• Nenhum resultado encontrado

J. Braz. Chem. Soc. vol.23 número2

N/A
N/A
Protected

Academic year: 2018

Share "J. Braz. Chem. Soc. vol.23 número2"

Copied!
5
0
0

Texto

(1)

Article

Printed in Brazil - ©2012 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00

A

*e-mail: xiejw@zjnu.cn, xu1127@yahoo.com

Total Synthesis of 1-Hydroxydehydroherbarin and Ascomycones A, B,

Naphthoquinone Antibiotics

Wen-Kai Dong,a Xiong Huang,a Dong-Cheng Xu,*,a Xin-Sheng Lia and Jian-Wu Xie*,a

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials,

Department of Chemistry and Life Science, Zhejiang Normal University, 321004, Jinhua, P. R. of China

A primeira síntese total de 1-hidróxi-desidroherbarina e ascomyconas A e B é relatada. As ascomyconas A e B biologicamente interessantes foram obtidas com rendimento total de 18% a partir de 3-cloro-2,5-dimetoxibenzaldeído como bloco de construção.

The first total synthesis of 1-hydroxydehydroherbarin and ascomycones A and B is reported. The biologically interesting ascomycones A and B were obtained in 18% overall yield starting from 3-chloro-2,5-dimethoxybenzaldehyde as building block.

Keywords: pyranonaphthoquinone, 1-hydroxydehydroherbarin, ascomycones A, B, antibiotics, total synthesis

Introduction

The ascomycones A and B (1 and 2), two novel heptaketide-derived secondary metabolites, were isolated by Opatz et al.1 in 2008 from cultures of an

unknown ascomycete. They exhibited antimicrobial and cytotoxic activities. In addition, ascomycone B (2) is an antifungal compound. On the other hand, 1-hydroxydehydroherbarin (3) was isolated by Gunatilaka and co-workers in 2007.2 To the best of our knowledge,

there is no report for the total synthesis of ascomycones A and B, and it is worthwhile to perform their syntheses.3

Moreover, pyranonaphthoquinone antibiotics 4 and 54

have pronounced biological properties, such as inhibitor of HRV-3C protease, that was discovered by chemists at Merck upon screening the fermentation broths of the fungus Thysanophora penicilloides. The interesting biological activity of 4 and 5 has aroused considerable interest among the synthetic community, and many research groups have reported their total synthesis.5

Herein we present the first total synthesis of ascomycones A and B (1 and 2), as well as the first total synthesis 1-hydroxydehydroherbarin (3).

Results and Discussion

The plan for our synthesis of the pyranonaphthoquinones is shown in Scheme 1. We envisioned that the natural products possessed an acetal or hemiacetal ring, as such a few functional group modifications lead retrosynthetically to the naphthoquinone 6. This activated intermediate is readily transformed to the naphthoquinone skeleton 7. A cycloaddition of Brassard’s diene with the 2-chloro-1,4-benzoquinone 8 was designed to provide 7.

The synthesis was initiated with these ideas in mind (Scheme 2). To test the feasibility of our strategy, we first prepared naphthoquinone 7 through a Diels-Alder reaction of 2-chloro-1,4-benzoquinone 8a with 9 (Scheme 2).6-10

Unfortunately, the use of ethylene glycol as protecting group on the compound 8a resulted in a mixture of naphthoquinone 7a and 7c6 in the Diels-Alder reaction

(2)

2-chloro-1,4-O OH

O

O

O O

O OH

O

O

O OH

O O

O

O

O OH

1 ascomycone A 2 ascomycone B 3 1-hydroxydehydroherbarin

O O

O

O

O OH

O OH

HO

O

O OH

5 (-)-thysanone

4 astropaquinone C

Figure 1. Structures of ascomycones A, B and 1-hydroxydehydroherbarin.

O R1

O

O

O R2

1 ascomycone A: R1 = OH, R2 = OCH3; 2 ascomycone B: R1 = OH, R2 = OH;

3 1-hydroxydehydroherbarin: R1 = OCH

3, R2 = OH

O

O

O

O O

O O

O

O Cl

O

O O

OTMS

O +

8a n = 1

8b n = 2

9

O

O OH

O

O O

n

n

7a n = 1

7b n = 2 n

6a n = 1

6b n = 2

O

O Cl

O

10

Scheme 1. Retrosynthetic analysis of ascomycones A, B and 1-hydroxydehydroherbarin.

O

OTMS O

O

O O O Cl

+

1) THF, −30 oC, 30 min

then rt 2 h

2) silca gel, CH2Cl2, 14 h

OH

O

O

O O O

+

Cl O

O OH

O

9 8a 7a (26%) 7c (28%)

Scheme 2. Diels-Alder reaction of 8a with 9.

benzoquinone 8b which was protected with propanediol, as a dienophile. The procedure for our synthesis of the naphthoquinone skeleton 7b is shown in Scheme 4. The compound 2-(3-chloro-2,5-dimethoxyphenyl)-1,3-dioxane 11 was accessed in 92% yield from known aldehyde 10,11 by acetalization under Dean

Stark conditions. Several reports on the oxidation of 2-(3-chloro-2,5-dimethoxyphenyl)-1,3-dioxane (11)

toward 2-chloro-6-(1,3-dioxan-2-yl)cyclohexa-2,5-diene-1,4-dione (8b) with silver(II) dipicolinate, silver(I) oxide, cobalt(III) fluoride, and cerium(IV) ammonium nitrate (CAN) as oxidants are known in the literature.13-15 Using

(3)

by the regioselective cycloaddition of 8b with 9, without isolating the intermediate 7c.

To avoid the formation of the anthraquinone side product,16 the 8-hydroxyl group of compound 7b was

protected by O-methylation using iodomethane and silver(I) oxide (Scheme 5). Reaction of 12 with acetonylpyridinium chloride (13) and 1.2 equiv. of triethylamine gave the

6b as the sole product in a yield of 85%.16,17 Thus, upon

treatment of this acylmethyl substituted naphthoquinone (6b) with triethylamine, it cyclized selectively to the pyranonaphthoquinone dehydroherbarin (14) in 81% yield.12,17 For the synthesis of 1-3, 14 needed to be further

deprotected. Therefore, compound 14 was first treated with excess hydrochloric acid in tetrahydrofuran at room temperature to give 1-hydroxydehydroherbarin (3) in 95%

yield (Scheme 4). Then the most active antifungal compound ascomycone B (2) was obtained in 83% yield when 3 was treated with excess boron tribromide in dichloromethane at −78 °C to give selective O-demethylation at the peri

-position.17 In addtion, ascomycone A (1) was cleanly

obtained when ascomycone B was stirred in methanol. Our synthetic ascomycones B and 1-hydroxydehydroherbarin display 1H and 13C NMR, IR, and MS spectra identical to

those reported for the natural samples.

Conclusions

In summary, we have developed an efficient total synthesis of the biologically interesting ascomycones A and B in 9 steps and 18% overall yield starting from

O

O O O Cl

8a

O Cl

O

O Cl

O

O OTMS

II

O

O Cl

O

O OTMS O

HO

III

O

O Cl

O

O

IV

7c

9

air, [O]

-CO2

aromatization

O

I

O

O Hydrolysis

Hydrolysis

Scheme 3. Possible mechanism for the formation of compound 7c from 8a and 9.

HOCH2CH2CH2OH

p-TsOH.H2O

toluene, reflux, 4 h O

CHO

O Cl

O

O Cl

O

O CAN, rt, 3 min CH3CN/H2O 1:1

O

O Cl

O

O O

O OH

O

O O 1) 9, THF, −30 oC,

30 min, then rt, 1 h

10

8b (78%) 7b (62%)

11 (92%)

2) silica gel, CH2Cl2, 14 h

(4)

O OH

O

O

O OH

2 ascomycone B (83%) O

O OH

O

O O

7b

Ag2O, CH3I

CHCl3, reflux 5 h, in the dark

O

O O

O

O O

12 (93%)

13, Et3N

CH3CN, rt, 12 h, in the dark

O

O O

O

O O

O

O O

O

O

O

O OH

14 (81%) Et3N, toluene reflux 6 h

in the dark

2 mol L-1 HCl/THF 2:5

O O

O

O

O OH

3 1-hydroxydehydroherbarin (95%)

BBr3,−78 oC, 30 min

then rt, 2 h, in the dark

rt, 2 h, in the dark

6b (85%)

N O Cl

13

O OH

O

O

O O

1 ascomycone A (80%) cat.H

2SO4

MeOH rt, 2 h

Scheme 5. Completion of the total syntheses of ascomycones A and B (1, 2) and 1-hydroxydehydroherbarin (3).

3-chloro-2,5-dimethoxybenzaldehyde (10)as building block. Notably, 1-hydroxydehydroherbarin was obtained in more than 21% yield. Key features of our synthetic approach include an efficient method on the oxidation of 11 toward

8b with CAN. The efficient approach and rapid synthetic routereported here should be easily applied to the synthesis of analogues for further biological testing, which will be reported in due time.

Supplementary Information

Supplementary data are available free of charge as a pdf file at http://jbcs.sbq.org.br.

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (20902083) and the Natural Science Foundation of Zhejiang Province, China (Y4090082).

References

1. Opatz, T.; Kolshorn, H.; Thines, E.; Anke, H.; J. Nat. Prod. 2008, 71, 1973.

2. Paranagama, P. A.; Wijeratne, E. M. K.; Burns, A. M.; Marron, M. T.; Gunatilaka, M. K.; Arnold, A. E.; Gunatilaka, A. A. L.; J. Nat. Prod. 2007, 70, 1700.

3. Wadsworth, A. D.; Sperry, J.; Brimble, M. A.; Synthesis2010, 2604. 4. Wang, L.; Dong, J. Y.; Song, H. C.; Shen, K. Z.; Wang, L. M.;

Sun, R.; Wang, C. R.; Gao, Y. X.; Li, G. H.; Li, L.; Zhang, K. Q.; Planta Med. 2009, 75, 1339; Singh, S. B.; Cordingley, M. G.; Ball, R. G.; Smith, J. L.; Dombrowski, A. W.; Goetz, M. A.; Tetrahedron Lett. 1991, 32, 5279.

5. Sperry, J.; Yuen, T. Y.; Brimble, M. A.; Synthesis2009, 2561; Sperry, J.; Brimble, M. A.; Synlett2008, 1910; Brimble, M. A.; Houghton, S. I.; Woodgate, P. D.; Tetrahedron2007, 63, 880; Bulbule, V. J.; Koranne, P. S.; Deshpandeb, V. H.; Borate, H. B.; Tetrahedron2007, 63, 166; Sawant, R. T.; Waghmode, S. B.; Tetrahedron2009, 65, 1599; Donner, C. D.; Gill, M.; Tetrahedron Lett.1999, 40, 3921.

6. Savard, J.; Brassard, P.; Tetrahedron1984, 40, 3455. 7. Gattinoni, S.; Merlini, L.; Dallavalle, S.; Tetrahedron Lett.2007,

48, 1049.

8. Trost, B. M.; Thiel, O. R.; Tsui H.-C.; J. Am. Chem. Soc.2003, 125, 13155.

9. Brimble, M. A.; Elliott, R. J. R.; Tetrahedron1997, 53, 7715. 10. Bringmann, G,; Gotz, R.; Keller, P. A.; Walter, R.; Boyd, M.

(5)

11. Tamiya, M.; Ohmori, K.; Kitamura, M., Kato, H., Arai, T.; Oorui, M.; Suzuki, K.; Chem. Eur. J . 2007, 13, 9791. 12. Claes, P.; Jacobs, J.; Claessens, S.; De Kimpe, N.; Tetrahedron

2010, 66, 7088.

13. Tomatsu, A.; Takemura, S.; Hashimoto, K.; Nakata, M.; Synlett 1999, 1474.

14. Snyder, C. D.; Rapoport, H.; J. Am. Chem. Soc. 1972, 94, 227. 15. Jacob III, P.; Callery, P. S.; Shulgin, A. T.; Castagnoli Jr., N.;

J. Org. Chem. 1976, 41, 3627.

16. Kesteleyn, B.; De Kimpe, N.; J. Org. Chem. 2000, 65, 640.

17. Van, T. N.; Verniest, G.; Claessens, S.; De Kimpe, N.; Tetrahedron2005, 61, 2295; Jacobs, J.; Claessens, S.; Mbala, B. M.; Huygen, K.; De Kimpe, N.; Tetrahedron2009, 65, 1193; Kesteleyn, B.; Puyvelde, L. V.; De Kimpe, N.; J. Org. Chem. 1999, 64, 438; Van, T. N.; Kesteleyn, B.; De Kimpe, N.;

Tetrahedron 2001, 57, 4213.

Submitted: August 10, 2011

Imagem

Figure 1. Structures of ascomycones A, B and 1-hydroxydehydroherbarin.

Referências

Documentos relacionados

For this reason, besides the KPI’s selected to monitor the platform’s performance, which should be directly reported to the employees involved in the platform management,

Esta relação pode ser observada principalmente na área B, a qual possui maior CTC, quantidade de matéria orgânica e pH, fato este que também foi diagnosticado por Nascimento (2008)

oxygen generation) and biological activity of the new cationic corroles against the naturally bioluminescent bacterium Allivibrio fischeri ( A. fischeri ) will be

No caso do citrato de ferro (III), apesar da fotólise deste possuir um menor rendimento quântico, o complexo é menos tóxico, está mais rapidamente disponível e pode

Assim como a própria infância, os capítulos destinados a narrar a fase dos sete anos são compostos por breves episódios, por experiências do quotidiano da criança: a transgressão de

Na Tabela 7 apresenta-se a associação entre os dados antropométricos reportados pelos pais (Z-scores para o peso, estatura e IMC, calculado com base nos mesmos) e os valores

Desenvolvemos um Sistema de Apoio à Decisão para o Conselho Executivo da Escola que integra: (1) um sistema de classificação automática de alunos com base em parâmetros

This information should be further studied and reported so that OAVS auricular abnormalities can be better evaluated and related to the type and degree of possible hearing loss..