Marschner, P.(Ed.),Marschner’sMineralNutritionofHigherPlants.AcademicPress,UK,pp. 299–312.

Smil,V.,2001.EnrichingtheEarth:FritzHaber,CarlBosch,andtheTransformationof WorldFoodProduction.MassachusettsInstituteofTechnology,Massachusettes, USA,pp.338.

Summer,M.E.,1997.Applicationofbeufilsdiagnosticindicestomaizedata pub-lishedintheliteratureirrespectiveofageandconditions.PlantSoil46,359–369. Walinga,I.,vanVark,W.,Houba,V.J.G.,vanderLee,J.J.,1989.SoilandPlantAnalysis. Part7–PlantAnalysisProcedures.WageningenAgriculturalUniversity,The Netherlands,pp.263p.

Wetselaar,R.,Farquhar,G.D.,1980.Nitrogenlossesfromtopsofplants.Adv.Agron. 33,263–302.

White,P.,2012.Long-distancetransportinthexylemandphloem.In:Marschner,P. (Ed.),Marschner’sMineralNutritionofHigherPlants.AcademicPress,UK,pp. 49–70.

Winkler,A.J.,Cook,J.A.,Kliewer,W.M.,Lider,L.A.,1974.GeneralViticulture.Univ. CaliforniaPress,USA,pp.710–719.

Zapata,C.,Deléens,E.,Chaillou,S.,Magné,C.,2004.Partitioningandmobilization ofstarchandNreservesingrapevine(VitisviniferaL).J.PlantPhysiol.161, 1031–1040.

Referências

Documentos relacionados

O presente estudo desenvolveu-se com o objetivo de analisar de método de coleta de dados e a consistência de uma das ferramentas aplicadas pelo sistema de gestão da qualidade de

Table 2 - Average nutrient concentration (g kg -1 ) in mature leaves of the selected tree species from the typologies Initial, Intermediary and Advanced in Floresta do

The interaction between the factors significantly influenced the leaf and pseudostem elongation rate, the leaf appearance rate, phyllochron, number of leaves per tiller, green

Mean nutrient content (standard deviation) in green leaves (GL) and senescent leaves (SL) and nutrient retranslocation (NR) in forest tree species belonging to different

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

A fim de responder a esta pergunta, foram estabe- lecidos os seguintes objetivos: Demonstrar os serviços de saúde oferecidos pela operadora, tendo em conta o tipo de plano de saúde

Como estes três anos vieram provar, a Bósnia está a servir de balão de ensaio para testar um novo tipo de missão que combina o político com o diplomático e com o militar, está