• Nenhum resultado encontrado

Impact of organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome.

N/A
N/A
Protected

Academic year: 2022

Share "Impact of organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome."

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Scientia Horticulturae

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Impact of organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome

A. Thomazini

a,∗

, E.S. Mendonc¸ a

a

, J.L. Souza

b

, I.M. Cardoso

c

, M.L. Garbin

a

aDepartmentofPlantProduction,FederalUniversityofEspíritoSanto,29500-000Alegre,ES,Brazil

bResearchofINCAPER—CentroSerrano,BR-262,km94,29.375-000VendaNovadoImigrante,ES,Brazil

cSoilScienceDepartment,FederalUniversityofVic¸osa,AvenidaP.H.Rolfs,s/n,Vicosa36570-000,MG,Brazil

a r t i c l e i n f o

Articlehistory:

Received25August2014 Receivedinrevisedform 25November2014 Accepted1December2014

Keywords:

Greenmanure

Labileandstablefractions Soilhealth

SoilCbalance

a b s t ra c t

Soilorganicmatteriswidelyrecognizedasastrategyusedtoimprovesoilqualityandreducecarbon emissionstotheatmosphere.Afieldstudywascarriedouttoinvestigatetheeffectsofcovercropsin organicno-tillvegetablessystemsonchangesinsoilorganicmatterandCO2 Cemissions,indryand rainyseasons.WehypothesizedthatCO2 Cemissionsarehigherinconventionaltillascomparedwith no-till,andthatno-tillincreasessoilCsink.Thecroprotationcompriseda3-yearcroppingsequence involvingtwocropsperyear—cabbage(BrassicaoleraceaL.)inwinterandeggplant(Solanummelongena L.)insummertime.Treatmentswereno-tillondeadmulchofgrass(AvenastrigosaSchreb.andZeamays L.),leguminous(LupinusalbusL.andCrotalariajunceaL.),intercrop(grassandleguminous)andconven- tionaltill(nodeadmulch)withrotaryhoearrangedinarandomizedblockdesignonaclayeyOxisol(Typic Haplustox)atDomingosMartins-ES,Brazil.On2012and2013,disturbedsoilsamplesatthreedifferent layers(0–5,5–15and15–30cm)andundisturbedsamplesat0–10,10–20and20–30cm,forchemical andorganicmattercharacterizationweretaken.CO2 Cemissionsandsoiltemperatureweremeasured insituonMarch,May,AugustandOctober2012andFebruary2013(after3yearsofexperiment).Con- ventionaltillsiteshowedthelowestmicroporosityvaluesandthehighestmacroporosity,followedby lowersoilbulkdensityat0–10cmlayer.TotalorganicCrangedfrom34.94to50.48gkg1inintercrop and27.11to43.74gkg1inconventionaltill.TotalNrangedfrom2.81to5.34gkg1ingrassand2.54 to4.51gkg1inconventionaltill.HighestCstockwasrecordedinintercrop.Conventionaltillshowed lowerlabileCvalueswhilerecalcitrantCwashigherintheintercroptreatment.Theannualaverageof CO2 Cemissions(␮molCO2m2s1)followedtheorder:grass(15.89)>intercrop(13.77)>leguminous (13.09)>conventionaltill(11.20).Highestannualaverageofsoiltemperaturewasrecordedinconven- tionaltill(23.95C).Lowestannualmeanofsoilwatercontent,microbialbiomassC,andhighestmetabolic quotientwererecordedinconventionaltill.Theseresultssuggestthattheuseofcovercropsandorganic compostinpre-plantingpromoteCincrements.Thecontributionoforganicresiduesincreasesthewater holdingcapacityandreducessoiltemperature.No-tillreducessoildisturbanceandpromotesapositive balanceofC.Organicno-tillvegetablesystemsisastrategytoincreasesoilCandshouldbeencouraged inordertoincreasesoilqualityintheAtlanticForestBiomeinBrazil.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

TheBrazilianAtlanticForestisnowreducedtoabout11.4to16%

ofitsoriginalcoverofapproximately150millionhectares(Ribeiro etal.,2009).Mostdeforestedareasarecomposedofagricultural

Correspondingauthor.Tel.:+552733593971;fax:+552835528927.

E-mailaddresses:andre.thz@gmail.com(A.Thomazini),

eduardo.mendonca@ufes.br(E.S.Mendonc¸a),jacimarsouza@yahoo.com.br (J.L.Souza),irene@ufv.br(I.M.Cardoso),mlgarbin@gmail.com(M.L.Garbin).

systemsondegradedsoils.Anthropogenicactivitiesleadtoland misuse causingchangesinthephysical,chemicalandbiological attributesofsoils(Reicoskyetal.,1999;Powlsonetal.,2011).This impliesdecreasesinthestorageoforganiccarbonandnutrientsas wellasintheproductivecapacityofsoils,sinceCisanindicator usedtoassesssoilquality(SilvaandMendonc¸a,2007;Ghoshetal., 2012).

Itiswidelyrecognizedthatsoilorganicmatterisoneofthemost importantindicatorsofsoilqualityandhealth(Lal,2004;Ghosh etal.,2012).Increasingormaintainingsoilorganicmatteriscriti- caltoachieveoptimumsoilfunctionsandcropproduction(Ghosh http://dx.doi.org/10.1016/j.scienta.2014.12.002

0304-4238/©2014ElsevierB.V.Allrightsreserved.

(2)

etal.,2012).Whenmonitoringsoilqualityinthetropics,sensitive soilqualityindicatorsneedtobeidentified,mainlyduethecontin- uousandintensivevegetableproductionintheseareas(Moeskops etal.,2012).Soilmanagementcanleadtohigherdecomposition ratesoforganicmatterdecreasingtheconcentrationofthissoil component(SilvaandMendonc¸a,2007).Agriculturecansignifi- cantlycontributetoelevateatmosphericCO2 concentrationsasa consequenceofsoilmanagement(Powlsonetal.,2011).TheseC lossestotheatmospherecanbemainlyreducedbyminimizing soildisturbance,eitherwithno-tilloragroecologicalmanagement (SilvaandMendonc¸a,2007).Itisestimatedthat89%ofthepotential formitigationofgreenhousegasesproducedbyagriculturerelies onCsequestration(Smithetal.,2008).Inaddition,increasingthe soilorganicCcontentisanimportantstrategytodealwithclimate changesdrivenbyCemissionstotheatmospherefromagricultural lands.

No-tillandorganicagricultureincreasesoilCandNsequestra- tion,andreducetheoxidationofsoilorganicmatter(Bayeretal., 2009;Campigliaetal.,2014).Continuousinputofplantresidues andpaucityofsoildisturbancepromotereductionsinCO2 Cemis- sions through decreasesin organicmatter decomposition rates (Lal,2004;Bayeretal.,2009).Onotherhand,conventionalcrop production intensify soil disturbanceand, consequently,break- downthesoilaggregates(Bayeretal.,2009).Conventionaltillage isthemostcommonagriculturalmanagementforvegetablepro- ductioninareasformerlyoccupiedbytheAtlanticForestinBrazil.

Inaddition,vegetableproductionishistoricallymanagedbyfamily smallholders.Intensivefarmingorintensivesoilpreparationinhor- ticulturedegradesthesoil–plantenvironment,mostlyduetothe reductioninconcentrationandqualityofsoilorganicmatterand thediversityofsoilorganisms(Tianetal.,2011).Degradationofsoil organicmatterleadstolong-termdecreasesinhorticulturalpro- ductivity.Thus,sustainabletillageispreferabletoattainapositive netbalanceofCinthehighlyweatheredtropicalsoils(Mendonc¸a andRowell,1996).

Theuseofcovercropsrepresentapotentiallyvaluablesupply oforganicresidues(Csource) whentheyareused inno-tillage systemsandtheirresiduesareleftonthesoilsurface(Campiglia etal.,2014).No-tillsystemscanmitigateCO2 Cemissions.Thisis becausecroprotationandorganicresiduesonsoilsurfacepromote gradualdecompositionoforganicmatter,favoringCincorporation (Bayeretal.,2009;Conceic¸ãoetal.,2013).Physicalprotectionof organicmatterprovidedbystableaggregatesunderno-tillreduce organicmattermineralizationandleadtoCaccumulation(Sixetal., 2004).However,thereisalackofinformationaboutCstoragegains and CO2 C soil emissionsby organicno-till vegetablesystems, especiallyin theareasformerlyoccupiedbytheAtlanticForest biome,awell-knownbiodiversityhotspot(Myersetal.,2000).Here, wereporttheresultsofalongtermfieldexperimentconducted indryandrainyseasons.Weaimedtoinvestigatetheeffectsof covercrops inorganicno-till vegetablessystems onchangesof soilorganicmatterandCO2 Cemissions,indryandrainyseasons.

WehypothesizedthatCO2 Cemissionsarehigherinconventional tillascomparedwithno-till,andthatno-tillincreasessoilCsink, leadingtoimprovedsoilquality.

2. Materialandmethods

2.1. Sitelocation,characterizationandlandusespriortothe experiment

The study was carried out at the 2.5ha organicagriculture experimentalsiteofIncaper(EspíritoSantoInstituteforResearch, TechnicalAssistanceandRuralExtension),municipalityofDomin- gosMartins-ES (2022SE4103W)altitudeof950mabovethe

Fig.1. Averagemonthlyprecipitationandairtemperatureofthemunicipalityof DomingosMartinsbetweenJanuary2012andFebruary2013.DatafromIncaper.

sea.TheclimateoftheregionisAw(tropicalclimateanddrysea- soninwinter),precipitationrangesfrom750to1500mmperyear, andallmonthsoftheyearhaveaveragetemperaturesof18Cor higher.Theregionischaracterizedbydrywinterandrainysummer (Köppen,1923).Meanmonthlyprecipitationandairtemperature are presented in Fig.1. Soilis classified asRed-Yellow Latosol, BrazilianClassificationSystem(Embrapa,2006)orasclayeyOxisol, TypicHaplustox(SoilTaxonomy,USDAclassification).From1990to 2009,thisareawascultivatedwithorganicvegetables(mainlylet- tuce,cabbageandeggplant).Organicmanagementwasperformed using15Mgha−1oforganiccompost(drymass)amendments.The composting areafollowed theindore system(Miller and Jones, 1995)withalternatinglayersstackedformingcellsthatreceived manualeversionperiodicallyinordertocontrolhumidity(50%) and temperature(60C).The methodreliesonaerobic activity, althoughportionsofthepilecanbecomeanaerobicbetweenturn- ings. Moreover, it provides better control of flies, more rapid and uniform decomposition rates and less problems regarding moisturecontrol(MillerandJones,1995).Thecompostwaspre- paredwithastackedmixtureof:groundedgreencamerongrass (PennisetumpurpureumSchumach.),coffeehusk,cropresiduesof maize and beans, and inoculation with chicken manure at the rate of 50kgm3. Organic compost characteristics were (total amount):52%organicmatter,16:1carbon:nitrogenratio,7.3pH,2%

nitrogen,1.2%phosphorus,1.2%potassium,4.8%calcium,0.5%mag- nesium,54mgdm3 copper, 188mgdm3 zinc,12,424mgdm3 iron,793mgdm3manganese,25mgdm3boron.Moredetailsof theorganicvegetablecropping(1990–2009)canbefoundinSouza etal.(2012).

2.2. Experimentaldesign,covercropsandcroprotation

Theorganicno-tillvegetablessystemsexperimentwasinitiated in 2009.Theexperiment comprisesfourtillagesystems,imple- mentedon4m×6mplots,accordingtoaRandomizedComplete BlockDesign,withsixreplicates(totalizing24permanentexperi- mentalunits)coveringatotalareaof576m2.Therefore,theeffects oforganicmanagementaccumulatedovertheyears.Tillagetreat- mentsconsistedof:

(i)No-tillondeadmulchofgrass(grass):blackoat(Avenastrigosa Schreb)wasusedaswintercovercropfollowedbymaize(Zea maysL.)assummercovercrop.

(ii)No-tillondeadmulchofleguminous(leguminous):whitelupin (Lupinusalbus,L.)wasusedaswintercovercropfollowedby Sunnhemp(CrotalariajunceaL.)assummercovercrop.

(3)

(iii) No-tillondeadmulchofgrass andleguminous (intercrop):

grassandleguminousplantswereintercroppedusingthesame covercropsingrassandleguminoustreatments.

(iv)Conventional plow-based tillage (Conventionaltill): imple- mentedusingconventionaltillagewithrotaryhoeoneweek beforeplanting,withnocovercrop.Thetractorusedwasarear rotaryminitiller(YanmarMRT-650EX)withtherotarytines placedrightbehindthewheels.Thisisthemainvegetablecrop- pingsystemoftheBrazilianhorticulture(Souzaetal.,2012).

Operationscheduleconductedannuallyintheno-tillandcon- ventionaltillwerepresentedinTable1.From2009to2013,no-till wasperformedwithblack oatand whitelupinas wintercover crop, followed bycabbageaswinter vegetablecrop. Maizeand sunnhempworkedassummercovercrop,followedbyeggplantas summervegetablecrop.Blackoatandwhitelupinweresownon March2012aswintercovercrops.Covercropseedswerespread manuallyandlightlyburied.Covercropsweresowninrowsspaced 33cmfromeachotherforalltreatments.Theseedrateswere480g perplotforblackoatand660gperplotforwhitelupin.Intheinter- croppedsamplingunits,seedswerereducedtohalfofthesevalues.

OnJuly2012,covercropsweremowedbymechanicalmowingand cabbagewasplanted.Covercropresidueswereleftonthesoilsur- faceasorganicdeadmulchandtheywerenotincorporatedintothe soil.Onemontholdcabbageseedlingsweretransplantedbyhand.

Thecabbageseedlingswerearrangedinsinglerowsdistant60cm fromeachother.Thedistancebetweenthecabbageplantsinthe rowswas40cm.

Afterwintercrop,maizeandsunnhempweresownonOctober 2012assummercovercrops.Theseedrateswere600gperplotfor maizeand300gperplotforsunnhemp.Residuesweremowedon February2013followedbyeggplant(Solanummelongena)planting.

Eggplantseedlingsweregrownintubesof180cm3,usingamixture oforganiccompost/soilof1:2assubstrate.Theeggplantseedlings werearrangedinsinglerowsatadistanceof120cmbetweenthem.

Thedistancebetweenthecabbageplantsintherowswas70cm.

Cabbageandeggplantreceived15Mgha1oforganiccompost(dry mass)atplantinginallno-tilltreatments.Cabbageandeggplant seedlingswereirrigatedimmediatelyaftertransplantinginorder toavoidmoisturestress.Insidetherows,theweedswereremoved manuallywhenevernecessary.

2.3. Soilsampling

SoilwassampledinMarch2012,attheendof2011summer crop. Ineach plot,onedisturbed soilsample(atthree different layers;0–5,5–15and15–30cm,usingDutchaugers)andoneundis- turbedsoilsample(0–10,10–20and20–30cm,bythevolumetric ringmethod)weretaken(Embrapa,1997).Thesoilsampleswere airdried,groundedandsievedthrougha2-mmsievetoremove largerpiecesofrootmaterialandthestonefraction.Allsoilsam- pleswereanalyzedinthesoillaboratoryattheFederalUniversity ofEspíritoSanto,AgricultureScienceCenter.

2.4. Soilchemicalandphysicalcharacterization

SoilchemicalandphysicalcharacterizationisgiveninTable2.

ThepHwasdeterminedona 1:5soil:deionisedwaterratio;the potentialacidity(H+Al)wasextractedwithCa(OAc)2 0.5molL1 buffered to pH 7.0, and quantified by titration with NaOH 0.0606molL−1.ExchangeableCa2+,Mg2+andAl3+wereextracted with1molL1KClandNaandKwereextractedwithMehlich1 (Embrapa,1997).Theelementcontentintheextractsweredeter- minedbyatomicabsorption(Ca2+,Mg2+andAl3+),flameemission (KandNa)andphotocolorimetry(P).Theeffectivecationexchange capacity(CECE)wascalculatedbysumofcations(Ca2+,Mg2+,Na+,

K+andAl3+)andtotalcationexchangecapacity(CTCT)estimatedby thesumofbasesandpotentialacidity.Thegranulometricanalysis wasperformedbypipettemethod,50rpm,16h(Embrapa,1997).

2.5. CovercropbiomassandCinput

Covercropbiomasswascollectedinsidea1×1msquareineach plotforfreshmassdetermination.Further,itwasdriedinoven withcontinuousaircirculation(60C)fordrymassdetermination.

Totalcarbonofcovercropbiomasswasanalyzedbylossinigni- tionat430Cfor24hinmufflefurnace(Kiehl,1985).Aproportion of950gCkg1biomassforwhitelupinandsunnhemp,920gCkg1 biomassforblackoatandmaizeand935gCkg−1biomassforinter- cropwerefoundafteranalysis.Thefactorof 1.724wasusedto convertorganicmatteroforganiccompostintoorganicCbasedon theassumptionthatorganicmattercontains580gCkg−1biomass (CarmoandSilva,2012;SoilSurveyStaff,1996).

2.6. Soilphysicalattributes

Undisturbedsoilsamplesweresaturatedinwaterfor24hand thenplacedinasandtensiontableof−6kPa.Soilmicroporosity (Mic)wascalculatedafterstabilizationofwaterintothevolumet- ricring(72h).Bulkdensity(BD)wasperformedbythevolumetric ringmethodandparticledensity(PD)wasdeterminedbythevol- umetric flaskmethod(Embrapa,1997).Totalporosity (TP) was calculatedusingthefollowingequation:

TP=1−

BD

PD

(1) where BD is bulk density (gcm−3) and PD is particle density (gcm3). Macroporosity(Map) wascalculated as the difference betweentotalporosityandmicroporosity(Embrapa,1997).

2.7. Soilorganiccarbonandnitrogen

Soilsubsamplesofapproximately20gwerecrushedinamortar topassa250␮mmesh,andthenanalyzedfortotalsoilorganiccar- bon(totalorganicC),totalnitrogen(totalN),labilecarbon(Clabil) andrecalcitrantcarbon(Crecal).TotalsoilorganicCwasperformed bywetoxidationwithK2Cr2O7 0.167molL1 inthepresenceof sulfuricacidwithexternalheating(YeomansandBremner,1988).

TotalNwasobtainedbysulfuricaciddigestionfollowedbyKjel- dahl distillation(Bremmerand Mulvaney, 1982;Tedesco et al., 1995).ThefractionsofsoilorganicCwereestimatedthrougha modifiedWalkelyandBlackmethodasdescribedbyChanetal.

(2001)using2.5,5and10mLofconcentratedH2SO4resultingthree acid–aqueoussolutionratiosof0.25:1,0.5:1and1:1(whichcorre- sponded,respectivelyto3,6and9molL−1 H2SO4).Theamount of soilorganicC determinedusing2.5, 5and 10mLof concen- tratedH2SO4whencomparedwithtotalC,allowedseparationof totalCintothefollowingfourfractionsofdecreasingoxidizability:

FractionI(verylabile)organicCoxidizableunder3molL1H2SO4; FractionII(labile)thedifferenceinsoilorganicCextractedbetween 6and3molL−1H2SO4;FractionIII(lesslabile)thedifferenceinsoil organicCextractedbetween9and6molL1H2SO4;andFractionIV (non-labile)residualorganicCafterreactionwith9molL1H2SO4 whencomparedwithtotalC.ThesumoffractionsIandIIcorre- spondstothelabile CandthesumoffractionsIIIandIVtothe recalcitrantC(Chanetal.,2001).Becauseofpossiblechangesin bulkdensityasaresultofcroppingsystemandorganicfertiliza- tion,theCandNstocks(0–30cm)werecalculatedonamassper unitvolumebasis(EllertandBettany,1995),takingthesoilmass oftheconventionaltillascontrol.

(4)

Table1

Operationalscheduleconductedannuallyintheno-tillandconventionaltilltreatmentsfrom2009to2013.

---2012--- ----2013---

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

---Summer--- ---Fall--- ---Winter--- ---Spring--- ---Summer--- Soil sampling1

Soil CO2-C emission and soil sampling2

Winter crop - Cabbage Cover crop sown3

Cover crop mowed Cabbage planting Plowing- Rotary hoe4 Organic compost Hand weeding

Summer crop - Eggplant Cover crop sown5

Cover crop mowed Eggplant planting Plowing- Rotary hoe 4 Organic compost

1DeterminationoftotalorganicCandN,recalcitrantandlabileC;2DeterminationofmicrobialbiomassC,solubleCandwatercontentofsoil;3BlackoatandWhitelupin;

4Onlyforconventionaltilltreatmentandtherewasnocovercropinconventionaltill;5MaizeandSunnhemp;DatesofsoilCO2 Cemissionandsoilsampling2:14/03/12;

22/05/12;10/08/12;2510/12;06/02/13.

2.8. SoilCO2 Cemissionandsoiltemperature

MeasurementsofCO2 CemissionsweremadeonMarch,May, August,October2012andFebruary2013.CO2 Cemissionswere measuredusingaportableLI-8100analyzer(LiCor,EUA)coupled toadynamicchamber(LI-8100-102),knownassurveychamber, having10cmdiameterplacedonPVCsoilcollarsinsertedinthe soil(5cmdepth)beforetheexperiment.Measurementswerebased onsixreplicatesin each treatmentandlasted forover 1.5min, duringwhichtimemeasurementsofCO2 Cconcentrationswere madeinside thechamberat 3-sintervals.AnnualCO2 C emis- sions werecalculated basedon themeanof allmeasurements.

Soiltemperatures(5.0cmdepth)weredeterminedduringthegas fluxmeasurements.TherelationbetweenCO2 C(FCO2 C)andsoil temperature(Tsoil)wasdescribedbythefollowingequation:

FCO2=F0×exp(b×Tsoil), (2)

with the natural log (Ln) of the CO2 C emission we have Ln(FCO2 C)=Ln(F0×exp(b×Tsoil)), the result is Ln(FCO2 C)=Ln(F0)+b×Tsoil. A linear relationship between

Ln(FCO2 C)andtheTsoilisexpectedwheresoiltemperatureisa limitingfactor.Basedonthebcoefficientsitispossibletoderive theQ10factor,whichrepresentsthepercentageincreaseinCO2 C emissionfora10Cincreaseinsoiltemperature.Thisisderivedas Q10=e10×b(Carvalhoetal.,2012).

2.9. SoilwatercontentandmicrobialbiomassC

Ineachplot,disturbedsoilsampleswerecollectedat5cmdepth todeterminatesoilwater content,microbialbiomass C,soluble carbon(Csol)andmetabolic(Qmet)andmicrobialquotient(Qmic).

SoilsampleswerecollectedinMarch,May,August,October2012 andFebruary2013.Thethermogravimetricmethod(105–110C for 24h) was usedto determine soil water content (according toEmbrapa,1997).TheCcontentinthemicrobialbiomasswas determinedbytheirradiation-extractionmethod(accordingtothe methodologydeveloped byFerreiraet al.,1999).TheC content extractedby0.5MK2SO4(calibratedpH6.5–6.8)innon-irradiated sampleswasusedtoestimatesolubleC.Metabolicquotientwas determinedbytheratiobetweenthesoilCO2 Cemissionrateper Table2

Chemicalandphysicalcharacterizationofthesoilsunderdifferentmanagementsystemsintheexperimentalsite.

Treatment pH P K Na Ca Mg Al CECT V Sand Silt Clay

H2O mgdm−3 cmolcdm−3 % gkg−1

0–5cm

Grass 6.40 2774.80 324.00 35.33 4.15 1.56 0.00 11.86 56.45 580.34 122.04 297.61

Leguminous 6.44 2882.95 328.67 22.83 4.61 1.42 0.00 11.48 61.32 524.07 139.98 335.95

Intercrop 6.43 3243.03 490.00 92.33 4.76 1.74 0.00 8.16 100.00 497.24 144.25 358.51

Conventionaltill 6.51 3224.14 360.50 68.00 8.04 2.43 0.00 16.25 72.22 461.87 138.25 399.87

5–15cm

Grass 6.37 1676.10 347.67 20.50 4.11 1.13 0.00 11.09 55.85 583.38 113.82 302.80

Leguminous 6.35 1293.10 304.83 14.83 4.11 1.10 0.00 9.83 63.14 557.35 117.05 325.60

Intercrop 6.32 1389.63 285.50 22.33 4.87 1.14 0.00 6.83 100.00 485.70 130.17 384.12

Conventionaltill 6.52 1445.38 235.80 20.40 6.71 1.40 0.00 12.51 69.80 473.19 140.62 386.19

15–30cm

Grass 6.35 778.96 230.67 11.67 3.12 0.89 0.00 9.08 51.11 616.70 89.44 293.87

Leguminous 6.48 661.15 285.50 6.83 3.44 0.75 0.00 4.95 100.00 580.98 106.35 312.67

Intercrop 6.23 475.30 247.33 3.33 2.87 0.77 0.00 4.29 100.00 495.64 127.69 376.68

Conventionaltill 6.45 672.14 143.80 5.20 3.92 1.00 0.00 9.78 53.56 468.34 129.77 401.88

Grass:no-tillondeadmulcheofgrass;leguminous:no-tillondeadmulcheofleguminous;intercrop:no-tillondeadmulcheofgrassandleguminous;pH:activeacidity;P:

phosphorus;K:potassium;Na:sodium;Ca:calcium;Mg:magnesium;Al:aluminum;CECT:totalcationexchangecapacity;V:saturationofbases.

(5)

Table3

Meanvaluesoffreshmass,drymassproductionandCinputduringwinterand summercovercrop.

Greenmanure Freshmass Drymass Cinput

Mgha−1 Wintercrop

Blackoat 37.86a 9.09a 4.85a

Whitelupin 28.54b 6.61a 3.65a

Intercropping 37.33a 8.34a 4.52a

Summercrop

Maize 63.51a 21.80a 11.64a

Sunnhemp 28.64c 10.69b 5.90b

Intercropping 46.21b 16.48ab 8.94ab

Meansfollowedbythesameletter,inthesamecolumn,donotdifferbyTukey’stest (p<0.05).Cinput=Cdrymassofcovercrop+Coforganiccompost.

microbialbiomassCunit.Microbialquotientwascalculatedbythe ratiobetweenmicrobialbiomassCandtotalsoilorganicC(Ferreira etal.,1999).

2.10. CbalanceandCO2equivalent

Carbonbalancewascalculatedbydifferencebetweenannual averageof CO2 C emissionsand C input(organiccompost and greenmanure).Asvegetablescrophadsimilaryieldsandthussim- ilarvaluesofcropresidues,theCinputaccountedreferstotheC ofgreenmanuresandorganiccompost.Theequivalencebetween CandCO2wasbasedonthemolecularweightsoftheelements,in whichonemolofCO2contains12.011gC.

2.11. Dataanalysis

PearsoncorrelationswereperformedbetweensoilCO2 Cemis- sions, soil water content and soil temperature between no-till andconventionaltill.Dataweresubmittedtoanalysisofvariance (ANOVA)andmeansbetweentreatmentswerecomparedusingthe leastsignificantdifferenceofaTukeytest(p<0.05)intheSAEGsoft- ware(Funarbe,2007).Split-plotanalysisofvarianceforsoilCO2 C emission,soiltemperature,soilwatercontent,microbialbiomass C,solubleC,metabolicquotientandmicrobialquotientwereper- formed.Standarderrorwascalculatedfromthestandarddeviation ofthedatasetofallreplicates.

3. Results

3.1. CovercropbiomassandCinput

Meanvaluesoffreshmass,drymassproduction andCinput ofcovercropsaregiveninTable3.Duringthewintercrop,fresh massproductionofwhitelupinwassignificantlylowerthanblack oatandintercrop.Nosignificantdifferenceswererecordedinwin- ter cropfordry massproductionand C input.Insummercrop, freshmassproductionofmaizewassignificantlyhigherthanthat ofsunnhemp.Thisresultwasalsoobservedfordrymassproduc- tion.TheCinputwassignificantlyhigherinmaizeplotsthanthe sunnhempplotsinsummercrop.

3.2. Soilphysicalattributes

Microporosity(Mic), macroporosity (Mac), total porosity(TP), bulk density (BD) and particledensity (PD)values aregiven in Table4. Highermicroporosityvalues wererecordedat0–10cm layer for all plots. Conventional till showedsignificantly lower (p<0.05)microporosityandhighermacroporosityascomparedto theno-tilltreatment.Therewerenodifferencesbetweenno-till andconventionaltillupto20cmdepthfortotalporosity.Theratio betweenmacroporosityandtotalporosityindicatesthatno-tillhas higherwaterholdingcapacity.Bulkdensitytendedtoincreasewith soildepth.

3.3. Soilorganiccarbonandnitrogen

MeanvaluesoftotalorganicC,totalN,C/Nratio,labileCand recalcitrantCaregiveninFig.2.Ingeneral,asdepthincreased,total organicC,totalN,ClabilandCrecaltendedtodecrease.The0–5cm layer had the highest C and N contents. Higher (p<0.05) total organicCwasrecordedintheintercroptreatment(50.48gkg1)as comparedtoconventionaltillat0–5cmlayer(43.74gkg−1).There wasnostatisticaldifferencefortotalNamongalllayersevaluated.

TotalNrangedfrom2.81to5.34gkg1ingrasswhileinconven- tionaltillitrangedfrom2.54to4.51gkg−1.TheC/Nratiotendedto increasewithincreasingsoildepth.IntercropshowedhigherC/N ratioforallsampledsoillayers.Conventionaltillshowedsignifi- cantlylowermeansofClabilascomparedwithgrassupto15cm soildepth.HigherCrecalwasrecordedfortheintercropwhencom- paredwithgrass at0–5and15–30cmlayer.Crecal tendedtobe higher at5–15cm layerfortheintercrop whencompared with grass. However, nostatistical significance wasobserved. C and Table4

Meanvaluesofmicroporosity(Mic),macroporosity(Mac),totalporosity(TP),bulkdensity(BD)andparticledensity(PD)amongdifferentvegetablecroppingsystems.

Treatment Mic Mac TP Mac/TP BD PD

m3m−3 gcm−3

0–10cm

Grass 0.47a 0.16b 0.63a 0.25b 0.98a 2.70a

Leguminous 0.48a 0.16b 0.64a 0.25b 0.98a 2.71a

Intercrop 0.48a 0.14b 0.61a 0.22b 0.99a 2.57b

Conventionaltill 0.41b 0.24a 0.65a 0.36a 0.95a 2.72a

10–20cm

Grass 0.42a 0.16a 0.57a 0.27a 1.15a 2.72ab

Leguminous 0.42a 0.16a 0.58a 0.28a 1.12a 2.65b

Intercrop 0.42a 0.19a 0.61a 0.31a 1.15a 2.92a

Conventionaltill 0.41a 0.18a 0.59a 0.31a 1.14a 2.81a

20–30cm

Grass 0.41a 0.13b 0.54b 0.24b 1.19ab 2.61b

Leguminous 0.42a 0.13b 0.55ab 0.24b 1.21a 2.73ab

Intercrop 0.42a 0.16ab 0.58ab 0.27ab 1.19ab 2.83a

Conventionaltill 0.42a 0.18a 0.60a 0.31a 1.13b 2.83a

Grass:no-tillondeadmulcheofgrass.Leguminous:no-tillondeadmulcheofleguminous.Intercrop:no-tillondeadmulcheofgrassandleguminous.Meansfollowedby thesameletter,inthesamecolumn,donotdifferbyTukey’stest(p<0.05).

(6)

Fig.2.Meanvalues(n=6)oftotalorganicC(a),totalN(b),C/Nratio(c),labileC(d)andrecalcitrantC(e)inthedifferentplantingsystems.Meansfollowedbythesame letter,didnotdifferbyTukey’stest(p<0.05).Horizontalbarsrepresentstandarderrorofthemean.Grass:no-tillondeadmulchofgrass.Leguminous:no-tillondeadmulch ofleguminous.Intercrop:no-tillondeadmulchofgrassandleguminous.

N stockvalues in thedifferentvegetablesplantingsystems are giveninTable5.Cstocksweresignificantlyhigherintheinter- crop(131.2Mgha−1)whencomparedwiththeothertreatments.

Conventional till showed C stock of 105Mgha1. N stock was 12.2Mgha−1ingrassand10Mgha−1inconventionaltill.

3.4. SoilCO2 Cemissionandsoiltemperature

CO2 CemissionsandsoiltemperaturevaluesaregiveninFig.3.

LowestCO2 CemissionswererecordedinallplotsduringMay Table5

Carbonandnitrogenstocksvaluesinthedifferentplantingsystems(Mgha−1)inthe sampledsoilprofile(0–30cm).

Treatment Grass Leguminous Intercrop Conventionaltill

Carbonstock 115.8b 110.9b 131.2a 105b

Nitrogenstock 12.2a 10.4a 10.4a 10a

Grass:no-tillondeadmulcheofgrass.Leguminous:no-tillondeadmulcheoflegu- minous.Intercrop:no-tillondeadmulcheofgrassandleguminous.Meansfollowed bythesameletter,inthesamerow,donotdifferbyTukey’stest(p<0.05).

and August2012(Fig.3a).Meanannual CO2 C emissionswere 4.2; 3.64; 3.46 and 2.96␮mol CO2m−2s−1 in grass, intercrop, leguminous andconventional till,respectively. Thesevaluesare equivalenttoanannualeffluxof15.89;13.77;13.09and11.20Mg C CO2ha−1year−1,respectively.SignificantlylowerCO2 Cemis- sions were recorded in the conventional till treatment during March2012,ascomparedwithothertreatments.CO2 Cemission valuesgraduallyincreasedfromMay2012toFebruary2013.Dur- ingFebruary2013,theaverageCO2 Cemissionswerehigherinthe conventionaltill,withnodifferencesamonggrassandintercrop.

Soiltemperature showedsimilarseasonaldynamics,presenting loweraveragesinthewinter(August2012)andhighermeanval- uesin thesummer (March 2012and February 2013) (Fig. 3b).

Annual average soil temperature was 21.18; 21.15; 20.93 and 23.95C for grass, leguminous, intercrop and conventional till, respectively. Significantlyhighersoiltemperature wasrecorded in conventional till for all study periods (except for October 2012), when compared with no-till treatments. The Q10 factor waslowerintheintercropwhencomparedwiththeconventional till(Table6).Thelowestbparameterwasrecordedinintercrop

(7)

Fig.3. CO2 Cemissions(a)andsoiltemperature(b)inthedifferentplantingsystems.Samecapitallettersindicatenosignificantdifferencesamongmonthsandsame lowercaselettersrepresentnosignificantdifferenceswithinmonthsforthedifferenttreatmentsbyTukey’stest(p<0.05).Verticalbarsrepresentstandarderrorofthemean.

Grass:no-tillondeadmulchofgrass.Leguminous:no-tillondeadmulchofleguminous.Intercrop:no-tillondeadmulcheofgrassandleguminous.

treatment,showinglesssensitivitytoincreasesinsoiltempera- ture.

3.5. SoilwatercontentandmicrobialbiomassC

Soilwatercontent,microbialbiomassC,solublecarbon(Csol), metabolic (Qmet) and microbial quotient (Qmic) are given in Fig. 4. The annual averagesoil water content (gg1) followed the order:intercrop (0.28gg−1)>grass (0.27gg−1)>leguminous (0.27gg−1)>conventionaltill(0.20gg−1).Significantlylowersoil water content wasrecorded in theconventional till,compared with those of no-till for all study periods (Fig. 4a). There was a significantassociation among soil water content, micro- bial biomass C, soluble C, metabolic and microbial quotient in the five periodsstudied. Microbialbiomass C decreased in the coldermonths(fromMaytoOctober2012)andincreasedinthe warmer period (after October 2012), which coincided with the highersoiltemperatures(Fig.3b)andsoilwatercontentvalues (Fig.4a).

AnnualaveragemicrobialbiomassCwas433.00;378.67;380.63 and246.77mgkg1 forgrass,leguminous,intercropandconven- tionaltill,respectively.For allstudyperiods,significantlylower (exceptFebruary2013)microbialbiomassCwasrecordedincon- ventionaltill,comparedwiththoseoftheno-tillsystems(Fig.4b).

LowersolubleC contentswererecordedinAugust andOctober 2012(Fig.4c). AnnualaverageofsolubleCwas133.04;147.87;

126.75and 148.42mgkg1 forgrass,leguminous, intercropand conventionaltill,respectively.Therewerenodifferencesamong treatments for soluble C in August and October 2012. Lowest metabolicquotientwasrecordedduringMarch,MayandAugust, graduallyincreasingfromMay2012toFebruary2013(Fig.4d).

Annualaveragemetabolicquotientwas1.58;1.50;1.60and2.01 forgrass,leguminous,intercropandconventionaltill.Significantly highermetabolicquotientwasrecordedintheconventional till

treatmentinOctober2012,comparedwiththeno-tilltreatments.

Significantlylowermicrobialquotient(exceptFebruary2013)was recordedinconventionaltill.Annualaveragemicrobialquotient was9.69;7.84;7.54and5.64%forgrass,leguminous,intercropand conventionaltill.

3.6. CbalanceandCO2equivalent

Cbalancebetweenannualinput(covercropandorganiccom- post) and annual losses(CO2 C emissions) are given in Fig. 5.

High C input in no-till is contributing to positive C balance.

The difference between C input and C emitted (CO2 C emis- sions)was9.65;5.50and8.74Mgha−1 inthegrass,leguminous and intercrop treatments, respectively. C balance was negative in conventional till (−2.15Mgha1), even withannual inputof 30Mgha−1 organic compost. Carbon balance represents 35.38;

20.16 and 32.04Mgha1 year1 of CO2 equivalent sequestered forgrass,leguminousandintercrop,respectively.Conventionaltill showednegativebalanceofCO2equivalent(7.88Mgha−1year−1).

4. Discussion

4.1. CovercropbiomassandCinput

Cover cropbiomassproduction wassignificantlyaffected by theseason,reasonablyduetothevariationofclimaticconditions (Fig.1).Theaveragerainfallduringthesummercropping cycle (December–March)wasindeed85%higherthaninwintercrop- pingcycle(June–September).Theresultssuggestthathigherwater availabilityandincreasesintemperature(Fig.1)contributedtothe highcovercropbiomassproductionduringthesummercropby maize andsunnhemp, aswellasCinput.Theamountof above ground biomass produced is probablydue to moresuitable air temperaturesand rainfallwhichoccurredthroughoutthecover Table6

ParametersofthemodelbetweenCO2 Cemissionsandsoiltemperature,andQ10factorinthedifferentplantingsystemsduringthestudiedperiod.

Treatments Ln(CO2 Cemission)=a+(b×Tsoil)

a b R p Q10

Grass 1.070±0.184 0.016±0.008 0.341 0.065 1.170±0.189

Leguminous 0.494±0.193 0.034±0.009 0.582 <0.001 1.404±0.198

Intercrop 0.947±0.200 0.015±0.009 0.297 0.111 1.160±0.209

Conventionaltill 0.398±0.263 0.027±0.010 0.424 0.020 1.310±0.289

n=120,aandb:linearandangularcoefficients,respectively.R:correlationcoefficient.p:Significancelevel.Grass:grass:no-tillondeadmulcheofgrass.Leguminous:no-till ondeadmulcheofleguminous.Intercrop:no-tillondeadmulcheofgrassandleguminous.

(8)

Fig.4.Watercontentofsoil(a),microbialbiomassC(b),solublecarbon(c),metabolic(d)andmicrobialquotient(e)inthedifferentplantingsystems.Samecapitalletter indicatenosignificantdifferencesamongmonthssampledandsamelowercaserepresentnosignificantdifferenceswithinmonthsforthedifferenttreatmentsbyTukey’s test(p<0.05).Verticalbarsrepresentstandarderrorofthemean.Grass:no-tillondeadmulchofgrass.Leguminous:no-tillondeadmulchofleguminous.Intercrop:no-till ondeadmulchofgrassandleguminous.

cropgrowingperiod.Grassespromotedhigherbiomassproduction andCinputthanleguminoustreatments.Itiswell-knownthatthe mostwidelyusedcovercropsaregrasses,whichareconsideredthe mostsuitablecovercropsandleguminousareappreciatedfortheir nitrogensupplytothevegetablecroppingsystem(Campigliaetal., 2014).Ourresultsareconsistentwithotherrecordsinthelitera- tureforcovercropbiomassproductionintropicalzones(Amado etal.,2006;Bayeretal.,2009).

4.2. Soilphysicalattributes

Conventionaltillagepromotedincreasesinmacroporosityand decreasesinmicroporosityandbulkdensityattopsoil.Thisleadto highersoilaerationcapacityandlowerwaterholdingcapacity.The macroporositywasabovethecriticallevelforgaseousexchange, whichwasof0.10m3m3(Xuetal.,1992).Despitethereduction insoilbulkdensityandincreasesinmacroporosityinconventional

(9)

Fig.5.CBalancebetweenannualinput(covercrop+organiccompost)andannual losses(CO2 Cemissions)amongdifferentvegetablescroppingsystems.Grass:no- tillondeadmulchofgrass.Leguminous:no-tillondeadmulchofleguminous.

Intercrop:no-tillondeadmulcheofgrassandleguminous.

till,ourresultssuggestthattherearenolimitationsonsoilaera- tionandrootgrowthintheno-tilltreatments.Themicroporosity increasedforallno-tilltreatments,significantlycontributingtothe waterstorageandplantgrowth.

4.3. Soilorganiccarbonandnitrogen

Theresultssuggestthatover20yearsoforganicmanagement contributedtoincreasesinsoilorganicCpools.Anorganiccom- positionrichinC(302gCkg−1organiccompost;correspondingto 9.06MgCwasaddedtothesoilonanannualbasisandincreased soilorganicCstorage.Souzaetal.(2012)reportedthat,atthesame site,totalorganicCcontentsat0–20cmwere10.1and20.3gkg−1 in1990and2009,respectively.Thisresultisprobablyduetothe organicmanagementsystempracticedfor19yearsbefore2009.

Aftertheadoptionofno-tillin2009totalorganicChasincreased, reaching34.9gkg1at15–30cmlayerattheintercroptreatment in 2012. The biomass-Cinput by cover cropand organic com- post additionlead to increases in soil organicC through more intensifiedcroppingsequenceafterno-tilladoption.However,the maintenanceofsuperficialplowinginconventionaltillinducedsoil organicCdepletionduetooxidationofthelabilefractionsoforganic matter(seealsoSilvaandMendonc¸a,2007).

IntercropsystemfavoredsoilCstoragemorethanothervegeta- blescroppingsystems.ResultsshowedthatC/Nratiosforalllayers andplantingsystemsdidnotexceed20/1,suggestingapredomi- nanceofsoilNmineralization.SoilhumustypicallyhasaC/Nratio from10/1to12/1(Griffin,1972).Inthiscontext,intercropprovides aninputoforganicmaterialwithanintermediateC/Nratio,leading toalongerperiodofgroundcoverandsynchronizationbetween thesupplyanddemandofNbythecrops(Camposetal.,2011).

IntermediateC/Nratiosfavortheorganicmatterhumificationpro- cess,resultinginaccumulationofrecalcitrantCandimprovingsoil ecologicalfunctions.VachonandOelbermann(2011)reportedthat intercrop plots hadintermediate rates of cropresidueC and N inputs,showingslowrateofdecayandaccumulatingsoilorganic matterintime.

4.4. SoilCO2 Cemission,soiltemperature,soilwatercontent andmicrobialbiomassC

The results showed that, after plowing in summer crop (February2013),therewasanincreaseinCO2 Cemissionsinthe conventionaltillplots.Thismeasurementoccurred20daysafter plowing,whilethewinter measurementoccurred50days after

plowing. Thisobserved increase canindicatesthat there wasa period immediatelyafterplowingwhen CO2 C emissionswere higherintheconventionaltilltreatmentthaninno-till,whichwas notquantified.ItisrecognizedthatthegreatestdifferencesinC emissionsoccuratthetimeimmediatelyfollowingtillageopera- tions(Al-KaisiandYin,2005).Thus,itmayleadtounderestimation ofannualmeanofCO2 Cemissionsintheconventionaltilltreat- mentinthepresentstudy.

Overall,ourresultssuggestthatinwarmerperiodsplowingis moreharmfulthanincolderperiods,increasingCO2 Cemissions inthevegetablescropping,regardlessofatendencyofreductionon CO2 Cemissionsinthenotilltreatments,especiallyinthesum- mercrop.Thisisrelatedtotheconstantinputoforganicresidues thatcoversthesoil,reducingsoiltemperatureandincreasingsoil watercontent.Whencovercropresiduesareincorporatedintothe soil,theyaresubjectedtomoresuitableconditionsofsoilwater contentandtemperatureformineralizationthantheresiduesleft onthesoilsurface(Al-KaisiandYin,2005;Campigliaetal.,2014).

Inaddition,thenon-incorporationofresiduesisakeyfactortoa slowoxidation(Ghoshetal.,2012).Thus,itmayleadtoanincrease insoilwatercontentandareductionofsoiltemperatureforlonger periodswhencomparedwithresiduesincorporatedintothesoil.

Soilwatercontentisastronglimitingfactorforvegetablecrop- pingsystems,anditisthemostimportantfactorinfluencingthe rateofgrowing,especiallyintropicalzoneswithhightempera- turesandevapotranspirationrates(Tianetal.,2011;Ghoshetal., 2012).Vegetableshaveahighdependenceofsoilwatercontentfor theirdevelopment,especiallyinwarmerperiods.Ourresultspoint toahigherannualsoilwatercontentintheno-till,whencompared totheconventionaltill(0.28vs0.20gg1).Thisprovidesbettersoil conditionsand reducestheneedfor irrigationinthevegetables fields.

The high CO2 C emissions in the grass treatment can be explained by thehigher C/N ratio (higher C availability) when compared totheleguminoustreatment.Also,long-termorganic managementcanleadtosoilconditionswhereNisnotalimiting factorfororganicmattermineralizationbymicroorganisms(Sakai etal.,2011).No-tillandconventionalsystemusingblackoatand maizeinpre-plantingcanshowsimilarvaluesofC/Nratios(Costa etal.,2008).Rootrespirationandmicroorganismscancontribute tototalsoilrespirationasCO2effluxmeasurementsdonotdistin- guishbetweenCO2 Cemissionsfromthesetwosources(Hanson etal.,2000).Theconstantaccumulationandsupplyofaboveground organicmattercanleadtoincreasesinthemicrobiologicalactivity andCO2 Cemissionrates(Costaetal.,2008;Netoetal.,2011)in theno-tilltreatment.Overall,theseresultspointtoahighcapac- ity oforganicno-till vegetablessystemstoincreasesoil-quality indicatorsalongtheyears.

EcosystemproductivityandsoilorganicCturnoverarestrongly influenced by climatic and environmental conditions, where changesonCO2 Cemissionsratesmayoccurduetovariationsin soiltemperatureunderplausibleclimatechangescenarios.Lower lossesofCwithincreasesinsoiltemperaturewererecordedinthe grassandintercroptreatments.Inthesesystems,thestabilityof organicmatterishigherthanintheotherstreatments.Suchbehav- iorissupportedbythehigherQ10valuesinconventionaltilland leguminoustreatments.ThesetrendssuggestthathighCsolfrom conventionaltillandleguminouscancontributetotheincreased sensitivityofCO2 Cemissionstosoiltemperature.LabileCfrac- tionsarerapidlymineralizedbymicroorganisms,increasingCO2 C emissionsrates(Lal,2004).Thus,intercropismoreeffectivetostore Cunderpossiblesoiltemperatureelevationthanconventionaltill.

Ingeneral,no-tilltreatmentswereassociatedwithanincrease in microbialbiomassC.MicrobialbiomassCconstitutesa small portionofsoilorganicmatter,butitismoredynamicandfluctuates moreovertimethanthetotalsoilorganicC,beingareliablesoil

Referências

Documentos relacionados

This study aimed to assess the impact on soil C stock and the humification index of soil organic matter (SOM) of the adoption of NT and conventional tillage (CT)

The objective of this study was to evaluate the total organic carbon (TOC) and nitrogen (TN) contents in different fractions of soil organic matter (SOM) in an Oxisol of

Based on the amounts of organic C added to the soil with the doses of jatropha press cake, considering the content of soil organic matter of the treatments and the organic

thus, the purpose of this study was to examine adjustments in the soil penetration resistance curve of a eutroferric red oxisol (latossolo Vermelho) under annual no-till

When depths are compared within each management system (Table 6, lower section), both the conventional and the no-till systems are very similar with regards to the soil profile in

Microbial respiration for all treatments was slightly higher in the sandy clay compared with sandy loam soil; although soil samples with application of herbicides (alone and in

We hypothesized that the temporal variability of SPQ indicators during the crop growing season exhibits different behavior under CT than under NT, and that capacity and dynamic

In untreated controls, mean area of individual leaves of green and variegated genotypes was similar when grown under higher light intensities, while variegated plants