• Nenhum resultado encontrado

НЕЛИНЕЙНЫЕ СВОБОДНЫЕ ПУЛЬСАЦИИ ГАЗОВОГО ПУЗЫРЬКА В НЕСЖИМАЕМОЙ ЖИДКОСТИ

N/A
N/A
Protected

Academic year: 2017

Share "НЕЛИНЕЙНЫЕ СВОБОДНЫЕ ПУЛЬСАЦИИ ГАЗОВОГО ПУЗЫРЬКА В НЕСЖИМАЕМОЙ ЖИДКОСТИ"

Copied!
10
0
0

Texto

(1)

Ա ԱՍ Ա Ի Ի Ո Թ Ո Ի Ա Ա Ի Ա Ա ԻԱ Ի Ղ Ա Ի

59, 12, 2006

534.14.014

. .

. . Օ

Ա

և ք :

ք

, ք

: և

:

, :

G.G. Oganyan

The Nonlinear Free Oscillations of Gas–Bubble in a Noncompressible Fluid

The behavior of single spherically bubble in viscous fluid is investigation. The simplified equation for description of motion of rarefied mixture of bubble structure are used. Nonolinear equation of vibrations with quadratic nonlinearity is obtained. The exact particular it solutions are constracted.

.

,

,

. ,

, . ,

,

- - ,

.

,

, [1].

[2,3], – [1,4].

, , [3,4]. 1. .

,

.

, ,

[1,2] 2 2

2 1 1 2 1 1

3

4

,

const

2

d R

dR

dR

p

p

R

dt

R dt

dt

µ

= ρ

+ ρ

+

ρ =

(2)

2 3

2 2

2

20 20 2

,

const,

p

r

c

p

R

p

c

γ

ρ

=

ρ

=

γ =

ρ

(1.2)

1, 2 0 , ( ),

p

– ,

ρ

– ,

R

– ,

c

p

c

v– ,

γ

– ,

µ

,

t

– . ,

-

(

p

)

p

p

(

p

)

(

)

R

R

(

R

)

p

p

2

=

0

1

+

2

,

1

=

0

1

+

1

,

ρ

2

=

ρ

20

1

+

ρ′

2

,

=

0

1

+

(1.3) . (1.1), (1.2)

, . . , .

(1.3) (1.2)

(

)

2

2 2 2

2

1

3

3

3

,

6

3

R

+

R

p

=

γ

R

+

γ

γ

+

R

=

ρ

(1.4)

- (1.1) ,

2 0 1

0 2

1 2 0

2 2

2

3

,

0

4

3

R

p

p

p

dt

dR

p

dt

R

d

ar

ar

ρ

γ

=

ω

=

+

µ

+

ω

γ

(1.5)

ar

ω

– .

(1.4) (1.5) 2

p

( )

2 2

0 1

2 2 2

2

1

3

,

3

4

,

0

3

ar ar

ar ar

p

t

p

R

R

R

R

µ

ω

α

=

γ

+

ω

γ

=

δ

=

γ

ω

+

α

ω

+

δ

+

&

&

&

(1.6)

t

. (1.6)

p

1

=

0

,

, . .

p

1

( )

t

. ,

. 2. .

δ

=

0

. ,

,

:

p

1

=

0

.

(1.6)

R

&

,

( )

R

f

c

R

R

R

2 ar2 3 2 ar2

3

1

3

1

3

2

1

3

3

3

1

3

ω

+

γ

=

⎟⎟

⎜⎜

+

γ

γ

+

+

γ

ω

+

γ

=

(3)

c

– ,

( )

R

f

, , (2.1). ,

( )

R

f

.

f

( )

R

,

c

, .1.

( )

R

f

b

3

<

b

2

<

b

1, ( .1,

2,3),

4 5

b

b

<

( .1, 1). ,

(

)

(

)

+

γ

γ

+

γ

γ

=

2 2

2

1

3

2

1

3

c

c

D

,

f

( )

R

, , . .

D

0

.

(

)

2

1

3

2

0

+

γ

γ

<

c

(2.2)

c

. ( .1, 1)

(2.1)

(

)

2 2

2 2

1

3

2

,

1

3

2

1

3

1

3

1

3

+

γ

γ

=

⎟⎟

⎜⎜

+

γ

⎟⎟

⎜⎜

+

γ

+

ω

+

γ

=

R

R

c

R

&

ar (2.3)

.1 f

( )

R

c

(

γ=1,4

)

. : 1−c=2γ

(

3γ+1

)

−2,

(

)

2

[

(

)

]

2

1 3 216 5 , 53 3 , 1 3

2−c=γ γ+ − −c= γ γ+ − .

, (2.3)

R

4 5

1

3

2

1

3

1

b

R

b

=

+

γ

<

<

+

γ

=

b5

-0.2 0.2 0.4 0.6

-0.08 -0.06 -0.04 -0.02 0.02

b1 b2

b3 b4

f(R)

(4)

(2.3)

( )

2

3

2

ch

3

1

3

1

2

ar

R t

=

ω

t

γ +

γ +

(2.4)

,

t

=

0

5

b

R

=

.

R

( ) ( )

0

<

R

, (2.4) ,

.

(2.2) (2.1)

(

1

)(

2

)(

3

)

2

2

3

1

3

b

R

R

b

R

b

R

&

=

γ

+

ω

ar

(2.5)

3 2 1

,

b

,

b

b

f

( )

R

.

(2.5)

:

b

3

R

b

2.

z

b

z

b

R

=

2

sin

2

+

3

cos

2

(2.5)

(

)

1

sin

,

1

12

1

3

3 1

3 2 2 2 2 2

3

1

<

=

ω

+

γ

=

b

b

b

b

s

z

s

b

b

dt

dz

ar (2.6)

(2.6) 0

z

, , ,

,

t

0

R

b

3

,

, . .

z

0

.

, (2.6) [5]

( )

(

2 3

)

2 3

2

2

,

3

1

3

,

,

2

t

s

b

b

s

a

b

b

acn

b

t

R

=

γ

+

ω

ar

=

⎛ Ω

=

(2.7)

a

– ,

– ,

s

, . ,

. (2.7)

,

( )

( )

ar

s

K

b

b

s

K

T

ω

+

γ

=

=

1

4

1

3

3

4

3 1

( )

s

K

– .

ω

( )

s

(

b

b

) ( )

K

s

K

T

ar

ω

+

γ

π

=

π

=

π

=

ω

1 3

3

1

3

2

2

(5)

,

b

1

b

2,

s

=

1

f

( )

R

5 3

b

b

b

2

b

4 .

, [5]

(

t

)

ch

(

t

)

ar

cn

2

,

1

=

−1

2

,

=

ω

(2.7) (2.4).

, ,

b

2

b

3,

b

2

b

3

1

<<

s

, . . .

.

c

<<

1

2

c

γ

+

+

+

γ

+

γ

=

γ

=

±

=

γ

±

=

γ

+

+

γ

=

γ

+

γ

+

γ

=

2

3

1

3

2

3

1

3

1

3

1

3

8

3

,

2

3

2

4

3

1

3

1

1

3

3

3

1

3

3

2

1

1

3

3

2 2 2

2 3

, 2

2 2 2

1

a

a

a

s

a

c

a

c

b

a

c

b

q

,

q

( )

s

K

( )

s

s

[5]. , (2.7)

.2. δ=0 (2.7)

(4.2) .

(

a=0.09243, s=0.38687

)

(

a=0.01064,s=0.13515

)

.2 1,4 5,6.

(

a=0.33308,s=0.7071

)

2,3 .2 .

2 4 6 8 10 12

-0.03 -0.02 -0.01 0.01 0.02 0.03

R

4

5

6

2 4 6 8 10 12

-0.1 -0.05 0.05 0.1 0.15 0.2

t

ar ω

R

2

3

t

(6)

( )

(

)

ω

ω

γ

+

+

ω

+

γ

+

ω

=

R

a

t

a

t

a

t

t

t

R

cos

3

cos

256

3

3

1

3

2

cos

8

3

1

3

cos

2

2 2

γ

+

ω

=

ω

γ

+

+

+

γ

=

2 2 2 2 2

3

1

3

64

11

1

,

32

3

1

3

1

16

3

1

3

a

a

a

R

ar (2.8)

R

– ,

ω

, .

c

0

, ,

c

0

(

3

1

)

3

1

γ

+

b

. 3

.1:

(

)

[

]

3

1

1

36

1

,

1

3

1

72

11887

107

,

1

3

36

72

107

2 3 , 1

2

γ

+

=

γ

+

±

=

+

γ

γ

=

b

b

c

(

γ

=

1

,

4

)

(2.7) (2.8)

a

=

0

.

01064

,

s

=

0

.

13515

.

, (2.7) (2.8), .2 5.

c

s

a

. 3. .

0

2

2

α

=

ω

+

δ

+

R

R

R

R

&

&

&

ar (3.1)

, [6] [7,8] .

...

4 3 1 2 2

1

+

+

+

+

=

− −

F

r

r

F

r

F

r

R

(3.2)

( ) ( ) (

t

,

F

t

i

=

1

,

2

,...

)

r

i

. (3.2) (3.1), 2 3 4

,

,

− − −

F

F

F

. ,

2 2 1 1 2 2 3 2 2 1

2

3

2

δ

5

3

δ

50

1

ω

2

1

,...

,

,

5

δ

6

,

6

tt t ttt t tt t ar tt t t tt t

F

F

F

F

F

F

r

F

F

F

F

F

F

r

F

r

− − −

α

α

+

α

+

α

α

=

=

=

⎛ +

α

=

α

=

&

&

&

(3.3)

( )

t r7

2

F

. , (3.3)

r

1

( )

t

,

( )

t

r

7 ,

.

r

i

=

0

7

(7)

0

4 5 6

=

r

=

r

=

r

. , (3.2) . 1

F

0

2

2 3

2 2 2

2

+

δ

r

+

ω

r

α

r

r

=

r

&

&

ar

&

(3.4)

(3.3)

r

3, ,

r

3

, (3.1),

1

3

2

,

0

2

3

3

α

=

γ

+

ω

=

=

ar

r

r

(3.5)

( )

t

F

.

r

3

=

0

.

(3.4)

(

c c

1

,

2

=

const

)

2 2

2 , 1 2

2 2

4

2

,

2 1

ar t

t

e

c

e

c

r

=

ω

+

ω

ω

=

δ

±

δ

ω

(3.6) (3.3) (3.6)

( )

t

F

[

t t

]

t

tt

F

c

e

c

e

F

1 2

2 1

6

5

ω ω

+

α

=

δ

+

(

B B

1

,

2

=

const

)

( )

t t t

e

c

e

c

e

B

B

t

F

1 2

5

1

6

5

1

6

2 2

2

1 1 1 5

2 1

ω ω

δ −

δ

+

ω

ω

α

δ

+

ω

ω

α

+

=

(3.7)

(3.7) (3.3),

0

3

=

r

, (3.1)

2 1

,

c

c

0

,

0

,

25

6

2 2

1 2

2

=

δ

=

=

=

ω

ar

c

c

r

(3.8) (3.8) (3.7),

( )

t

=

1

+

e

−δ 5

=

1

+

e

−ω 6

,

B

1

=

B

2

=

1

F

t art

(3.1),

r

1 (3.3),

(

)

2

(

)

2 2

2 6

5

6

1

1

25

art

t ar

R

=

δ

+

e

δ −

=

ω

+

e

ω −

α

α

( )

( )

2

(

1

)

0

0

4

2 3

1

ar

R

∞ =

R

=

ω

=

α

γ +

(3.9)

, .

(8)

,

δ

=

0

α

ω

=

2 3 ar

r

( )

t

( )

t

F

=

1

+

exp

ω

ar , (3.1) (2.4).

r

3

=

0

, F

( )

t

( )

t

(

i

t

)

F

=

1

+

exp

±

ω

ar

( )

⎛ ω

+

γ

=

⎛ ω

α

ω

=

− −

t

t

t

R

ar ar ar

2

cos

1

3

3

2

cos

2

3

2 2

2

.

4. . -

(1.6),

p

1

=

0

[9].

( )

t

=

A

( )

t

ϕ

+

r

(

A

ϕ

) (

+

r

A

ϕ

)

ϕ

=

ω

t

+

β

R

cos

2

,

3

,

,

ar (4.1)

ε

~

A

β

,

r

2

r

3

ε

2

ε

3 ,

ε

– . (4.1)

2

r

r

3. ( )

A

ϕ

(

)

γ

+

ω

=

⎟⎟

⎜⎜

ω

α

ω

=

ϕ

δ

=

2 2 2

4 2

1

3

48

5

1

12

5

1

,

2

A

A

A

A

ar

ar ar

&

&

2

r

r

3

ϕ

ω

α

=

ϕ

ω

α

=

cos

3

48

,

2

cos

3

1

1

2

3

4 2

3 2

2 2

A

r

A

r

ar ar

(4.1)

( )

( )

( )

( )

( )

3

2

2

cos

2

0

6

cos

ϕ

+

ε

ω

α

ϕ

+

=

R

A

A

t

A

t

t

R

ar

(4.2)

( )

(

)

t

ar ar

ar

e

c

A

A

t

A

A

R

2

1 2

2 2

2

,

1

3

48

5

,

2

δ −

=

ω

δ

+

γ

+

ω

=

ϕ

ω

α

=

( )

A

R

– e , c1–

(9)

0

=

δ

(4.1) (4.2), , ,

(

)

2 2

1

5

1

3

1

,

const

48

ar

t

A

t

A

c

ϕ ≡ ω = ω

γ +

=

=

( )

A

ω

– , .

,

. c1

0

=

t (2.7) (4.2) – ,

(2.8) (4.2) – . .

1408

.

0

,

1923

.

0

,

5254

.

0

2 3

1

=

b

=

b

=

b

, 2

.1. (4.2)

A

=

c

1

=

0

.

16412

. 2,3, .2 , (2.7) (4.2)

. , (2.7) (4.2) .

a

s

<

1

.

038687

.

0

,

09243

.

0

=

=

s

a

(

)

[

]

2

1

3

8

5

.

5

γ

γ

+

=

c

f

( )

R

.

(4.2)

A

=

c

1

=

0

.

04621

. (2.7) (4.2)

.2 1 4.

(2.7) (2.8), .2 5. (4.2)

A

=

c

1

=

0

.

005372

, 6 .2 . 5 6 , (4.2) (2.7)

.

(10)

1. . . . .1. .: , 1987. 464 . 2. Chapman R.B., Plesset M.S. Thermal effects in the free oscillation of gas bubbles //

Trans. ASME, ser. D. J. Basic Eng. 1971. V.93, №3. . .: // . . . 1971. .93. №3. .37-40.

3. . . //

. .: , 1968. .129-165.

4. . ., . . . .: , 1984. 400 .

5. Handbook of mathematical functions with formulas, graphs and mathematical tables. Edited by M. Abramowitz and I. Stegun. National bureau of standarts. Appl. mathem. series. 1964. , . . . . . .: . 1979. 832 .

6. Weiss J., Tabor M., Carnevale G. The Painleve property for partial differential equation // J. Math. Phys. 1983. V.24. №3. P.522-526.

7. . ., . .

. // . 2001. .65. .5. .884-894. 8. . .

// . . . 2002. №2. .110-119.

9. Nayfeh A.H. Introduction to perturbation techniques. etc.: Wiley. 1981. ( . . .: , 1984. 535 .)

Referências

Documentos relacionados

For these solutions, the equation (7) reduces to the equation of motion of the string coordinates, extracted from the Polyakov action with the curved background.. However, for

The transition from Darcy flow to Darcy-Forchheimer flow occurs when the Reynolds number based on the square root of intrinsic permeability of the medium as the characteristic

Políticas sociais que devem cuidar da saúde e do planejamento familiar são insuficientes e orientadas equivocadamente para o aumento da responsabilidade prioritária da

The observation of shifts by the male and female in relation to cleaning care and aeration of the spawning and later in the care of the larvae was also observed for other species

The numerical evidences tell us that the numerical solution of the differential equation with Robin boundary condition are very close in certain sense of the analytic solution of

At the first stage of the measurements results analysis, the gear wheel cast surface image was compared with the casting mould 3D-CAD model (fig.. Next, the measurements results

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

Através dos dados recolhidos verifiquei que existe um contraste entre as crianças avaliadas, ou seja, duas crianças apresentam mais dificuldades na contagem e