• Nenhum resultado encontrado

Rev. Bras. Reumatol. vol.55 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Reumatol. vol.55 número1"

Copied!
5
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

REUMATOLOGIA

ww w . r e u m a t o l o g i a . c o m . b r

Original

article

Evaluation

of

grip

strength

in

normal

and

obese

Wistar

rats

submitted

to

swimming

with

overload

after

median

nerve

compression

Josinéia

Gresele

Coradini

a

,

Camila

Mayumi

Martin

Kakihata

a

,

Regina

Inês

Kunz

a

,

Tatiane

Kamada

Errero

a

,

Maria

Lúcia

Bonfleur

a,b

,

Gladson

Ricardo

Flor

Bertolini

a,c,∗ aUniversidadeEstadualdoOestedoParaná,Cascavel,PR,Brazil

bUniversidadeEstadualdeCampinas,Campinas,SP,Brazil

cHealthSciencesAppliedtotheLocomotorApparatus,FaculdadedeMedicinadeRibeirãoPreto,UniversidadedeSãoPaulo,Ribeirão

Preto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16September2013 Accepted26August2014

Availableonline26November2014

Keywords:

Musclestrength Nervecompression Obesity

Swimming

a

b

s

t

r

a

c

t

Objective:Toverifythefunctionalitythroughmusclegripstrengthinanimalswithobesity inducedbymonosodiumglutamate(MSG)andincontrolanimals,whichsuffered compres-sionoftherightmediannerve,andtreatedwithswimmingwithoverload.

Methods:Duringthefirstfivedaysoflife,neonatalWistarratsreceivedsubcutaneous injec-tionsofMSG.Thecontrolgroupreceivedahypertonicsalinesolution.Forty-eightratswere dividedintosixgroups:G1(control);G2(control+injury);G3(control+injury+swimming); G4(obese);G5(obese+injury);andG6(obese+injury+swimming).Theanimalsingroups G2, G3,G5andG6weresubmittedtocompressionofthemediannerveandG3andG6 groupsweretreated,afterinjury,withswimmingexercisewithloadforthreeweeks.The swimmingexercisehadaprogressiveduration,accordingtotheweek,of20,30and40min. Musclestrengthwasassessedusingagripstrengthmeterpreoperativelyandonthe3rd,7th, 14thand21stdaysaftersurgery.Theresultswereexpressedandanalyzedusingdescriptive andinferentialstatistics.

Results:Whenthegripstrengthwascomparedamongassessmentsregardlessofgroup,in thesecondassessmenttheanimalsexhibitedlowergripstrength.G1andG4groupshad greatergripstrength,comparedtoG2,G3,G4andG6.

Conclusion: The swimming exercisewith overload has not been effectivein promoting improvementinmusclegripstrengthaftercompressioninjuryoftherightmediannervein controlandinobese-MSGrats.

©2014ElsevierEditoraLtda.Allrightsreserved.

LaboratoryofEndocrinePhysiologyandMetabolism;LaboratoryfortheStudyofInjuriesandPhysicalTherapyResources,Universidade EstadualdoOestedoParaná.

Correspondingauthor.

E-mail:gladsonricardo@yahoo.com.br(G.R.F.Bertolini).

http://dx.doi.org/10.1016/j.rbre.2014.08.002

(2)

Avaliac¸ão

da

forc¸a

de

preensão

em

ratos

Wistar,

normais

e

obesos,

submetidos

à

natac¸ão

com

sobrecarga

após

compressão

do

nervo

mediano

Palavras-chave:

Forc¸amuscular Compressãonervosa Obesidade

Natac¸ão

r

e

s

u

m

o

Objetivo:Verificarafuncionalidadepormeiodaforc¸amusculardepreensãoemanimaiscom obesidadeinduzidaporglutamatomonossódico(MSG)eanimaiscontrole,quesofreram compressãodonervomedianodireito,tendocomotratamentoanatac¸ãocomcarga.

Métodos:RatosWistarneonatosduranteosprimeiroscincodiasdevidareceberaminjec¸ões subcutâneasdeMSG.Ogrupocontrolerecebeusoluc¸ãosalinahiperosmótica.Quarentae oitoratosforamdivididosemseisgrupos:G1(controle);G2(controlecomlesão);G3(controle comlesão+natac¸ão);G4(obesos);G5(obesoscomlesão);G6(obesoscomlesão+natac¸ão). OsanimaisdosgruposG2,G3,G5eG6foramsubmetidosàcompressãodonervomediano eosdosgruposG3eG6foramtratados,apósalesão,comexercíciodenatac¸ãocomcarga durantetrêssemanas.Anatac¸ãotevedurac¸ãoprogressivaconformeassemanas,de20,30 e40minutos.Aforc¸amuscularfoiavaliadapormeiodeummedidordeforc¸adepreensão nopré-operatório,noterceiro,sétimo,14◦e21diapós-operatório.Osresultadosforam

expressoseanalisadosporestatísticadescritivaeinferencial.

Resultados: Quandocomparadaaforc¸adepreensãoentreasavaliac¸ões,indiferentemente degrupos,nasegundaavaliac¸ãoosanimaisapresentarammenorforc¸adepreensão.Os gruposG1eG4apresentaramforc¸adepreensãomaior,emcomparac¸ãocomosgruposG2, G3,G4eG6.

Conclusão: Oexercíciodenatac¸ãocomsobrecarganãofoieficazempromovermelhoriana forc¸amusculardepreensãoapóslesãodecompressãodonervomedianodireitoemratos controleeobesos-MSG.

©2014ElsevierEditoraLtda.Todososdireitosreservados.

Introduction

Peripheral nerve lesions are commonly encountered in the clinical practice ofphysiotherapy, especially traumatic injuriessuchascrushing,compressionorstretching, result-inginfunctionalimpairment,causedbytheinterruptionin thepropertransmissionofnerveimpulse.1,2Theinterruption

ofthenervesupplyleadstoadecreasedmuscleactivity, caus-ingmuscularatrophy,andthemaineffectofthisatrophyisthe reductionoftheareaanddiameterofthemusclefiberand con-sequentreductioninitsstrength.1Axonsofinjuredperipheral

nerveshavethecapacitytoregenerate;however,thisprocess isslowandthefunctionalrecoveryisusuallynotcomplete.3

Studiesinvolvingdisordersinperipheralnervesandobesity canbefound inthe literature;4,5 however, the approachof

conservativetreatmentforperipheralnerveinjuryinobese subjectsisstillscarce.

Physical therapy seeks to repair the consequences of peripheralnerveinjury,restoringfunctionalitytothe individ-ual.Thetreatmentcanbeperformedbyvarioustherapeutic approaches,suchaspassiveandactivecinesiotherapy, elec-trotherapy,functionalskills training,specificproprioceptive neuromuscularfacilitationtechniquesandtherapeutic exer-cise.

Animal studies demonstrate the efficacy of exercise on peripheral nerve regeneration.6,7 The exercise practice

promotes recovery of contractile and metabolic properties of muscle after denervation,8 helps removing degenerated

myelinandsubsequentsynthesis,9 aidsinaxonaldiameter

recovery10and axonalsprouting,favorstheregenerationof

injurednervesandfunctionalrecovery11 andalsoincreases

theexpressionofnervegrowthfactorssuchasBDNFandNGF, stimulatingthegrowthanddevelopmentofnewcells.12The

physiologicaleffectsofexerciseintheaquaticenvironment providebenefitstothecardiovascular,skeletal,muscularand nervoussystems,increasingthetissuerepairprocess.13

How-ever, Oliveira et al.,10 despite observing improvements in

axonaldiameter,reportthattheswimmingpracticedidnot affect the maturation of regenerated nerve fibers or their functionality, and when associatedwithelectrical stimula-tion,delayedfunctionalrecovery.Thesefindingsdisagreewith whatwasobservedbyTeodorietal.,7whoobserveda

signif-icanteffectofswimmingexercise,withaccelerationofnerve regenerationinpost-axonotmesisofsciaticnervesofrats.

One wayto evaluatethe functionalityofthe individual is bythe measurementof muscle strength,which enables a functionaldiagnosis byanevaluationofimprovementor worseningduringtreatment,andasapredictiveorprognostic measure.14Inthiscontext,theaimofthisstudywastoassess

themusclegripstrengthinMSG-obeseandincontrolanimals, whichsuffered compressionofthe rightmediannerveand underwentswimmingwithload.

Materials

and

methods

Characterizationofthestudyandsample

(3)

Classes–CEEAAP,UniversidadeEstadualdoOestedoParaná, underprotocolnumber01712.

Neonatal Wistar rats during the first five days of age receivedsubcutaneousinjectionsofmonosodiumglutamate (MSG)inaconcentrationof4g/kgbodyweight/day,forming the obese group. The control group received a hyperos-motic saline solution at a concentration of 1.25g/kg body weight/day.15Theanimalswerekeptinalight/dark

photope-riodof12handatatemperatureof23±2◦C,withfoodand

wateradlibitum.

At 68 days of life, 48 rats were divided into six experimental groups: G1 (control); G2 (control+injury); G3 (control+injury+swimming);G4(MSG);G5(MSG+injury);and G6(MSG+injury+swimming).At73±4daysoflife,the ani-mals in groups G2, G3, G5 and G6 underwent surgery for mediannervecompression.

Nervecompression

Thecompressionoftherightmediannervewasbasedonthe modelpresentedbyChenetal.,16withnervetie-downusing

4.0chromiccatgutin4points,withanapproximatedistanceof 1mminthemediannerve,proximaltotheelbow.Toperform thesurgicalprocedureforcompressionofthemediannerve, theanimalswereanesthetizedwithketaminehydrochloride solution(50mg/kg)andxylazine(10mg/kg).

Swimming

Fivedayspriortothesurgery,theanimalswereadaptedand trainedinagradualmannertoswim,whereininthefirstthree daystheratsswamfor15minwithanoverloadof5%ofbody weight;inthefollowingtwodays,theyswam20minwithan overloadof10%ofbodyweight.Theswimmingexercisewas heldin anoval tankmadeof strongplastic material(200l capacity,60cmdeep)andcontainingwatermaintainedata controlledtemperatureof32±1◦C.Thetreatmentbeganon

thethirddaypostoperatively;theexerciseswereperformed onceaday,fivetimesaweek,totaling15daysofswimming. Theanimalswereweighedeverydayforweightcontroland adjustmentoftheirloadsfortheswimmingexercise.Inthe firstweek,G3andG6groupsstartedwith20minofexercise; duringthesecondweek,30min;andinthethirdweek,40min. Inallpractices,theanimalssupportedaloadof10%ofbody weight.Theothergroupsofanimalswereplacedinwaterfor 1min.

Musclestrength

For muscle strength assessment, one grip strength meter describedbyBertelliandMira17wasused.Thisassessment

isausefultoolforanalyzing therecoveryofmediannerve lesions,throughthefunctionoftheflexordigitorummuscle. Toperformtheevaluation,theanimalwaspulledbythetail withincreasingforce.Theratcouldseizeagridattachedto aforcetransducer, tilltheanimallost itsgrip.Theanterior left limb was temporarily immobilized by wrapping with tape.Five days priortosurgery, the animals were adapted andtrainedontheequipment.Thefirstevaluation(AV1)was performedbeforethe compressionofthemediannerve, to

obtainbaselinevalues,i.e.,preoperatively,followedbya sec-ondassessmentonthe3rdpostoperativeday(AV2).Theother assessmentswerecarriedoutattheendofeachweekof treat-ment,i.e.,the7th(AV3),14th(AV4)and21st(AV5)day,with theaimtoobservetheevolutionofthelesionandthetype oftreatmentused.Ineachevaluationthetestwasrepeated threetimes,andthemeanvalueofrepetitionswasused.

Statisticalanalysis

Theresultswere expressedand analyzedusing descriptive andinferentialstatistics.Tocomparegroupsandtimes, one-wayANOVAwithTukeypost-testwasused,withasignificance levelof5%.

Results

Both G1 and G4 showed no intragroup variations(P>0.05), whichwasexpected,sinceinthesegroupsinjurieswerenot inflicted.Fortheothergroups,thevaluesofAV1weresuperior totheotherassessments(P<0.05),whereasG2andG6showed significantincreasesinAV4,whencomparedtoAV2(P<0.05); thesamewasobservedforG2,G3andG6,whencomparing AV5versusAV2(P<0.05)(Table1).

Asforthecomparisonamonggroups,inAV1(thepre-injury time)therewerenosignificantdifferences(P>0.05).However, from AV2toAV5,differencesbetweenG1versusG2,G3,G5 and G6(P<0.05)groupswere observed,occurringthesame withrespecttoG4 (Table 1), i.e.,the valuesfoundrevealed that thelesionreduced thegrip strength,whencomparing controlgroups(G1andG4)withthosewhichonlyunderwent injury(G2andG5),orthosewhichunderwentinjuryassociated withswimming(G3andG6).Nosignificantdifferenceswere notedamonggroupsofobeseanimalscomparedtoeutrophic animals.

Discussion

Peripheral nerve injuries are responsible for high morbid-ityandfunctionalloss,requiringtherapeuticinterventions18

toassist inthe morphologicaland functionaltissue repair, hence the importance of controlled experiments to evalu-atetheeffectivenessoftherapies.Mostoftheexperimental studies in rats are carried out on models of sciatic nerve injury/compression.However,themostcommon injuriesin humansoccurintheupperlimbs.19Thus,inthepresentstudy,

wesoughttofindamodelthatcouldproduceacompressive lesion inthe mediannerve. Thenervecompression model used was presentedby Bennettand Xie20 forcompressing

thesciaticnerve;subsequently,theprocedurewasmodified forthemediannervebyChenetal.,16whichcauses,besides

(4)

Table1–ValuesfoundforhandgripofWistarrats(meanandstandarddeviation),ingrams,fordifferenttimepoints (AV1–AV5)inthedifferentgroups(G1–G6).

AV1 AV2 AV3 AV4 AV5

G1 265.8±106.3 330.9±87.6 327.8±99.6 303.7±124.3 332.1±121.3

G2 284.6±60.2 32.1±19.6a,b,c 83.1±48.2a,b,c 95.4±26.7a,b,c,d 103.5±21.1a,b,c,d

G3 329.8±113.9 39.5±26.1a,b,c 79.6±31.3a,b,c 93.3±25.5a,b,c 124.0±46.9a,b,c,d G4 212.9±55.3 270.5±54.7 277.8±79.6 268.3±88.8 294.3±127.6 G5 247.5±72.9 34.0±27.8a,b,c 62.0±49.3a,b,c 74.5±18.9a,b,c 83.7±33.5a,b,c G6 226.6±49.2 42.7±35.3a,b,c 81.1±26.1a,b,c 109.4±42.4a,b,c,d 107.3±57.5a,b,c,d

a SignificantdifferencewhencomparingwithG1. b SignificantdifferencewhencomparingwithG4.

c SignificantdifferencewhencomparingwithAV1,withinthesamegroup. dSignificantdifferencewhencomparingwithAV2,withinthesamegroup.

proteindegradation21andbyfunctioningasapossible

anal-gesiamediatedbyendogenousopioids,22whichcouldreduce

theimmobilityofthelimbduetopain.

When aperipheral nervesuffers compression (inducing localischemia),someelectrophysiologicalnerveconduction changeoccurs,23leadingtomuscleweakness.24,25Theresults

showthat,atthefirstassessment(whenthenerve compres-sion had not yet been performed), the animals showed a significantlyhigherstrengthcomparedwiththeotherresults –whichisconsistentwithnormalstandards.Areductionin musclestrengthmayberelatedtothehypernociception gen-eratedbynervecompression,producingmuscleinhibition.26

Silvaetal.27warnedthat, afterthesurgicalcompressionof

themediannerve,apainfulconditionsettlesdown,lasting atleastuntilthe8thpostoperativeday,notdecreasinginits intensity.

Theresultsalso revealed that therewas no increase in grip strength in injured/swimming-treated animals versus injured/sedentary animals, suggesting that the swimming exercisewasnotefficienttoproduceanincreaseinmuscle strength,aftertheinjurybycompressionofthemediannerve. InastudybyPossamai,SiepkoandAndrew,2840Wistarrats

were functional and histologicallyevaluated, being divided into fourgroupsaccording tothedaythe treatmentwould beginafteranaxonotmesis-typesciaticnerveinjury.The ani-malswere submittedtofreestyleswimmingfor30min/day. Theresultsshowthattherewasnointerferenceofphysical exerciseonperipheralnerve regeneration.Additionally,the treatedgroupsshowednohistologicalchangescomparedto sedentaryrats.Accordingly,Oliveiraetal.10notedthatdaily

swimmingexercisefor30min,5timesaweekfor22days,was ineffectivewithrespecttonerverecoveryinratssubjectedto axonotmesis;whenthiswascombinedwithelectrical stim-ulation, thefunctional recovery wasdelayed. Onthe other hand,Teodorietal.,7evaluatingfunctionaland

morpholog-icalcharacteristics ofrats with sciatic axonotmesis, found that30min/dayofswimmingfortwoweeksacceleratednerve regeneration.Thus,adisagreementregardingtheeffectsof exerciseonaquaticrecoveryfromnerveinjurybecomes evi-dent.

This divergence is also found in the case of exercise outside theaquaticenvironment. Sobral etal.29 performed

histomorphometricand functionalanalysestoevaluatethe influence of exercise on a treadmill, applied in early and late stages of sciatic nerve regeneration in rats following

axonotmesis.Theauthorsconcludedthatthetreadmill exer-ciseprotocolappliedtotheimmediateandlatephasesdid notinfluenceaxonalsprouting,degreeofmaturation ofthe regeneratedfibers,northefunctionalityofthereinnervated muscles. Conversely, Seo et al.11 reported that 30min of

walking onatreadmillbetweenthe3rdand14thday post-injury and witha speed of18m/min, playedanimportant role inaxonalregeneration. Ilhaet al.6 reported that,after

two weeksofcompression ofthe sciatic nerveinrats, the animalsperformedexercisesduringfiveweeks,namely: pro-gressivetreadmillexercises(about9m/min)inthefirstweek and,intheremainingfourweeks,60min/day.Theseauthors noted improvement in nerve regeneration. However, ani-malsthatperformedclimbing-stairexercises(trainingagainst resistance) withbodyoverload,withorwithout swimming, exhibitedadelayedfunctionalrecovery.

The obesitymodel usedin this study wasthe neonatal administration ofMSG.Animals exposed tothis substance undergo a neural reorganization that is reflected in a new metabolic structure, which predisposes to obesity in adulthood,30andthatalsocauseschangesintheanimalby

applicationofMSG,suchasareductioninleanbodymass.31

These animals havelower levels ofgrowth hormone (GH), hencelowerbodyweightandlength,butwithincreasedfat deposition.15In theresultsfoundattheendofthe

experi-ment,despitetheMSGanimalshavepresentedlowermeans forgripstrength,therewerenosignificantdifferencesin con-trol and obese-MSG animals (independent of having been injured/treated,ornot)withswimming–afactthatmaybe relatedtothenociceptionduetoinjury.

Becauseofthediscrepancyintheliteratureregardingthe optimal exercise time and about what is the better stage tostartthepractice,itisbelievedthatswimminghasbeen ineffectivewithrespecttoincreasinggripstrengthasaresult ofsomeoftheseparameters,consideringthattheexercises were implemented in the immediate phase after injury, withprogressivedurationalongtheweeks.Additionally,an excessive load mayhave beengeneratedinanimals which swam,byvirtueoftheloadof10%oftheirbodyweightduring thetreatment–afactoridentifiedasanimportantcauseof delay innerve regeneration.32 Wewishto emphasize,asa

(5)

ofphysicalexercise, withdifferent protocols (i.e., withthe additionofdifferentoverloads).

Conclusion

Theswimming exercise withoverload hasnot been effec-tiveinpromotingimprovementinmusclegripstrengthafter compressioninjuryoftherightmediannerveincontroland obese-MSGrats.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1. CavalcanteVEV,MontenegroEJN,PontesFilhoNTde.Efeito

daeletroestimulac¸ãonomúsculodesnervadodeanimais:

revisãosistemática.FisioterMov.2012;25:669–78.

2. StaffordMA,PengP,HillDA.Sciatica:areviewofhistory,

epidemiology,pathogenesis,andtheroleofepiduralsteroid

injectioninmanagement.BrJAnaesth.2007;99:461–73.

3. GordonT.Theroleofneurotrophicfactorsinnerve

regeneration.NeurosurgFocus.2009;26:E3.

4. MiscioG,GuastamacchiaG,BrunaniA,PrianoL,BaudoS,

MauroA.Obesityandperipheralneuropathyrisk:a

dangerousliaison.JPeripherNervSyst.2005;10:354–8.

5. YlitaloKR,HermanWH,HarlowSD.Serialanthropometry

predictsperipheralnervedysfunctioninacommunitycohort.

DiabetesMetabResRev.2013;29:145–51.

6. IlhaJ,AraujoRT,MalyszT,HermelEES,RigonP,XavierLL,

etal.Enduranceandresistanceexercisetrainingprograms

elicitspecificeffectsonsciaticnerveregenerationafter

experimentaltraumaticlesioninrats.NeurorehabilNeural

Repair.2008;22:355–66.

7. TeodoriRM,BetiniJ,deOliveiraLS,SobralLL,TakedaSYM,

MontebeloMI,etal.Swimmingexerciseintheacuteorlate

phaseaftersciaticnervecrushacceleratesnerve

regeneration.NeuralPlast.2011;2011:8.

8. TanakaS,TsubakiA,TachinoK.Effectofexercisetraining

afterpartialdenervationinratsoleusmuscles.JPhysTher

Sci.2005;17:97–101.

9. SarikciogluL,OguzN.Exercisetrainingandaxonal

regenerationaftersciaticnerveinjury.IntJNeurosci.

2001;109:173–7.

10.OliveiraLS,SobralLL,TakedaSYM,BetiniJ,GuirroRRJ,

SomazzMC,etal.Estimulacióneléctricaynataciónenlafase

agudadelaaxonotmesis:influenciasobrelaregeneración

nerviosaylarecuperaciónfuncional.RevNeurol.

2008;47:11–5.

11.SeoTB,HanIS,YoonJ-H,HongK-E,YoonS-J,NamgungUK.

InvolvementofCdc2inaxonalregenerationenhancedby

exercisetraininginrats.MedSciSportsExerc.

2006;38:1267–76.

12.DishmanRK,BerthoudH-R,BoothFW,CotmanCW,Edgerton

VR,FleshnerMR,etal.Neurobiologyofexercise.Obesity.

2006;14:345–56.

13.MedeirosA,OliveiraEM,GianollaR,CasariniDE,NegrãoCE,

BrumPC.Swimmingtrainingincreasescardiacvagalactivity

andinducescardiachypertrophyinrats.BrazJMedBiolRes.

2004;37:1909–17.

14.FerreiraACC,ShimanoAC,MazzerN,BarbieriCH,EluiVMC,

FonsecaMCR.Gripandpinchstrengthinhealthychildren

andadolescents.ActaOrtopBras.2011;19:92–7.

15.BalboSL,GravenaC,BonfleurML,MathiasPCdeF.Insulin

secretionandacetylcholinesteraseactivityinmonosodium

L-glutamate-inducedobesemice.HormRes.2000;54:

186–91.

16.ChenJ,LueJ,LinL,HuangC,ChiangRP,ChenC,etal.Effects

ofpre-emptivedrugtreatmentonastrocyteactivationinthe

cuneatenucleusfollowingratmediannerveinjury.Pain.

2010;148:158–66.

17.BertelliJA,MiraJC.Thegraspingtest:asimplebehavioral

methodassessmentofperipheralnerveregenerationinthe

rat.JNeurosciMethods.1995;58:151–5.

18.TaylorCA,BrazaD,RiceJB,DillinghamT.Theincidenceof

peripheralnerveinjuryinextremitytrauma.AmJPhysMed

Rehabil.2008;87:381–5.

19.DaneyemezM,SolmazI,IzciY.Prognosticfactorsforthe

surgicalmanagementofperipheralnervelesions.TohokuJ

ExpMed.2005;205:269–75.

20.BennettGJ,XieYK.Aperipheralmononeuropathyinratthat

producesdisordersofpainsensationlikethoseseeninman.

Pain.1988;33:87–107.

21.LeeY,KimJ-H,HongY,LeeS-R,ChangKT,HongY.

Prophylacticeffectsofswimmingexerciseon

autophagy-inducedmuscleatrophyindiabeticrats.LabAnim

Res.2012;28:171–9.

22.BertoliniGRF,RosaCT,SilvaLI,MeirelesA,RochaBP.Usodo

exercícioresistidoantagonizadopornaloxonecomofatorde

analgesiaemsinoviteagudadejoelhoderatosWistar.Rev

BrasMedEsporte.2012;18:126–9.

23.IkemotoT,TaniT,TaniguchiS,IkeuchiM,KimuraJ.Effectsof

experimentalfocalcompressiononexcitabilityofhuman

medianmotoraxons.ClinNeurophysiol.2009;120:

342–7.

24.SinghR,SinghZ,BalaR,RanaP,SinghS.Anunusualcaseof

sciaticneuropraxiaduetomelorheostosis.JointBoneSpine.

2010;77:614–5.

25.HaflahNHM,RashidAHA,SapuanJ.Partialanterior

interosseousnervepalsy:isolatedneuropraxiaofthebranch

toflexorpollicislongus.HandSurg.2010;15:221–3.

26.YahiaA,GhroubiS,KharratO,JribiS,ElleuchM,ElleuchMH.

Astudyofisokinetictrunkandkneemusclestrengthin

patientswithchronicsciatica.AnnPhysRehabilMed.

2010;53:239–49.

27.SilvaLI,MeirelesA,RosaCT,BertoliniGRF.Avaliac¸ãodador

emmodeloexperimentaldecompressãodenervomediano

emratos.FIEPBull.2014;81:565–8.

28.PossamaiF,SiepkoCM,AndréES.Investigac¸ãodosefeitosdo

exercícioterapêuticosobrearegenerac¸ãonervosaperiférica.

ActaFisiatr.2010;17(4):142–7.

29.SobralLL,OliveiraLS,TakedaSYM,SomazzMC,Montebelo

MIL,TeodoriRM.Exercícioimediatoversustardiona

regenerac¸ãodonervoisquiáticoderatosapósaxoniotmese:

análisehistomorfométricaefuncional.RevBrasFisioter.

2008;12:311–6.

30.LauA,TymianskiM.Glutamatereceptors,neurotoxicityand

neurodegeneration.PflugersArch.2010;460:525–42.

31.ParkS-Y,KimY-W,DanJ-M,KimJ-Y.Attenuatedsympathetic

activityanditsrelationtoobesityinMSGinjectedand

sympathectomizedrats.KoreanJPhysiolPharmacol.

2007;11:155–61.

32.Bar-shaiM,CarmeliE,LjubuncicP,ReznickAZ.Exerciseand

immobilizationinaginganimals:theinvolvementof

oxidativestressandNF-␬Bactivation.FreeRadicBiolMed.

Imagem

Table 1 – Values found for handgrip of Wistar rats (mean and standard deviation), in grams, for different time points (AV1–AV5) in the different groups (G1–G6).

Referências

Documentos relacionados

Perfeito entendimento (comunicação). Comprometimento da alta direção. Existência do planejamento estratégico já com o BSC em janeiro de 2004. As respostas levantadas através

As doenças mais frequentes com localização na cabeça dos coelhos são a doença dentária adquirida, os abcessos dentários mandibulares ou maxilares, a otite interna e o empiema da

No final da década de 80, os governantes cabo-verdianos cada vez mais sentiam a necessidade de tomar medidas bem concretas para que, efectivamente, o

organizada uma série de ensaios e relatos de suas práticas entre os anos de 1960 e 1970. Tais textos servem de referência para entender a proposta do Teatro do Oprimido e

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

In summary, the intermittent sessions of cryotherapy, associated to muscle compression and applied immediately after the primary muscle injury minimized the CS and LDH

No sistema baseado em detecção, o foco residia em se identificar amostras dos valores de Batimento Axial dos volantes bem como os valores referentes à Altura do Cubo (que

subquadrata não preferiu as mirtáceas mais abundantes, outros fatores, como o risco associado a cada espécie utilizável (Lill et al. 2005) e/ou as características físicas das plantas