• Nenhum resultado encontrado

Beyond technological catch-up: an empirical investigation of further innovative capability accumulation outcomes in latecomer firms with evidence from Brazil

N/A
N/A
Protected

Academic year: 2020

Share "Beyond technological catch-up: an empirical investigation of further innovative capability accumulation outcomes in latecomer firms with evidence from Brazil"

Copied!
30
0
0

Texto

(1)

Beyond

technological

catch-up:

An

empirical

investigation

of

further

innovative

capability

accumulation

outcomes

in

latecomer

firms

with

evidence

from

Brazil

Paulo

N.

Figueiredo

*

BrazilianSchoolofPublicandBusinessAdministration(EBAPE),GetulioVargasFoundation(FGV),Brazil

ARTICLE INFO JELclassification: M16 O32 Q16 Q18 Keywords:

Innovativecapabilityaccumulation Latecomerfirms

Catch-up

Competitiveperformance Brazil

ABSTRACT

This article examines outcomes thatare achievedbylatecomer firms by accumulating innovative capabilities. By drawing on fieldworkevidencefrompulpandpaperfirmsinBrazilfrom1950to 2010, it was found that (1) firms accumulated innovative capabilities that allowedthem to become world leaders in the eucalyptusforestrysegmentoftheglobalpulpandpaperindustry; (2)inadditiontotechnologicalcatch-up,theaccumulationofthese innovative capabilities resulted in outcomes that generated benefits within these firms suchas (i) implementinginventive and innovative activities, (ii) consistently improving several parametersofoperationalandenvironment-relatedperformance, and(iii)creatingvariouspatternsofcorporategrowth;and(3)these outcomeswereachievednotjustbyresearch-basedand patent-relatedcapabilitiesbutmainlybyamixofinnovativecapability levels that have varyingdegrees of noveltyand complexity for diverse technological functions.Therefore, accumulating awide rangeoftypesandlevelsofinnovativecapabilitiesdoespayofffor innovative firms, their industries and (ultimately) for their economies. By combining a novel approach to examining firm capabilities with findings from inductive fieldwork, this article generatesnewempiricalandmethodologicalinsightsforthe long-standing debateaboutinnovativecapabilities asa fundamental sourceofafirm’scompetitiveperformance.Thisarticleshoulddraw

*Correspondenceaddress:BrazilianSchoolofPublicandBusinessAdministration(EBAPE),GetulioVargasFoundation(FGV), PraiadeBotafogo,190,22253-900RiodeJaneiro,RJ,Brazil.Tel.:+5502137995742.

E-mailaddress:pnf@fgv.br.

ContentslistsavailableatScienceDirect

Journal

of

Engineering

and

Technology

Management

journalhomepage:www.elsevier.com/locate/jengtecman

0923-4748/$–seefrontmatterß2013ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.jengtecman.2013.10.008

(2)

Introduction

Thisarticlereportsonanempiricalinvestigationofoutcomesachievedbyfirmsindevelopingand emergingeconomies (knownas latecomers)that arerelated totheir accumulationof innovative capabilities.Unlikemostpreviousstudies,thisarticleexploresoutcomesinadditiontotechnological catch-up. The accumulation of innovativecapabilities has been a central topic in the study of latecomerfirmssince theearly1970swhen Cooper (1970)examined themechanismsbywhich internationaltechnology transfer influenced thelong-term accumulation of thesecapabilities in technology-importingfirmsfromdevelopingeconomies.

ResearchoninnovativecapabilitiesinlatecomerfirmsmovedforwardwiththeworkofaLatin AmericangroupledbyJorgeKatzthatinitiatedthefirstsystematicresearchprogramontheseissues inthemid-1970s.Drawingondetailedfirm-levelstudies,thisgroupunveiledsignificanttechnological capabilitiesthatpermittedfirmstoundertakediverseinnovativeactivitiesacrossdifferentindustries (for a compilation see Katz, 1987). In so doing, they challenged contemporaneous prevailing argumentsthattechnologicalactivitiesinlatecomerfirmslackedcreativityandwerebasedmerelyon theuseoftechnologygeneratedinadvancedeconomies.Thisinitiativeinfluencedtheemergenceof otherstudiesinAsia(e.g.,Belletal.,1982;Lall,1987)thateventuallygaverisetoaresearchfield devotedtounderstandingtheprocessoftechnologicalcapabilityaccumulationinlatecomerfirmsand industries(foranalyticaloverviews,seeBellandPavitt,1993;Bell,2006;BellandFigueiredo,2012). Followingtheriseofseveraldevelopingeconomiesintheearly1990s,therehavebeenasteadily growing number of studies on innovative capability accumulation in latecomer firms, including studiesonitssources,underlyinglearningmechanisms,andconsequences.However,whenstudies examinetheconsequencesofaccumulatinginnovationcapabilities,theyfocusprimarilyontheways inwhichlatecomerfirmsclosetheirinnovativecapabilitygapswiththeircounterpartsinadvanced economiesorengageintechnologicalcatch-up.Consequently,thereisapaucityofempiricalresearch onthetypesofoutcomes,otherthantechnologicalcatch-up,thatareachievedbylatecomerfirmsthat areaccumulatinginnovativecapabilities.Althoughpriorresearchsuggeststhatthemannerinwhich thesecapabilities areaccumulatedhaspositiveand/ornegativeimplications forlatecomer firms’ competitiveperformance(e.g.,Belletal.,1982;Katz,1987;Figueiredo,2002),thereisadearthof empirical studies over the past ten years that would help extend our understanding of the consequencesofinnovativecapabilityaccumulationinlatecomerfirms.

Thisstudyisintendedtocontributetofillingthisresearchgapbyexploringcertainoutcomesof innovative capability accumulation (beyond technological catch-up) that latecomer firms have achievedbydrawingoninnovativecapabilitiesaccumulatedduringtheirlifetimes.Tothatend,this articleis based on an inductivemultiple-case studyof homogenous innovativelatecomer firms utilizingfirst-handandlong-termempiricalevidencegatheredinarecursivefieldworkprocess.This studyalsobuildsonpreviousrelatedempiricalresearchoninnovativecapabilityaccumulationin latecomerfirmsandcombinesconceptualinsightsfromtheliteratureoninnovationinlatecomer firms and the strategic management literature. Thus, this article contributes to extending our understandingoftheroleofinnovativecapabilitiesasasourceoffirms’competitiveperformance.This topichasdrawntheattentionofresearchersfromdifferentresearchtraditions,includingstrategic managementandinnovativecapabilitybuildinginfirmsfromemergingeconomies.

Theremainderofthispaperisstructuredasfollows.Thesection‘‘Studybackgroundandresearch question’’presentsthestudy’sbackgroundleadingtothearticle’sresearchquestion,andthesection

the attention of managers to the importance of having a multiplicityoftypesandlevelsofcapabilitiestoachievedesired outcomes; in addition, it should encourage policy makers in developingeconomiestoadoptacomprehensiveviewof innova-tive activities and place firm-centered innovation capability accumulationatthecenterofindustrialinnovationpolicies.

(3)

‘‘Accumulationofinnovativecapabilitiesand theiroutcomesinlatecomer firms’’outlinescertain conceptualperspectivesoninnovativecapabilityaccumulationanditsoutcomesinlatecomers.The section‘‘Researchsetting’’outlinestheresearchcontext,followedbytheresearchdesignandmethods inthesection‘‘Researchdesignandmethods’’.Thesefindingsarepresentedinthesection‘‘Findings’’ anddiscussedinthesection‘‘Discussion’’.

Studybackgroundandresearchquestion

Several studies have examined latecomer firms from different industries that have attained innovative capabilities near or at the international innovation frontier, including producers of automobilesandsemiconductorsinSouthKoreaandTaiwan(e.g.,Kim,1997;SherandYang,2005); glassinMexico(e.g.,Dutre´nit,2000);consumerelectronics,telecomandtelecom-equipmentinSouth Korea,Taiwan,MalaysiaandChina(e.g.,LeeandLim,2001;AmsdenandTschang,2003;Hobdayetal., 2004;Choungetal.,2006;Fan,2006;Ariffin,2010);thin-filmtransistorliquidcrystaldisplay (TFT-LCD) panelsin Taiwan(e.g.,Zhang et al.,2008);electronics in Mexico(Iammarino et al.,2008); pharmaceuticalsinIndia(e.g.,KaleandLittle,2007);shipsinSouthKoreaandTaiwan(e.g.,Sohnetal., 2009);oilandgasinBrazil(e.g.,DantasandBell,2009;SilvestreandDalcol,2009);pulpandpaperin Brazil(e.g.,Figueiredo, 2010); metals,ceramics,composites andpolymersin Turkey(e.g.,Yoruk, 2011);andfirmslocatedinclusters(e.g.,GiulianiandBell,2005).However,latecomerfirmsmay accumulatecapabilitiesattheleveloftheinternationalproductionfrontierbutnotattheinternational innovationfrontier,suchasinthepulpandpaperindustryinIndonesia(e.g.,DijkandBell,2007). Intertwinedwiththeexaminationofinnovationcapabilityaccumulationinthesestudiesistheissue oftechnologicalcatch-upasanimmediateoutcomeofaccumulatingcapabilities.

Withrespecttofactorsinfluencingtheaccumulationofinnovativecapabilities,therehavebeen severalrelevantstudiesontheroleofunderlyinglearningmechanisms(forareviewseeBell,2006; BellandFigueiredo,2012).Otherstudieshavesoughttoexaminetheroleoffactorsotherthanlearning in latecomer firms’current capabilities (not accumulationprocess), such asfirm-specific factors, includingageandsize(e.g.,Romijn,1999),leadership(e.g.,Kim,1997),ownership(e.g.,Boehe,2007), industry-specificfactors(e.g.,JungandLee,2010)andeconomy-wideconditions(e.g.,Lall,1992;Arza, 2005).

However,inrelationtoinvestigatingtheoutcomesofinnovativecapabilityaccumulationbeyond technologicalcatch-up,therehasbeenapaucityofempiricalstudies,althoughthereareexceptions. Firm-levelstudieshavefoundthatafirm’scurrentcapabilitieshaveeitherpositivelyornegatively influenced theachievementof specificperformanceoutcomes, suchasenergy performance(e.g.,

Piccinini,1993),productivitygrowth(e.g.,Tremblay,1994),andpatents(JooandLee,2010)butdid not examineinnovativecapabilityaccumulation. Movingfurther inrelationtothesestudies and building on past research(e.g., Bell et al., 1982; Katz, 1987), Figueiredo (2002) foundinterfirm differencesincompetitiveperformancebasedonawiderangeofperformanceparametersassociated withthemannerinwhichfirmsaccumulateddifferenttypesandlevelsoftechnological(production andinnovative)capabilities.Sincetheearly2000s,therehasbeengrowingresearchinterestinthe effects of innovative capabilities on latecomer firm performance. However, both ‘innovative capability’and‘performance’havebeendefinedandmeasuredindifferentwaysinvariousstudies, whichprecludesasystematiccumulativebodyofevidenceandleadstoinconclusiveresults.

For instance, using a definitionof technological capability similar to Figueiredo’s (2002)but operationalizingthisconstructonthebasisoffirms’currentyields,Jonkeretal.(2006)foundapositive correlationbetween capabilitiesand economic performance(measured asvalueadded)in paper machinesinWestJava.Basedonacross-sectionalstudyof275firmsinTanzania,Goedhuysetal. (2008) found a weak associationbetween technological capabilities (proxiedas R&D and other innovativeactivities)andlaborproductivity.Drawingonobservationsof15firmsover15yearsinthe globalintegratedcircuitmanufacturingindustry,Bapujietal.(2011)foundthatexternalknowledge acquisitionandinnovativeactivities(measuredaspatentgrants)didnotalwaysleadtopositivefirm performance(measuredassales).Bycontrast,inasampleof215firmsintheChineseinformation technology (IT) industry, Shan and Jolly (2012) founda positive relationship among innovative capabilities (as defined in the Oslo Manual and substantiated with manager perceptions) and

(4)

innovative performance (number of commercialized products), sales performance and product competitiveness.Drawingonobservationsfrom174firmsinTaiwan’sITindustryinastudybasedon managerperceptions,ChenandTsou(2012)foundthatcustomerservicemediatestheinfluenceofIT capability on firm performance (measured by financial performance, market performance, and customersatisfaction/loyalty).

Insummary,althoughtherehavebeenmanystudiesofinnovativecapabilitiesinlatecomerfirms, mosthavefocusedonthedifferentwaysinwhichlatecomerfirmsmovefromproduction-based businessesinto progressivelyhigherlevels of innovativecapabilitiesandontheroleof certain factors—particularly learningmechanisms—in influencingprocesses of capabilityaccumulation. Studieshavepaidlessattentiontotheoutcomesattainedbylatecomerfirmsthathaveaccumulated innovativecapabilities.Thesepreviousstudiesfocusontechnologicalcatch-upasanimmediate outcome.Bybuildingonpreviousstudies,thispaperseekstocontributetofillingthisresearchgapby examiningthefollowingresearchquestion:Whatoutcomes,inadditiontotechnologicalcatch-up, do latecomer firms achieve by accumulating innovative capabilities? This article empirically addressesthisresearchquestioninfirmsoperatingintheBrazilianforestry-derivedpulpandpaper industryduringthe 1950–2010period. Priorresearch andthe technical literaturesuggest that Brazil’sforestry-derived pulp andpaper industry offers a richempirical settingfrom which to investigatethisresearchquestion(e.g.,Scott-Kemmis,1988;Dalcomuni,1997;WRI,1999;Evans andTurnbull,2004).

Accumulationofinnovativecapabilitiesandtheiroutcomesinlatecomerfirms Latecomerfirmsandinnovativecapabilities

Asopposedtotypicallateentrants,latecomerfirmsareatahistoricallydetermined—ratherthana strategicallychosen—positionoflateentrance(Mathews,2002);theyaretypicallycharacterizedbya lowlevel(orevenanabsence)ofinnovationcapabilitiesandbybeing‘initiallyimitative’,regardlessof howill-positionedtheymaybewithrespecttomarketsandtechnologysources.However,theymay movefrommerelyusingorimitatingtechnology—basedontheirlimitedinnovativecapabilities—to deeper levels of technological engagement and technological capabilities that enable them to undertakedifferenttypesofinnovativeactivities(BellandFigueiredo,2012).Afirm’stechnological capabilityreferstoastockofknowledge-relatedresourcesthatareaccumulatedinits‘humancapital’ (specialistprofessionals,knowledgebasesandskills/talentsthatareformallyandinformallyallocated within specific organizational units, projects and teams), ‘organizational’ systems (a firm’s organizationalarrangements,suchasitsroutinesandprocedures,linkages,andmanagerialsystems) and techno-physical systems (hardware,software, database,laboratories, equipment, etc.) (Katz, 1987;Lall,1992;BellandPavitt,1993;Leornard-Barton,1995;Kim,1997;Dutre´nit,2000).

Theliteraturedistinguishesbetweenproductionandinnovativecapabilities(BellandPavitt,1993, 1995).Theformerreferstothosecapabilitiestouseoroperatecurrenttechnologiesandproduction systemswithgivenlevelsofefficiency,andthelatterreferstoafirm’sabilitiestoassimilate,adaptand changecurrenttechnologiesthatenablefirmstocreatenewtechnologiesanddevelopnewproducts andprocesses(Kim,1997;Choungetal.,2000;Dutre´nit,2000).Thisanalyticaldistinctionisimportant becauselatecomerfirmsgenerallybeginastechnologyusersand/orimitators,andthisdistinction helpsdeterminewhethertheircapabilitiesgrowovertimeintomoreinnovativelevels.Althoughthis paperisconcernedwithinnovativecapabilities,thedistinctionbetweenthetwotypesofcapabilities maybeblurredinpractice,andproductioncapabilitiesmayevencontributetotheaccumulationof innovativecapabilities(Figueiredo,2002;BellandFigueiredo,2012).

Technologicalcatch-upandfurtheroutcomesfrominnovativecapabilityaccumulation

Byaccumulatingtechnologicalcapabilities,latecomerfirmsmayachievetwotypesofcatch-up (BellandFigueiredo,2012):(a)latecomerfirmsmaynarrowthegapbetweenthetechnologytheyuse inproductionandthoseofglobalindustrialleadersattheinternationalproductionfrontier,whichis calledcatch-upinproductionand(b)latecomersmaycatchupwithglobalinnovationleadersinterms

(5)

ofcapabilitiestogenerateandmanagechangeintheirtechnologiesandmaythenengagedirectlyin innovativeactivitiesattheinternationalfrontier,whichisreferredtointhisarticleastechnological catch-up.

There are different routes by which latecomer firmsachieve technological catch-up, such as followingthetechnologicalpathspreviouslypursuedbygloballeaders(technologyfollowing),skipping stagesalongthosepaths(stage-skipping)orevenbycreatingtheirownpaths(pathcreating;Leeand Lim, 2001). In thelatterroute,withwhich thisarticle isconcerned, latecomerfirms accumulate capabilitiesthat enablethemtotake differentdirectionsintechnological developmentfromthose previouslypursuedbyglobalindustryleaders.Thisaccumulationofinnovativecapabilitiesdoesnot necessarilystopatpre-determinedend-pointsoncurrenttechnological trajectories.Instead,such innovativecapabilitiesmayenablefirmstodeveloptechnologies,productsandprocessesthatare differentfromthosedevelopedbygloballeaders(BellandFigueiredo,2012),whichreflectsthefluidity of the international technological innovation frontier that can be explored by any latecomer (Figueiredo,2010).

When latecomer firms attain the capability level of undertaking world-leading innovative activities,thatis,whentheycatchuptechnologicallywithgloballeaders,theirtechnologicalbehavior becomes similar to global innovative firms from advanced economies. The latecomers become concernedwithhowtouse,sustain,andexpandtheirinnovativecapabilitiestore-buildandre-create newanddistinctivepositionsofstrategiccompetitiveadvantage,perhapsevenbychanging,oratleast addingto,theareasoftechnologywithinwhichtheyinnovate,whichisanissueofconcerninthe strategicmanagementliterature(e.g.,Pavitt,1991;Leornard-Barton,1995;EisenhardtandMartin, 2000;Teece,2007a,b).Therefore,itisimportanttodrawonthisliteraturetoexplorethisstageofthe accumulatedinnovativecapabilitiesinlatecomerfirms.Indeed,thebodiesofliteratureofcapability buildingandofstrategicmanagementseemtoconvergeonacommonconcern,i.e.,theoutcomesthat firmsachievefromtheirinnovativecapabilities.

Therefore,ontheonehand,ithasbeenarguedinthelatecomerliteraturethattheabilityoffirmsto implementinnovativeactivitiesandachievedistinctiveperformancesreflectsthenatureanddepthof theirtechnologicalcapabilities(e.g.,Dosi,1988;Lall,1992;BellandPavitt,1993).Thisargumenthas beensupported byempiricalinsightsthatshowthatfirmcapabilitiespermitinnovativeactivities (thatarenotalwaysR&D-based)tobeimplementedwithdifferingdegreesofnoveltyandcomplexity with importantpositive operational economic impacts (e.g., Enos, 1962; Hollander, 1965). Firm innovativecapabilitiesmaygeneratenotableimprovementsinoperationalperformance(e.g.,Patel and Pavitt,1994; Laestadius, 1998; Piccinini,1993; Tremblay,1994; Figueiredo, 2002)andtheir absencemightnegativelyimpactperformance(e.g.,Belletal.,1982).

Ontheotherhand,severalstudiesinthestrategicmanagementliteraturehaveassumedthat innovativecapabilitiesoperate asasourceofcompetitiveperformance.Followinginsightsfrom classicalstudies(e.g.,Penrose,1959;Chandler,1962),therehasbeenasteadilygrowingdebateover the past decades on innovative capabilities as the fundamental source of a firm’s sustainable competitiveadvantageandsuperiorperformance,whichhasbeenreflectedindifferentsubsetsof theliteraturesuchasthe‘resource-basedview’(e.g.,Peteraf,1993)andthe‘dynamiccapabilities’ perspective(e.g.,Hittetal.,2000;EisenhardtandMartin,2000;Teece,2007a;Helfatetal.,2007). However, previous studies have produced inconclusive, contradictory and inconsistentresults (ZahraandSapienza,2006;AdegbesanandRicart,2007;Helfatetal.,2007).Amongthereasonsfor thisproblem,ithasbeenargued,isthefactthatmoststudiesinthatbranchoftheliteraturehavebeen dominated by theoretical discussions, relatively weak empirical support (Newbert, 2007; Protogerou et al., 2011) and by a multiplicity of metrics for both innovative capability and performance (Coombs and Bierly, 2006). Indeed, it has been argued that there has been an overemphasisontheidiosyncraticnatureofsuchinnovativecapabilitiesandthatthesecapabilities are not a guarantee of sustainable competitive performance because firms are subject to unpredictable and uncontrolled influences from within and without (Eisenhardt and Martin, 2000;ZahraandSapienza,2006;Costaet al.,2013)—although thesestatementslack firm-level empiricalsubstantiationthemselves.Theaboveperspectivesconstituteanimportantconceptual basis that helped form the researchdesign of this study, particularly the data collection and analyticalprocessesoutlinedbelow.

(6)

Researchsetting

PulpandpaperfirmsbasedonforestryrefertoindustriesclassifiedbytheInternationalStandard IndustrialClassificationofAllEconomicActivities(ISIC)assilvicultureandotherforestryactivities (ISICclass0210)thatproducefeedstockforforest-basedmanufacturing,suchaspulpandpaper(ISIC class1701).Pulpmakingrequirestheseparationofcellulosefibersfromnon-cellulosematerialsand impurities(e.g.,lignin)tocreatewoodpulp.Papermakinginvolvesprocessessuchaspulprefiningand screening,themixingofadditives,sheetforminganddrying.Thepulpandpaperindustryis process-intensiveandnormallylarge-scale(Pavitt,1984).Forestryisconsideredpartofthepulpandpaper industry because90% of paperpulp is currentlygenerated from wood,and pulp is increasingly manufacturedinthesamecountryinwhichtheplantationsarelocated;inaddition,woodrepresents 55%oftheaveragetotalcostofmakingpulp.

Sincethe1990s,ithasbeenrecognizedthattreesthatyieldmorecellulosegenerategainsacross theentireproductionchainintheformofsavingsfromtreeharvestingandtransportation,which minimizestheexpansionofforestsandreduceseffluentwaste(Grattapaglia,2004).Afterrealizing thatthe‘pulpfactory’isactuallythetree(GrattapagliaandKirst,2008),pulpandpaperfirmshave shiftedtheireffortsfromwoodvolumetowoodquality.Theobjectiveistoreducethecubicmetersof woodnecessaryfortheproductionofonetonofpulp,i.e.,todecreasewood-specificconsumption (WSC)(GrattapagliaandKirst,2008).Usingdifferenttypesofbiotechnologicalprocesses,theseforests havebecomeanimportantsourceofbiomassandfunctionasaplatformfornewproductssuchasfiber cement,biofuels,biochemicals,bio-plastic,bio-materials,andcarbonfibers,inadditiontoservices such as CO2 sequestration (Bracelpa, 2012; www.wbcsd.com). To achieve and sustain a global

competitivepositioninthisindustry—andtotakeadvantageoftheseinnovationopportunities—firms mustmasterinnovationcapabilitiesatornearworld-leadinglevels,particularlyinplantedforestry researchthatisfocusedondevelopingnewgeneticmaterial.

In2011,Brazilrankedastheworld’sfourth-largestpulpproducer,theworld’slargestproducerof hardwoodpulp(‘eucapulp’),andtheninth-largestpaperproducer.Ofthepulpandpaperproducedin Brazil,100%isderivedfromplantedforests,whicharerenewableresources.Brazilhas2.2million hectaresoffullycertifiedplantedareaforindustrialuse.In2011,therevenuefromBrazil’spulpand paperindustryapproachedUS$17billion,yieldingexportsofUS$7.2billionandatradebalanceofUS$ 5.1billion.In2011,thisindustrygenerated128,000directjobs,575,000indirectjobsinBrazilandUS$ 1.75billionintaxes.From1970to2011,Brazil’soutputofpulpandpapergrewbyanaverageof6.8% and5.4%peryear,respectively.Duringthesameperiod,Brazil’spulpandpaperexportsincreasedby anaverageof13.6%and18.8%annually,andthevalueofsuchexportsbyanaverageof17.3%(pulp) and22.7%(paper)annually,respectively.Althoughthereare220firmsengagedinthisindustryin Brazil,sixlargepulpmakerswereresponsiblefor85%ofthepulpoutputin2010;thesefirmshave theirownforests.Thesamesixfirmsalsorepresent55%ofthepaperoutput.Thishighconcentrationof outputfromasmallnumberofintegratedfirmsistheresultofthesubstantialinvestmentinvolvedin forestryandlarge-scalemanufacturingactivities(Bracelpa,2011).

Researchdesignandmethods

Thisarticleisbasedonabroadfive-yearstudyaboutinnovativecapabilityaccumulationanditscauses andconsequencesinpulpandpaperfirmsderivedfromBrazilianforestryduringthe1950–2010period. ConsistentwithPettigrew(1990)andgiventhepaucityofempiricalworkregardingtherelationship betweentheseissues,thedecisionwasmade toundertakeaqualitativeinductivestudybasedonmultiple casestudiesandlong-termevidencefromfirms ina similarindustrial sector.Thismethodological approach is appropriate for addressing gaps in the literature and the general researchquestion; moreover,it facilitates a betterunderstanding ofwhat liesbehind a subtle and under-researched phenomenon,thedetailsandnuancesofwhichmightnotbecapturedbyothermethods,including,in particular,anaggregatedanalysisderivedfrompurelyquantitativemethods(Eisenhardt,1989;Yin, 2003). This methodological approach was implemented over three stages of fieldwork, namely exploratory,pilotandmainstages,whichinvolvedaniterativeprocessofdatacollectionandanalysis withconstantreturnstotheliteratureforconceptual clarificationin achievingsolidconstructand

(7)

internalvalidity(Eisenhardt,1989).Table1providesanoverviewofthefieldresearchprocess.During thatprocess,thisauthorworkedcloselywithtworesearchassistants.Alltheactivitiesthroughoutthe fourmajorphaseswerefarfromlinear;instead,theyweresomewhatrecursiveandintertwined. Casesselection

Therationaleforselectingthecasesforthisstudyinvolvedapurposefulchoiceoffirms(Milesand Huberman,1994)that(i)providedrelevantevidencetosubstantiatetheresearchquestionandrelated constructsand(ii)werelikelytobothgeneraterichinformationabouttheissuesunderstudyand enhancetheanalyticalgeneralizabilityofthefindings.Therefore,arelativelyhomogenoussampling

(Patton, 2002) was used that provided powerful examples of the phenomenon under study

(Siggelkow, 2007), as shown in Table 2. Certain details relative to data collection and analysis processesareprovidedintheAppendix.

Operationalizingtheresearchconstructs

Theoperationalizationoftheseresearchconstructsrequiredarecursiveprocess,includingseveral roundsofdatacollectionandanalysiswithliteratureconsultations,whichresultedintheemergence

Table1

Overviewofthefieldresearchprocess. Research

elements/ stages

Exploratory Pilot Main Post-fieldwork

Focusand purpose

Teststudyfeasibility Selectcasesandtestof interviewprotocol

Collectionofbulkofdata andimplementationof correspondentanalysis

Fulloperationalization ofconstructsanddata validation

Gettingtoknowthe technology,industry, keypotential respondentsandtips tonegotiateaccess Datasources Industryexpertsat businessassociations andrelatednon-firm organizationsand firms

Firmprofessionals (e.g.,CEOsand industrialdirectors andmanagers) Firmprofessionals (directors,managers, engineers,researchers, technicians,consultants, humanresourcesand engineering

departments,R&Dunits, labs,shop-floor,and retiredstaff)

Targetedfirm professionals

Firmarchivalrecords andpublicdocuments

Non-firmprofessionals (e.g.,universities, researchinstitutes) Firmactivitiesand events

Firmarchivalrecords Datacollection

techniquesa

8informalinterviews 13formalinterviews andfiveinformal meetings 155formalinterviews and12informal meetings Follow-up questionnaires Consultationto industryliterature Consultationwith firms’archivalrecords andpublicdocuments

Siteobservationsand tours

Doubleand triple-checksviae-mailand/ orphonecalls Consultationoffirm

archivalrecords Dataanalysis Simpledescriptionand

organizationof evidenceintoshort textsrelatedto industryandfirms Identificationof specificconstruct categories(e.g.,15–20 categoriesfor ‘outcomes’) Reductionofoverlaps andredundanciesin constructcategories(to 10–12)

Identificationoffinal constructcategories

a

(8)

ofcategories related totheresearchconstructs as follows: innovationcapabilities (asa scale of innovationcapabilitylevels)andoutcomesofinnovationcapabilityaccumulation(innovation-related performance,improvingoperationalandenvironment-relatedperformanceandpatternsofcorporate growth).

Innovativecapabilityaccumulation

In theoperationalizationoftheinnovativecapabilityconstructdevelopedduringthepastfew decades in advanced economies, assessing innovation capabilities has been mainly based on quantitativemeasuressuchasR&Dexpendituresand/orpatentgrants(HagedoornandCloodt,2003). Thesecapabilitiesmayonlybecomeusefuloncefirmshavebuiltuptheirinnovativecapabilitiestothe pointatwhichtheyinvolvemeasurableR&Dactivitiesorrecordedpatenting.Thesecapabilitiesreflect onlyafractionofafirm’sinnovativecapabilityandnoneofitwithrespecttofirmsthathaveonly non-R&D-basedinnovativecapabilities(BellandPavitt,1993;BellandFigueiredo,2012).Thelimitationof relyingononeaggregatemeasureofafirm’sinnovationcapability(e.g.,R&Dexpenditures)isthatit neglectsarangeofmixedtechnologicalactivitiesthatarenecessarytodevelopandproduceparticular products (Patel and Pavitt, 1994; Laestadius et al., 2005) and does not capture the process of technological transformation that involves a spectrum of activities rangingfrom incremental to radicaltypesthatcanhaveasignificantperformanceimpactonpulpandpaperfirms(Laestadius, 1998).

Thatlimitationhasbeenovercomebyacomprehensiveapproachthathasbeentheprimarybasisof researchinthisareasincetheearlieststudiesofinnovationcapabilitiesoflatecomerfirms,i.e.,using qualitativeassessmentsatthescaleoftechnologicalcapabilitylevels(Katz,1987;Belletal.,1982;Lall,

1992; Bell and Pavitt, 1993, 1995; Bell and Figueiredo, 2012). Such an approach has been

operationalized through a typology of approaches based on ‘revealed capability’. Rather than specificallyidentifyingcapability levelsin terms of particularquantitiesand qualities of human resources,skills,knowledgebases,etc.,suchapproacheshaveidentifiedlevelsofincreasingnovelty and significance of innovativeactivity and then inferredthat differentcapability levelsunderlie differenttypesofinnovativeactivities(BellandFigueiredo,2012).Theuseofsuchatypologycaptures whatfirmsareabletodointechnologicaltermsbyusinganuancedperspectiveofthe‘levels’of capabilitiesrequiredtoundertakeinnovativeactivitieswithdifferentdegreesofnovelty.Consistent withthenatureofthefieldevidence,thispaperdrawsonamodifiedversionofthetypologydeveloped inLall(1992)and furtherrefinedinBelland Pavitt(1995).Themodifiedversionofthistypology identifies‘levels’ofinnovativecapabilitythatrangefrom‘basic’to‘world-leading’andareconsistent withthecharacterizationofinnovationintermsofdegreesofnoveltyandcomplexityintechnological activities;thus,theselevelsareconsistentwiththeOsloManual(seeOECD,2005).

Suchatypologyhasbeenusedintensivelyandsuccessfullyinstudieswithdifferentdegreesof capability-leveldisaggregationthathavecoveredthehistoriesofcapabilitybuildingoverconsiderable timeperiods(e.g.,Dutre´nit,2000;Figueiredo,2002,2010;DantasandBell,2009)andinamuchlarger numberoffirmsovershorterperiods(e.g.,Hobdayetal.,2004;Iammarinoetal.,2008;Ariffinand Figueiredo, 2004; Ariffin, 2010; Yoruk, 2011; Peerally and Cantwell, 2012). Table 3 presents a condensedversionofthetypologyusedinthisstudy.Thefirstcolumnshowsfourlevelsofinnovative

Table2

Theselectedcases.

Selectedcases Start-upyear Ownership Businesslines

Forestry Pulp Paper

Suzano 1941 Brazilian H H H

Klabin 1945 Brazilian H H H

Rigesa 1974 Foreigner H H H

Aracruz 1967 Brazilian H H None

VCP-Jacareı´ 1988 Brazilian H H H

VCP-LuizAntonioa 1988 Brazilian None H H

a

(9)

capabilitiesthatextendfrom‘basic’to‘worldleading’,andthesecondcolumnprovidesillustrative examplesofthesecapabilitylevels.

Theapplicationofthisframeworktothisstudywasachievedafterapproximatelysixmonths’work andinvolvedseveralconsultationswithexpertsintheforestryandpulpandpaperindustries.These interactive and iterative consultations were used to adapt and validate the taxonomy to the technological specificsofthese industries. AlthoughTable3 condensesthelevels of technological capabilitiesforforestry,pulpandpaper,theoriginalframeworkthatwasappliedduringourfieldwork involvedtheuseofa specificmatrixforforestry,pulpand paper.Eachmatrixidentifiedlevels of technological capabilities for specific technological functions in forestry (silviculture, harvesting, logistics,andsocio-environmentalmanagement)andpulpandpaper(projectmanagement,processand production organization, process equipment, and product-centered). Project management in the frameworkusedhereinisequivalenttothe‘projectexecution’capabilitiesinAmsdenandHikino(1994). Outcomesofinnovativecapabilityaccumulation

Innovativeperformancereferstotheimplementationofcreativeactivitieswithconcretebenefitsfor firmsinvolving(i)implementedinventiveactivities,whicharemeasuredbythequantityandqualityof patentsand(ii)implementedinnovativeactivitiesandtheirbenefitsconsistentwithEnos(1962)and

Hollander(1965).Creativeorinnovativeactivitiesmayvaryintermsofthedegreeofinnovationin theirtechnological/market‘novelty’ortheextenttowhichtheydifferfromcurrenttechnologies, whichallowsinnovationstorangefromthosethatareclosetobeingpureimitationstothosethatare fundamentallydifferentfromanythingcurrentlyexisting(OECD,2005).Thistypeofdifferentiation hasbeenwidelyused,particularlyforinnovationanalysesoflatecomerfirms.

Operational andenvironment-related performance improvement refers totechnical performance parametersrelatedtothepulpandpaperfirmsderivedfromforestry.Throughtherecursiveprocesses ofdatacollectionandanalysisandinconsultationwithpreviousrelatedstudiesinthepulpandpaper industry(e.g.,Laestadius,1998;Dalcomuni,1997;Jonkeretal.,2006;DijkandBell,2007),thestudy identified two types ofcountry-level forestryparameters, six types of firm-levelparameters for forestry(yield,basicdensityofwood,density,cut-offage,woodvolumeperamountofpulpproduced, plantingdensity),15typesofpulpmakingparameters(e.g.,specificconsumptionofsteam,electricity, waterandfiberlosses,inadditiontoliquid,solidandaireffluents)andsixtypesofparametersfor papermaking(e.g., specificconsumption of steam, electricity,water plus industrial effluents), in additiontoproductionandcommercializationcostsofshortfiberpulp.

Patterns of corporate growth. During the data collection and analysis processes, there was a recurrenceofcategoriessuchas‘integration’,‘expansion’,‘merger/acquisition’,and‘diversification’.A consultation oftheliteratureledtoclassifying thesecategoriesunder ‘patternsofgrowth’. Prior studieshavepointedtothecontributionofinnovativecapabilitiestofirmgrowth(e.g.,Penrose,1959; Chandler,1962;AmsdenandHikino,1994;Yang,2012).BydrawingonTorres-Vargas(2006),firms’ growthpatternsaremeasuredintermsrelatedto(i)horizontalintegration,(ii)verticalintegration, and(ii)diversification,whichisfurtherdisaggregatedinto‘direct’diversificationbythefirm and

Table3

Taxonomyforassessingfirminnovativecapabilities(condensedversion). Levelsofinnovative

capabilities

Illustrativeexamplesofactivitiesthatexpressthesecapabilitylevels Worldleading Capableofundertakinginnovativeactivitiesbasedonworld-classR&Dand/or

experimentationthatadvancesthetechnologicalfrontierand/orestablishesnew directionsintheinternationaltechnologyfrontier

Advanced Capableofundertakinginnovativeactivitiesclosetothetechnologicalfrontier,withina giventechnologicaltrajectory,and/orbasedonafast-followertypeofstrategy Intermediate Capableofundertakinginnovationsthataremostlyadaptationstocurrenttechnologies,

notformalR&D,differenttypesofengineering-basedand/orcreativeexperimentation Basic Capableofundertakingminorinnovationactivitiesthataremostlyexperience-basedthat

arenoveltothefirm Productioncapabilities

(10)

‘indirect’diversification(spin-offsandspillovers).Thelattermaytaketheformofnewenterprise creationthroughtheuseofmoreorlessformallyorganizedspin-offmechanisms(BellandFigueiredo, 2012)withpositiveimplicationsforindustrialdevelopment(NelsonandPack,1999).

The recursive processes of datacollection and analysis with constant consultationswith the literatureledtothecreationofthisstudy’sconceptualframework(Fig.1).Inthecontextofthisstudy, theframeworkidentifiesatleastthreetypesofoutcomes(componentC)thatcanbeachievedby latecomersfromtheirinnovativecapabilityaccumulation(componentA)beyondtechnological catch-up (component B). This framework recognizes that achieving these outcomes may be affected indirectlyand/ordirectlybyotherfactors(componentsDandE).Suchotherfactorsremainoutsidethe scopeofthisarticle.

Findings

This section presents the article’s empirical findings. The section ‘‘Innovation capability accumulation’’presentsevidenceofaccumulatedinnovativecapabilities,andthesection‘‘Outcomes ofinnovativecapabilityaccumulation’’exploressomeoftheoutcomesthatwereachievedbythecases withaccumulatedinnovativecapabilities.Thisstudyexaminestheseissuesoveraslongaperiodas possibletocapturealargepartofthelifetimeofthesefirms(1950–2000s).

Innovationcapabilityaccumulation

In contrast withprior reports on innovativecapability buildingin latecomer firms,thecases examinedheredidnotfollowtheimitationtoinnovationpath,i.e.,atrajectorybasedonaccumulating

(11)

progressively highercapabilitiesfromproduction adaptationtoduplicativeimitation upto R&D-basedinnovation(e.g.,Kim,1997).AsdescribedinFigueiredo(2010),becauseofseveralconstraints, firmscouldnotsimplycopyrecognizedgloballeadersbutwereinsteadforcedtodeveloptechnologies more suited totheir own somewhatdifferentoperations. Thisdevelopment involved the useof differentrawmaterials(eucapulp)anddevelopinganeffectivemeanstodothis;thesefirmshadto innovateintheirdownstreampulpandpapermakingprocessesbecauseoftheinnovationsthathad developedupstreaminforestry.Thesefirmscouldnotsimplyimitatebecausetheyweredeveloping along a different trajectory; thus, the capability accumulation process of these firms can be summarized as moving fromnon-imitation to innovation.In light of theframework presented in

Table3,Table4showstheresultinglevelsofinnovativecapabilityaccumulatedbythesecasesforeach businessline.

Thefindingssuggestthattheseinnovativecapabilitiesreflectthesefirms’proprietaryresources thatunderlietheirtechnologicalleadership.Concurrently,certainfeaturesofthesecapabilitieswere commonacrossthesefirms(e.g.,commonpracticesof undertakingresearchactivities,innovative activitiesinpulpandpaperproductionprocess,etc.)thatwillbediscussedbelow.Forexample,these firmssoughttodeepentheirworld-leadinginnovativecapabilitiesbyre-organizingtheirresearch activities duringthe early2000s. For example,VCP integrated its previously dispersedresearch activitiesintotheCentreforPulpTechnologicalDevelopment,Klabinre-configureditsresearchcenter basedonareviewofroutinesandprocedures,documentationandanalyticalprocessesandAracruz mergeditsresearchonforestryandpulpandpaperintoastrongerresearchcenter.From2002to2008, along with other firms and universities under the coordination of the Brazilian Agricultural Corporation (EMBRAPA), these firms engaged in a nation-wide project called Genolyptus (the Brazilian Network of Eucalyptus Genomics Research). This project characterized the complete phenotypesrequiredtostudythefunctionsofthegenesinquestionandemployedamultidisciplinary approach involving researchers in genetics, biochemistry, molecular biology, breeding, phyto-pathology, wood technology and industrial process engineering. Theirworld-leading capabilities permittedthesefirmstoactivelycollaboratewithpartners inadvancedeconomies. Forexample, SuzanocollaboratedwiththegenomeprojectledbytheJointGenomeInstitute(JGI)intheUSby donating a germplasm base (designated as BRASUZ1) for the complete genomic sequencing of eucalyptus(Grattapaglia,2011).

Outcomesofinnovativecapabilityaccumulation Innovativeperformance

Inventiveactivities:quantityandqualityofpatents. Table5showstheevolutionofpatentsgrantedto thesefirms.Thequantityincreasedby40%inthe2000scomparedwiththe1990s.Duringthe1990s, Aracruzscoredthehighestnumberofpatentsinforestry;Suzanoreceivedthehighestnumberduring the2000s.KlabinandSuzanohadthehighestnumberofpaperpatentsovertheentireperiod.The

Table4

Levelsofinnovationcapabilityaccumulatedintheresearchedfirms. Levelsofinnovationcapability Businesslinesandfirms

Forestry Pulp Paper

Worldleading VCP-Jacareı´ VCP-Jacareı´ VCP-Jacareı´

Aracruz VCP-LuizAntonio VCP-LuizAntonio

Klabin Aracruz Klabin

Rigesa Klabin Suzano

Suzano Suzano

Advanced Allfirms Allfirms,exceptRigesa Rigesa

Intermediate Allfirms Rigesa Allfirms

Basic Allfirms Allfirms Allfirms

(12)

evidenceinTable5reflectsthetangibleoutcomeofthefirms’differenttypesandlevelsofinnovative capabilitiesandabasisforimplementinginnovativeactivities.

Implementedinnovativeactivitiesinforestryandpulpandpaper

Withrespecttoforestry,Table6contains24observationsofimplementedinnovativeactivitiesand theirrelatedbenefitsfromthe1970stothe2000s.Theworld’sfirstlarge-scalepaperproductionbased oneucalyptuspulprepresentedanimportantinnovativeactivitythatemanatedfromSuzano’snewly developedinnovativecapabilityinthe1960s,whichpavedthewayfortheintroductionofthe so-called ‘new pulp’ in the international market. The second major disruptive innovation was implementedbyAracruz(mid-1970stoearly-1980s),whichreflecteditsresearchcapabilitiesinthe

Table5

Evolutionofpatentingactivitiesinthestudyfirms. Firmsandbusiness

lines

1990s 2000s

Quantity Qualification Quantity Qualification Aracruz Forestry 7 Protectionoftreesagainst

insectsandimprovementin plantingandharvesting equipment.Methodfor preventingorcontrollingthe occurrenceofstainsonwood

3 Controlofplantsprouting,seeds andseedlingprotectionand fertilizerformulation

Pulp 9 Treatment,bleaching,refining andtestofpulp

1 Formulationofcompound appliedtopulpproduction Klabin Forestry 1 Irrigationofseedlings None

Paper 12 Refiningprocessofpulp, packagingdesigns,displaysfor packages,devicesforstacking packagesandtowelracksand papertowel

22 Packagingdesign;palletof corrugatedcardboard;display packagingdesignandproduction processofdevicesbasedon corrugatedpaper.Finishapplied totissuepaper

Rigesa Paper 5 Packagingdesign,development oftestdevicesanddevicefor absorbinggases

24 Changesindesignofpackaging, palletsandcardboardboxes. Packagingdesign

Suzano Forestry 2 Methodforgenetic

transformationofwoodytrees. Delignificationofwood

8 Changesintreecharacteristics; processofextracting hemicellulosefromwood, methodsforobtaininghybrids andmethodsofgenetic transformation

Methodforgeneticmodulation ofhemicelluloses,celluloseand uronicacidbiosynthesisinplant cellsusinggeneexpression cassettes

Paper 9 Deviceforpulpwashingand productioninaclosedsystem, packagingdesign,productionof cardboardforpharmaceutical, chemicalinputforthe productionofpaperand paperboardandtreatmentof inputsforpaperproduction

3 Treatmentprocessofthecooking liquorfromthewood,packaging andcarddesign

VCP Paper None 2 Methodofassemblinglarge

cylindricalstructures,devicefor cuttingwiresinbales

Totals 45 63

(13)

Table6

Implementedinnovativeactivitiesandrelatedbefitsintheforestrycases.

Firms Innovativeactivities !Benefits

1970–1980s

Aracruz Newprocessofeucalyptusproductionby vegetativepropagationleadingtoworld’s firstlarge-scaleeucalyptusclonalforestfor pulpandpaper

Achievementofhigherbiomassproductionper unitofplantedarea;significantimprovementsin woodquality(asindustrialrawmaterialoras energyinput);andhomogenizationofwoodfor industrialpurposes.Eucalyptuscuttings producedinintensiveclonalsystemswere40% higherthanthoseproducedthroughseeds Neweucalyptusvarietieswithreductionof

treematurationtimefromanaverageof15 yearsto6–8years

Greateradaptabilityofeucalyptustolocal environmentandreducedincidenceofpests

Klabin Implementationofthe‘MonteAlegre formula’

Improvedestimationofforestfirerisks. Disseminationofthisinnovationtootherfirms Newgeneticmaterialsinpine Greaterdiseaseresistance;higherproductivity

andbetterqualityinpapermaking Rigesa Forestbiometricsmodelsforforest

management.

Accurateassessmentprocessofavailabletreesin plantingareaandgreaterprecisioninharvest planning

1990s

Aracruz Geneticimprovementofeucalyptus Yieldincreasefrom6.4to11.8tonsofpulp/ha/ year(thenworld’shighest)withimprovedwood qualityandlowerenvironmentalimpactsof plantingprocesses

Newtechnologiesinvolvingrootingof micro-ormini-cuttingstoreplacethe clonaleucalyptusproductionwith micropropagation

Improvedrootingpotential,speed,andquality plusreductioninclonalgardenarea,reducing costsoftransportandshootscollection,improved overallplantingefficiency

Klabin Productionofpineseedlingsusingthe cuttingprocess

Theproductionprocesswasbasedonprocessed eucalyptuscutting

Somaticembryogenesisprocessforcloning inpine(laterdisseminatedtoChile)

Uniformplantationswithhigherforest productivity,lowercostsofharvestingand thereforelesspressureonnativeforests Suzano Newmethodforgenetictransformationof

eucalyptus

Attainmentoffirsttransgeniceucalyptus, creatingabasisforpotentialyieldincrease VCP Geneticimprovementprocessesthrough

eucalyptusclonalplantationsanduseof molecularmarkers

Achievementofmoreaccuratewaystoselect varietiesofeucalyptuswithhigherproductivity andresistancetopestsanddiseases

2000s

Aracruz Neweucalyptusvarietiesresistantto droughtandcold

Itpermittedtheplantingofeucalyptusinlow temperatureregionssubjecttofrost Soilconditionerproducedfromorganic

wastesanddregs

Disseminatedtootherfirms,itreplaceslimeand chemicalfertilizer

Automationoftheproductionof micro-propagatedseedlingsinbioreactors

Reductioninproductioncosts,greatersecurity andcleanlinessandpurityinobtainingseedlings withlowerlignincontents

‘Aracruzbioindex’(decision-making supporttoolforforestmanagement)

Integratedandcomparativeoverviewof productionareasinvolvingthediversityof plantedgeneticmatter,plantages,type,sizeand wateravailability,improvingforeststewardship ‘Aracruz’sPestAssessmentTool’ BetterguidancetoAracruz’sresearchprojectson

forestprotection Newsoilconditionerproducedfrom

organicwastesanddregs

Replacementoflimeandchemicalfertilizers Neweucalyptusvarietiesresistantto

droughtandcold(withinGenolyptus project)

Newopportunitiesforforestryinvestmentsand productdiversification

(14)

massproductionofclonallypropagatedplantingstock.Forthisinnovation,Aracruzwasawardedthe prestigiousSwedishMarcusWallenbergPrizein1984,whichrecognizesworld-leadingtechnological innovationsinforestry.Duringthe1980s,AracruzandSuzanodevelopednoveleucalyptusvarieties thatwerebothmoreproductiveandmore resistanttodisease, inadditiontobeingadaptable to Brazil’sclimate.Thisinnovationyielded higherbiomassproduction perunit ofplantedarea and significantlyimprovedthequalityofwoodusedasanindustrialrawmaterialandenergyinput.During the1990sand2000s,Aracruz,Suzano,Klabin,RigesaandVCPexpandedtheirinnovationactivitiesin forestry,whichreflectedadeepeningoftheirrelatedcapabilities.

Table7presents28observationsfromimplementedinnovativeactivitiesinthesefirmsrelatedto pulpandpaper.Duringthe1960sand1970s,thesefirmsutilizedtheirengineeringandproduction capabilities to change contemporaneous production processes and process equipment, such as chemicalprocesses,toproducepulpandpaperbasedonthenewrawmaterial.Processinnovations involvedthedevelopmentofmodifiedprocesstechnology,whichwastheninstalledinasuccessionof new plants over three decades. These innovative production-based activities might also have contributedtoanincreaseinaverageannualpulpproduction(1980–2009)inthesecasefirmsof6.08% comparedwiththe4.8%averageforotherfirmsinBrazil,whereasthepaperproductionofthesefirms grewatanaverageannualrateof3.9%comparedwith3.6%forotherfirmsinBrazilduringthesame period.

Since the 1980s, several innovations in the bleaching process became associated with environmentallytargetedeffortsandinvolvedresearchonligninbiosynthesisandthepatentingof thetotally chlorine-free (TCF) pulp process that continuedthrough the 1990s. For example,by augmenting its research capabilities for forestry with pulp and papermaking research, Aracruz intensifiedinvestigations in lignin biosynthesis and pollution control methods based on natural micro-organisms.By1992,Aracruzhadadoptedtheelementallychlorine-free(ECF)andTCFprocess, followingCanadaandScandinavia.However,AracruzwentfurtherbycreatingavariantintheTCF process,whichwascharacterizedbyamuchlowerlevelofabsorbableorganichalogens(AOX);the process,knownasalphachlorine-free(ACF),waspatentedin1997.Oneyearlater,VCPcreateditsown versionsoftheTCFprocess.Becauseoftheseinnovations,fewerchemicalproductsarenowrequired towhitenpulpusedtomakepaper.

Operationalandenvironment-relatedperformanceimprovement

Table8showsseveralcountry-levelperformanceparametersrelatedtoforestryforpulpandpaper. According to the fieldwork and technical literature (WRI, 1999; Evans and Turnbull, 2004), consideringthesignificanttechnological relevanceandscaleof Aracruz,VCP,Suzano,Klabinand

Table6(Continued)

Firms Innovativeactivities !Benefits

Klabin Somaticembryogenesisprocesstoperform cloninginpine

Achievementofuniformityinplantations,greater forestproductivity,lowercostsofharvesting Rigesa ClonalplantingofPinustaedaona

commercialscaleusingsomatic embryogenesistechnique

Indoorgardenforrecombinantclonesof Eucalyptusdunniibyusingcontrolled pollinationinpots

Recombinationofspeciestoidentifythebest clonesforgreenhousecontrolledpollination

Suzano Neweucalyptusvarietiestoimplement ‘‘energyforests’’

Productionofpelletswithhighpowerburning andshortplantingcycle(2–3years)insmallareas VCP Softwaretocalculatetheeconomicvalue

ofaeucalyptusclones

Identificationofmostsuitablecloneforparticular plantationsites

Newgeneticmaterials Improvementinwooddensity,pulpingand bleachingprocesseswithpositiveeffectson printingortissuepaperquality

(15)

Table7

Implementedinnovativeactivitiesandrelatedbenefitsinpulpandpapercases.

Firms Innovativeactivities !Benefits

1970s–1980s

Aracruz Adaptationanduseofcellmembranetechnologyfor thehardwood-basedpulpmakingprocess

Eliminationofthepreviousmercury-basedprocessthat generatedhazardouseffluents

1990s

Aracruz Improvementstobrownstockwashingandoxygen predelignificationprocessesandeliminationof molecularchlorine

Reducedvolumeofpollutingeffluents

Newtestsofindustrialwastewater:completionof seaurchinsfertilizationssubmittedtoeffluent conditionsandassessmentofmusselsneardischarge sites

Improvedaccuracyintheassessmentofoffspringandof toxicityofeffluentsleadingtoprocessand

environmentalperformanceimprovement

Completelychlorine-free(TCF)processtechnology Reductionintheloadofadsorbableorganichalogens (AOX)intheeffluentsleadingtoimproved environmentalperformance

Projectcontrolsystem(PCS) Improvedprojectmanagement(e.g.,FiberlineCwas completedinrecordtime,creatingaworldwide benchmark).Planterectiontimewasreducedfrom36 months(e.g.,FiberlineA)to12months(e.g.,FiberlineC). Thisprojecttechnologyledtoabenchmarkingandwas usedinotherstartupplantsinBrazil

Neworganizationalarrangementsforproject managementbasedoninternalinterfunctional interfacesandinterfaceswithsuppliers

Klabin CardboardwithawhitelayerforTetra-Pak packaging

Thisallowedthecompanytopositionitselfasaprovider foroneofthemostimportantinternationalpackaging manufacturers

Suzano Automationandcontrolsystemforrecoveryboiler Effectivereductionofparticulatematterand sulfur-basedcomponentemissionstotherecoveryboiler Introductionofelementalchlorine-freepulp

bleachingprocess

Meetingofinternationalstandardsandthereductionof environmentalrisksatthebleachingstage

‘Waterconsumptionreductionproject’ Settingofnewstandardsintheindustryregarding environmentalsuitableproductionprocesses Alkalinecorrectioninthepapermakingprocess Environmentallyfriendlypapermakingprocess Cutsizepapertolaserandinkjetprinting Paperexportspackedwiththecustomerbrand VCP NewvariationofECF(elementalchlorine-free)

process

Reduceduseofabsorbableorganichalogens(AOX)and achievementofenvironmentallyfriendlyproduction process

Newalkalinesizingprocess Achievementofgreaterbrightness,colorstabilityand body(bulk)inpaper-basisformakingchemicalspapers andcoatedpapers,meetinginternationalquality standards,exportspackedwiththecustomerbrandand newmarketshare

2000s

Aracruz Newtechnologytomapcarbonfootprintand optimizecookingadditivetechnologies

Increasedproductivityandreducedoperatingcostsin differentproductionunits

Diffusionofshort-fibertechnologytopapermakers anddevelopmentofnewtypesofcellulosethrough environmentallyfriendlyprocesses

Increaseintheuseofeucalyptusfibersinpapermaking processesleadingtolesswastefromelectricaland thermalenergyandreductionofspecificfiber consumptionbyincreasingtheretentionofmineralfillers Noveloperationalpracticestorecycleresidues(e.g.,

limemud,biomassash,dregsandgrits)from chemicalsrecoveryprocesses

Reductionof40%intheseresidues,withsignificant economicandenvironmentalbenefits

Improvementinlogisticpracticesofstorageand distributionofchemicalresidues

NeworganicfertilizerOrganomaxwiththe biotechnologyfirmOrganoeste

ReplacementoftheconventionalNPKfertilizers (nitrogen–phosphorous–potash)andimprovedphysical andmicro-biologicalcharacteristicsinsoil.Byusing 100%ashandlimemudinitseucalyptusplantations, Aracruzstoppedbuyinglimestone,reduceditspurchase ofmineralfertilizers,andimproveditsgeneralrecycling indexby20%

(16)

Rigesa, it is highly likely that those leading parametersachieved by Brazil (Table 8) reflect the accumulationofinnovativecapabilitiesandrelatedimplementedactivitiesofthesecompanies.The improvementsinforestryperformanceparameters(Table9)reflectthecasefirms’capabilitiesfor geneticmanipulation and selectivebreeding.For instance,thefirst-generation clonal forestryof eucalyptus during the 1980s reduced wood-specific consumption (WSC) by 20%. A further 20% reductionwassubsequentlyachievedbasedonsecond-generationclonesderivedfromeucalyptus hybridization,whichledtothefirstlarge-scalecommercial plantingofstands ofselectedclones derivedfromhardwoodcuttings,whichinturnresultedinexceptionalgeneticgainsingrowth,in additiontoadaptabilitytotropicalconditionsandhigherpulpyields(GrattapagliaandKirst,2008). The evidence in Tables 10 and 11 indicates significant improvements in certain process performanceparametersforpulpandpaperduringthe2000–2009period.Forexample,specificwater consumptionof36.7 m3pertonofpulpandthemean20.1 m3pertonofpaperachievedbythecase

firmswereequivalenttothoseattainedfortheFinnishandEuropeanUnionbestavailabletechnology standards(www.environment.fi).Improvementsachievedunderotherindicators(e.g.,reductionsin

Table7(Continued)

Firms Innovativeactivities !Benefits

Klabin Cardbarrier Manufactureofpackagingresistanttowater,greaseand steamwithoutusingplastic

Newchemi-thermomechanicalpulpingprocess basedonhardwood

Moreresistantandinnovativepackaging Newproductionprocessesusingmulti-layers

cardboardfromchemi-thermomechanicalpulp

Rigesa Packagingforredfruitsmadefromkraftpaper Highdegreeofsecurityinthestackwithaneffective ventilationsystemwithminimumhandlingofthefruit withperfectexposureatsalepoint

Recyclablecontainerforliquids(200 L)with corrugatedpackagingsystem

Facilitatesindividualhandling,high-performance packagingandlogisticscostsreduction Suzano Specialcardboards,suchasanti-thermaland

anti-freeze,andotherdistinctcharacteristicsdefinedby thedemandsofcustomers

Thesetypesofrolesbegantooccupyspaceinthemarket ofspecialtypapersthatwerepreviouslyonlyservedby importedpaper

Tissuepaperforthepharmaceuticalindustry NewmarketshareinBrazil VCP Processandpapermachinetoproducecarbonless

paperon-machine

Achievementofbetterqualityandlower-pricepaper Processestoproducethermalpapers Improvedimagestabilityanddurabilitytosupportnew

applications(e.g.,suchcreditcardandinvoice machines)

Source:Derivedfromempiricalstudy.

Table8

Country-leveloperationalperformanceparametersinforestryforpulpandpaper. Typesoftree/

parameters

Brazil Chile Indonesia Finland Canada (coastal) USA Hardwood Rotationa (years) 7(eucalyptus) 10–12 (eucalyptus)

9(eucalyptus) 35–40(birch) n.a. n.a.

Yield(m3/ha/year) 44 25 24–34 6 n.a. n.a.

Softwood

Rotation(years) 15(pinusspp) 25(pinus radiata) 7(pinus merkusii) 70–80(picea abies) 45(Douglas Fir) 25(pinus elliottii/taeda) Yield(m3 /ha/year) 38 22 24 4 7 10

Sources:Bracelpa(2012)andFAO.

(17)

Table 9

Evolution of some technical indicators in forestry (1970–2009).

Parameters Unit 1970 1975 1980 1985 1990 1995 2000 2002 2003 2004 2006 2009 Average annual

rate of decrease/ increase (%) (1970–2009) Forest yield m3 /ha/year 37 44 47 45 53 52 45 46 45 46 49 49 +0.7 Basic density of wood kg/m3 473 473 473 488 488 488 485 489 494 496 493 506 +0.1 Density ton/m3 0.47 0.47 0.47 0.49 0.49 0.49 0.49 0.49 0.49 0.5 0.49 0.51 +0.2

Cut-off age years 9.5 9.0 8.5 8.0 7.5 7.4 7.2 7.2 7.1 7.1 7.0 7.0 0.78

Volume of wood per amount of pulp produced

m3

/ton pulp 4.2 4.1 3.9 3.8 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.8 0.2

Planting density trees/ha 1651 1651 1512 1512 1486 1419 1224 1259 1259 1326 1326 1326 0.5

Source: Derived from empirical study.

Figueiredo / Journal of Engineering and Technology Management 31 (2014) 73–102 89

(18)

specificsteamandelectricity consumptionand fiberloss) mightalsohave exertedanimportant impactoncostreduction.

Withreferencetoenvironment-relatedindicatorsinpulpandpaper(Tables12and13),theaverage industrialeffluentoutputwithinthepulpmillsdecreasedby3%annuallyfrom2000to2009,whereas theSO2emissiondecreasedbyanannualaverageof3.4%.Inabsoluteterms,bothindicatorswere

belowthelimitsdelineatedbytheBrazilianEnvironmentAuthority(Conama)andbyEuropeanbest availabletechniques(BAT).Similarly,withinthepapermills,thedecreasein biochemicaloxygen demand(BOD)variedfrom6.8%to23.1%annuallywhich,inabsoluteterms,werebelowthelimits establishedbyConama.Consequently,themills’environmentalimpactwasreduced,particularlyin termsofdiminishedliquideffluents.TheperformanceimprovementsinTables10–13reflectthefirms’ innovativeactivities (Table 7) which are highly likely to be anoutcome related tothese firms’ innovativecapabilities.

Table10

Evolutionofprocessperformanceinpulpmaking.

Parameters 2000 2001 2002 2003 2004 2006 2009 Averageannual rateofreduction/ increase(%) (2000–2009) Specificconsumptionof

Steam Steamton/pulp weight(ton) 4.92 5.4 4.9 4.9 4.5 4.4 3.6 3.4 Electricity KWh/pulp weight(ton) 737 730 640.8 646.4 674.2 639.6 571 2.8 Water m3 /pulp weight(ton) 41.3 45.6 42.7 39.6 40.9 40.1 36.7 1.3

Fiberlosses ton/day 13.1 16.7 15.5 11.1 8.8 9.5 10.9 2 Source:Derivedfromempiricalstudy.

Note:Thelowerthebetter.

Table11

Evolutionofsomeprocessperformanceinpapermaking.a

Parameters Units 2000 2001 2002 2003 2004 2006 2009 Averageannual rateofreduction/ increase (2000–2009)(%) Specificsteamconsumptionb

Printingandwriting Steamweight (ton)/paper weight(ton) 3.1 2.9 2.8 2.7 2.6 2.5 2.4 2.8 Packaging,wrapping &boxboard 1.9 2 3.5 3.2 2 1.9 1.9 0.00 Tissue 1.9 1.7 1.4 1.4 1.4 1.4 1.4 3.3

Specificelectricityconsumptionb

Printingandwriting

KWh/paper weight(ton) 627.5 614.3 591.9 576.1 572 554.5 547 1.5 Packaging,wrapping &boxboard 457.5 465.2 655 725.8 486.3 432.8 391.9 1.7 Tissue 412 473.5 439.2 458.1 447.1 398.2 229 6.3

Specificwaterconsumptionb

Printingandwriting m3 /paper weight(ton) 28 26.2 24.6 20.8 19.2 18 17.1 5.3 Packaging,wrapping &boxboard 31.6 32.5 32.6 33.5 23.2 19.3 20.1 4.9 Tissue 34.8 33.1 31.8 30.6 28.9 25.8 23.3 4.3

Source:Derivedfromempiricalstudy.

aAggregatedbyspecificpapersegments(printingandwriting;packaging,wrappingandboxboard;tissue). b

(19)

Additionally, field evidence suggests that firm capabilities and subsequently implemented inventiveandinnovativeactivitiesmighthaveexertedapositiveinfluenceontheachievementof highlycompetitiveproductionandcommercializationcostsintheinternationalmarket.Forexample, thecompetitiveadvantages ofthefirms(whichwereresponsibleforthemajorityofBrazil’spulp

Table12

Evolutionofenvironment-relatedperformanceinpulpmaking. Typesofeffluents

andparameters

Units 2000 2003 2006 2009 Averageannual rateofreduction/ increase(2000–2009)%

Limitsof CONAMAc

Liquid

Industrialeffluentsoutputa

m3

/pulp weight(ton)

46.7 42.9 38.7 35.3 3 50–100

COD(chemicaloxygen

demand)a kg/pulp

weight(ton)

11.9 10 7.6 6.1 7.1 10

BOD(biochemicaloxygen demand)a

1.8 1.3 1.1 0.8 8.6 2.5

Totalnitrogena

0.2 0.1 n.a. n.a. 20.6 n.a.

Solid Limemud/dregs/gritsb 33.9 43.5 68 96.2 12.2 n.a. Totalashesb 11.7 15.5 29.1 38.5 14.1 n.a. Air SO2(fromchemical recoveryboiler)a mg/Nm3 8.8 24 7.1 6.4 3.4 100 NOx(nitrogen-oxides,

fromchemicalrecovery boiler)a

n.a 239.8 187.56 237.91 0.1 470

AverageTRS(Totalreduced sulfur)a

ppm

1.64 0.82 2.13 2.42 4.4 n.a.

AverageSO2a 1.69 2.83 4.4 7.06 17.2 n.a.

AverageTRS(Limekiln)a

17.1 42.9 16.6 17.2 0.03 n.a.

Source:Derivedfromempiricalstudy.

a

Thelower,thebetter.

b

theyvarywithproductionoutput.

cTheNationalEnvironmentCounciloftheBrazilianMinistryofEnvironment;n.a.=notavailable.

Table13

Evolutionofenvironment-relatedperformanceinpapermaking. Typesofeffluents

andparameters

Units 2000 2001 2002 2003 2004 2006 2009 Averageannual rateofincrease/ decrease 2000–2009(%)

Limitsof CONAMA

Industrialeffluentsoutput Packaging,wrapping &boxboard m3 /paper weight(ton) 28.4 28.4 25.1 37.4 38.8 38.2 39.7 3.7 50–100 Tissue 90 80 80 46.1 43.4 34.1 31.7 –10.9 50–100

COD(Chemicaloxygendemand) Packaging,wrapping &boxboard kg/paper weight(ton) 7.23 6.31 12.7 10.0 10.9 4.9 7.1 –0.2 10 Tissue 14.5 18.0 13.6 13.6 15.9 9.3 9.2 –4.9 10

BOD(Biochemicaloxygendemand) Packaging,wrapping

&boxboard

kg/paper weight(ton)

n.a. n.a. 4.3 3.4 4.4 1.5 n.a. –23.1 5

Tissue 3.8 5.0 4.32 5.4 5.6 2.4 2.0 –6.8 5

Source:Derivedfromempiricalstudy. n.a. = notavailable.

(20)

exports) in relationto internationalpulp and papercompetitors aremanifest in their abilityto producehighqualitybleachedeucalyptuskraftpulp(BEKP)forapproximatelyUS$225perton(Fig.2). Patternsofcorporategrowth

AsindicatedinTable14,growthpatternsbasedonhorizontalandverticalintegrationprevailed overtheentire1950–2000period,whichseemstohavebeenenabledbyaccumulatinginnovative projectmanagementcapabilitiesthatpermittedthesefirmstodesignandexecuteplanswithpartners andtocoordinateexpansionprojects.Forexample,Aracruzdevelopednoveltechniquesforproject engineeringthatpermittedthefirmtoexpanditsfiberlinesinworldrecordtime.Thesecapabilities seemto have paidoff by allowingAracruz and VCPto setup large-scalelogistics projectsthat positivelyaffectedtheircompetitiveness.

‘Direct’firmdiversificationbegantobecomesignificantonlyduringthe2000s.Thesefirmswere createdundertheISIregimeandtheirbusinessesevolvedaroundthepulpandpaperindustry,witha lowdegreeofdiversification.OneexceptionisVCP,whichispartofalargeBrazilianbusinessgroup thatisdiversifiedintosomewhatrelatedareas(e.g.,chemicals,cement,metals,agro-industry,pulp andpaperandbanking).However,duringthe2000s,thesefirmsbegantodrawontheir world-leading innovativecapability in forestry to diversify into new activities from their innovative capabilitiesinthatfield,whichgaverisetonew‘hightech’activitiesintheBrazilianpulpandpaper industries.

Forexample,byacquiringFuturaGene(withoperationsintheUS,Israel,ChinaandSoutheastAsia), Suzanowasable tofirmlyengage in theinternationalcommercializationof modified genesand developtreesthatrequirelessland,waterconsumptionandfewerfertilizers,thatproducelesslignin (andfewerchemicalsduringthepulpingprocesses)andgeneratehighercarbonsequestration,which contributestostrongercompetitivenessinitsforestryandpulpandpaperbusinesses.Thecreationof SuzanoRenewableEnergymayallowSuzano tomoveintothenewforestrysegmentof planted ‘energy forests’ by producing genetically modified trees with short cut-off times and calorific properties.By drawingon itsworld-leadingforestryinnovativecapabilities,Klabinintensifiedits business in medicinal plants, phytotherapy and phytocosmetics. With respect to ‘indirect’ firm diversification(spin-offs and spillovers), theevidence suggests that as these firms accumulated innovativecapabilities,theyalsoseemtohavestimulatedtheemergenceofspin-offsandspillovers, such as the four outstanding examples described in Table 15: Imetame Metalworking, Inflor Consultingand Systems, thewoodcluster in themunicipalityof TelemaˆcoBorba andthe forest partnershipsprogram.

Fig.2.Productionandcommercializationcostsofshortfiberpulp(US$). Source:www.hawkinswright.com/pulp_and_paper.

(21)

Patterns of corporate growth in the researched firms.

Patterns of corporate growth 1950–1980s 1990s 2000s

Horizontal integration Enlargement of current facilities and set up of new ones

Klabin: 12 new facilities Klabin: two new facilities in Brazil and one in Argentina. Enlargement of Monte Alegre Mill in Teleˆmaco Borba

Enlargement of Monte Alegre Mill in Teleˆmaco. Borba through Project MA1100

Aracruz: Fiberline A Aracruz: Fiberline B and C Suzano: Start-up of Line 2 of Mucuri (Bahia)

Aracruz and VCP: start-up of Eldorado Brazil

Merger/acquisition to increase production of current products

Suzano: Acquisition of Papel Rio Verde

Klabin with Kimberly (50%) = Tissue

Aracruz and VCP (26%)

Aracruz and VCP (100%, forming Fibria, 2009)

Suzano: acquisition of Ripasa (50%) and Bahia Sul

VCP: joint venture with Ahlstrom in paper business

Vertical integration

Upstream Production of own feedstock All firms: production of eucalyptus pulp

Downstream International distribution

channels of final product.

Aracruz, VCP, Suzano: international distribution channels Logistic services for final

product.

Aracruz: operation of Portocel, a specialized forestry terminal

Aracruz: Operation of three docks for wood and pulp

Aracruz: Operation of a terminal to load 6 million tons of pulp/year

VCP: Operation of two terminals at Porto of Santos with capacity to ship 2 million tons pulp

VCP: Operation of railways to transport pulp from Western Brazil to Porto of Santos

Diversification ‘Directly’ (diversification by the firm)

None Aracruz, VCP, Klabin: electricity

and steam power

Aracruz:

 organic fertilizer (with Organoeste, Brazil)

 renewable energy (with Ensyn, USA) Suzano:

 bioenergy (by creating Suzano Energia Renova´vel)

 biotechnology (by acquiring FuturaGene) Klabin

 biorefinery (embryonic).  fitoterapics

‘Indirectly’ (spin-offs/spillovers) All firms: Program of forest partnerships

Aracruz: Imetame Metalworking Klabin: Wood cluster Aracruz: Inflor Consulting and Systems Source: Derived from empirical study.

P.N. Figueiredo / Journal of Engineering and Technology Management 31 (2014) 73–102 93

(22)

Discussion

Building ona researchtraditionin technological capabilityaccumulation anditsperformance implicationsforlatecomerfirms(e.g.,Belletal.,1982;Katz,1987;Figueiredo,2002),thepurposeof thisstudywastoempiricallyinvestigatethetypesofoutcomesthatareachievedbylatecomerfirms from the accumulation of innovativecapabilities, up to the world-leading level, in addition to technologicalcatch-up.Incontrastwithmostpreviousstudies,thisarticlehasproxiedinnovative capabilitybydrawingonacomprehensivetaxonomythatisbasedonascaleofcapabilitylevelsfora widerangeoftechnologicalactivities.Basedonaninductivemultiple-casestudyinvolvingfirst-hand and long-term evidence that was derived from extensive field investigations of a relatively

Table15

Examplesofspin-offsandspilloversgeneratedbythesecases. Examplesofspin-offs/

spillovers

Start-upyear Origin Description

ImetameMetalworking 1980 Aracruz Afterspinningoff,Imetamedeepenedits capabilitiesinengineeringservices(engineering projects;maintenanceservicesinpulpandpaper, metallurgyandmining;industrialerection;and structureandlogistics).Withapproximately 4000employees,Imetamehasalargeportfolioof clients,includinglargelocalandmultinational firmsinthepulpandpaper,oilandgas,steel,and capitalgoodsindustriesandhasbeenawarded severalprizesfromthesefirms.

(www.imetame.com.br) InflorConsultingand

Systems

2001 Aracruz Afterspinningoff,Inflordeepeneditscapabilities tocreateoriginalinformationtechnology(IT) systemsforintegratedandsustainableforestry management;by2007,theyexpandedtheir servicestosectorssuchassugarcaneethanoland agriculture-relatedfirms.Since2008,Inflorhas beenprovidingitsservicestocustomersinChile, Uruguay,EuropeandChina,whichappearsto constitutesolidstepsintothe

internationalizationofitsactivities. (www.inflor.com.br)

WoodclusteratTeleˆmaco Borba,amunicipality inthesouthernstate ofParana´

Mid-1990s Klabin ThepartnershipsledbyKlabinwiththe municipality’scouncil,theNationalServicefor IndustrialApprenticeship(SENAI),theFATEB,a localtechnicaluniversityandtheWood TechnologicalCenter(CETMAN),stimulatedthe emergenceof50smallandmedium-sizedfirms inTeleˆmacoBorba,generatingapproximately 1500jobsandtheCenterofResiduesUtilization. Bythemid-2000s,Klabinledneweffortsto expandthiswoodclustertoanother14 municipalitiesintheregion.

Forestpartnerships program

Early1980s Aracruz,Klabin, SuzanoandVCP

Basedontheirinnovation-capability developmentforlarge-scaleclonedeucalyptus plantations,thesefirmscreatedaprogramto transferelementsofthistechnologyto independentlandownerstoplanteucalyptusand becomewoodsuppliers.Bypurchasingwood fromtheseproducers,thefirmsencouragedthe developmentofprofitableagriculturalactivities withforestplanting,reconcilingeconomicgains withenvironmentalpreservation.Theprogram benefitsthousandsofsmallruralownersin539 townsinBrazilandsupplies20%ofthewoodused inpulpproduction.

(23)

homogenoussetofpulpandpaperfirmsintheBrazilian forestrysector,this studyscrutinizeda number of outcomes related to innovativeperformance and business performance as outcomes achieved by these firms fromthe innovation capabilities that theyhad accumulatedover their lifetime.Therecursivefieldworkprocess—combinedwithinsightsfromtheliteratureoninnovationin latecomerfirmsandthestrategicmanagementliterature—facilitatedtheemergenceoftheframework inFig.1,particularlywithrespecttoexploringtherelationshipsbetweencomponentsA,B,andC,the findingsofwhichrespondtothearticle’sgeneralresearchquestionandgeneratefurtherimplications outlinedbelow.

Discussionoffindings

Innovativecapabilityaccumulation

Theresearchedfirmsaccumulatedinnovativecapabilitiesthateventuallyturnedthemintoworld leaders in a particular segment of the pulp and paper industry, i.e., the short-fiber segment (eucalyptus).Thisfindingisconsistentwithpreviousstudiesthathavereportedthatlatecomerfirms in other industrieshave attained leadingtechnological positionsat the internationalinnovation frontier(see‘‘Studybackgroundandresearchquestion’’).However,insteadofbeginningwiththe accumulation of production capability and then moving into the progressive accumulation of innovativecapabilities(fromadaptationtoR&D-basedinnovation),asistypicallydocumentedinthe literature,thesefirmsaccumulatedinnovativecapabilitiesthatpermittedthemtotakeadirectionof technologicaldevelopmentthatdifferedfromthosedirectionspreviouslypursuedbyglobalindustry leaders.Theirinnovativecapabilityaccumulationprocessinvolvedaqualitativediscontinuityfromthe establishedtechnologicaltrajectoryatanearlystageinthedevelopmentoftheircapabilities,whichis rarelydocumentedintherelatedliterature.Additionally,asopposedtomoststudiesoftechnological capabilityaccumulationthatfocusonso-called‘high-tech’industries,thisstudyhasexaminedthis issueinnaturalresource-relatedfirms,whicharebarelyinvestigatedintheliterature,despitetheir importancefornationaleconomies,althoughthereareafewexceptions(e.g.,DantasandBell,2009; Silvestre and Dalcol, 2009). Additional details are provided elsewhere in the literature for this capabilityaccumulationprocess(Figueiredo,2010);thus,thefollowing sectiondiscusses findings relatedtooutcomes.

Outcomesofinnovativecapabilityaccumulation

Asthefirmsaccumulatedtheseinnovativecapabilities,theydrewontheresourcestochangeand or createtechnologies and componentsof production systems beyond achievinga technological catch-up;thus,theyachievedconcretebenefitsfromtheaccumulationofthesecapabilitiesintermsof innovationandbusinessperformance,whichcouldguaranteetheirinternationalcompetitiveness. Thus,thestudyfoundthat thefollowing outcomesresultedfromtheaccumulationofinnovative capabilities(i)Innovativeperformance(implementedinventiveandinnovativeactivities),whichinvolved evidence from 108 accumulated patents (Table 5) and 24 examples of significantly innovative activitiesinforestryand28inpulpandpaper(Tables6and7)ofdifferenttypesandwithvarying degreesofcomplexityandnovelty;(ii)Operationalandenvironment-relatedperformanceimprovement, whichinvolvedcountry-levelandfirm-levelperformanceparametersinforestry(Tables8and9), several performanceparametersfor pulpmakingand papermaking(Tables 10–13), inadditionto country-levelproductandcommercializationcosts(Fig.2);and(iii)corporategrowthpatterns,which involvedseveralexamplesofthesepatternsintheformofhorizontalintegrationandupstreamand downstreamverticalintegration,and‘direct’diversificationand‘indirect’diversification(spin-offs and spillovers) (Tables 14 and 15). This studyindicates that these outcomes wereachieved by accumulating a wide range of innovative capability levels (from basic toadvanced) for diverse technologicalfunctions(e.g.,silviculture,harvesting,projectmanagement,processandproduction organization,product-centeredandrelatedengineering-basedcapabilities)andvarious implementa-tions of inventive and innovative activities with differing levels of novelty and complexity. Specifically,withrespecttothenatureofthesecapabilitiesandtheoutcomesthattheygenerated beyondtechnologicalcatch-up,thisstudyhasyieldedthefollowingfindings.

Imagem

Fig. 1. The article’s conceptual framework.
Table 7 presents 28 observations from implemented innovative activities in these firms related to pulp and paper
Fig. 2. Production and commercialization costs of short fiber pulp (US$).

Referências

Documentos relacionados

Deste modo, foi possível realizar a identificação e caraterização de mutações em 6 genes relacionados com o metabolismo do ferro (HFE, HJV, HAMP, TfR2, SLC40A1 e FTL) em 88

Esta afirmação é comprovada pelos resultados obtidos que revelam que os alunos possuem conteúdos pornográficos nos seus computadores pessoais (ver gráfico 6) , os

“Nossas cidades, enseadas, rios, minas, florestas, o Brasil inteiro tem sido visto, exam inado, estudado, copiado por sábios e por artistas da Europa: encam inhem os a nossa

Considerando-se os resultados obtidos, verifica-se que várias cultivares apresentaram desempenhos com relação à produtividade e outras características de interesse como:

De acordo com JUNQUEIRA; LIMA (2004), que utilizaram um período de treinamento idêntico ao presente es- tudo, oito semanas de exercício físico não foram capazes de reduzir

Desde su campaña, cuando no la destacaba demasiado en su discurso, hasta sus decisiones específicas, hay un largo trecho que se traduce en el hecho de que se ha propuesto

Essa tese defende a ideia que os professores universitários de Educação Física conseguem se perceber, identificar e reconhecer os elementos dos espaços