• Nenhum resultado encontrado

Cloning and expression of an endoglucanase gene from the thermotolerant fungus Aspergillus fumigatus DBiNU-1 in Kluyveromyces lactis

N/A
N/A
Protected

Academic year: 2021

Share "Cloning and expression of an endoglucanase gene from the thermotolerant fungus Aspergillus fumigatus DBiNU-1 in Kluyveromyces lactis"

Copied!
9
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Bacterial,

Fungal

and

Virus

Molecular

Biology

Cloning

and

expression

of

an

endoglucanase

gene

from

the

thermotolerant

fungus

Aspergillus

fumigatus

DBiNU-1

in

Kluyveromyces

lactis

Budsayachat

Rungrattanakasin

a

,

Siripong

Premjet

b

,

Sudarat

Thanonkeo

c

,

Preekamol

Klanrit

a,d

,

Pornthap

Thanonkeo

a,d,∗

aKhonKaenUniversity,FacultyofTechnology,DepartmentofBiotechnology,KhonKaen,Thailand bNaresuanUniversity,FacultyofScience,DepartmentofBiology,Phitsanulok,Thailand

cMahasarakhamUniversity,WalaiRukhavejBotanicalResearchInstitute,MahaSarakham,Thailand

dKhonKaenUniversity,FacultyofTechnology,FermentationResearchCenterforValueAddedAgriculturalProducts,KhonKaen,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29April2017

Accepted14October2017

Availableonline3February2018

AssociateEditor:RodrigoGalhardo

Keywords: Aspergillusfumigatus Cellulosicmaterial Genecloning Kluyveromyceslactis Thermotolerantfungus

a

b

s

t

r

a

c

t

An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was

cloned,characterizedandexpressedintheyeastKluyveromyceslactis.Thefull-lengthopen

readingframeoftheendoglucanasegenefromA.fumigatusDBiNU-1,designatedCel7,was

1383nucleotidesinlengthandencodedaproteinof460amino acidresidues.The

pre-dictedmolecular weightandtheisoelectricpointoftheA.fumigatusCel7geneproduct

were48.19kDaand5.03,respectively.AcatalyticdomainintheN-terminalregionanda

fungaltypecellulose-bindingdomain/module intheC-terminalregionweredetectedin

thepredictedpolypeptidesequences.Furthermore,asignalpeptidewith20aminoacid

residuesattheN-terminuswasalsodetectedinthededucedaminoacidsequencesofthe

endoglucanasefromA.fumigatusDBiNU-1.TheendoglucanasefromA.fumigatusDBiNU-1

wassuccessfullyexpressedinK.lactis,andthepurifiedrecombinantenzymeexhibitedits

maximumactivityatpH5.0and60◦C.TheenzymewasverystableinapHrangefrom4.0to

8.0andatemperaturerangefrom30to60◦C.Thesefeaturesmakeitsuitableforapplication

inthepaper,biofuel,andotherchemicalproductionindustriesthatusecellulosicmaterials.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Cellulose,themostabundantorganicandrenewablebiomass,

has been considered a good candidate for the production

ofalternativebiofuels andchemicals.1 Celluloseconsistsof

Correspondingauthorat:DepartmentofBiotechnology,FacultyofTechnology,KhonKaenUniversity,KhonKaen40002,Thailand.

E-mail:portha@kku.ac.th(P.Thanonkeo).

alinear chainofseveral glucoseunits thatare linkedby␤

(1→4)glycosidicbonds.2–4 Itisoneofthe majorstructural

constituents ofplant cell wallsand iscommonly foundin

the stalks,stems,trunksand allthewoody portionsofthe

plantbody.5 Conversionofcelluloseintofermentablesugar,

https://doi.org/10.1016/j.bjm.2017.10.001

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

i.e., glucose, requires the synergistic actionofmany

cellu-lolytic enzymes known as cellulases. Cellulases refer to a

multienzymecomplexcomposedofendoglucanase

(endo-1,4-␤-glucanase,EC 3.2.1.4),exoglucanase (exo-1,4-␤-glucanase,

EC3.2.1.91),andcellobiase(␤-glucosidase,EC3.2.1.21).6,7The

enzymesarewidelyfoundinmanyorganisms,suchas

acti-nomycetes,bacteria,fungiandplants.Amongthethreemajor

groupsofcellulases,endoglucanaseisconsidered tobethe

mostimportantenzymebecauseitsactionresultsina

non-reducingendthatisnecessaryfortheactionofexoglucanase

andcellobiase.8

Thereareseveralsourcesofendoglucanasesuchas

bacte-ria,fungiandplant,7–10butfungalendoglucanaseisthemajor

sourceofenzymeforindustrialapplications.Althoughseveral

endoglucanaseshavebeencloned,identifiedand

character-ized, mostefforts have focusedon the enzymes from the

filamentousfungi,suchasAspergillususamii,7 A.kawachii,12

Trichoderma reesei,13 A. niger,14 Volvariella volvacea,15,16

Peni-cillium canescens,11 P. funiculosum17 and Verticillium dahlia.18

Niermanetal.19reportedthatthereareapproximately

eigh-teendifferentgenesthatencodeendoglucanasesintheentire

sequence oftheA. fumigatusAf293 genome.Most recently,

the endoglucanase gene belonging to the family AA9

(for-merlyknownasGH61)fromthe alkali-tolerantA.fumigatus

MKU1,whichisisolatedfrompaperandpulpindustrywastes,

hasalsobeencloned andsequenced.3 Dasetal.20reported

the kinetic properties of the purified halostable

endoglu-canasefromacultureextractofA.fumigatusABK9,andthe

authorsdemonstratedthatthecalculatedmolecularweight

of the enzyme was approximately 56.3kDa. The enzyme

displayed its maximum activity at a temperature of 50◦C

and a pH value of 5.0. This enzyme is highly stable in a

pH range from 4.0 to 7.0 and at NaCl concentrations up

to3.0M. Xu et al.21 reported the expressionand secretion

offungalendoglucanaseIIandchimericcellobiohydrolaseI

in the oleaginous yeast Lipomyces starkeyi and the authors

demonstratedthattheengineeredL.starkeyiwascapableof

expressing and secreting both enzymes with high activity

towardcellulose.

Currently,Kluyveromyceslactis,anascomycetousbudding

yeastbelongingtotheendoascomycetales,isconsidered as

oneofthemostfavoredsystemsfortheexpressionof

sev-eralheterologousproteinsbecauseithasseveraladvantages

includingproteinfolding,proteinprocessingand

posttransla-tionalmodification.IthasbeenreportedthatK.lactisproduces

andsecretesheterologousproteinsatahigherlevelthan

Sac-charomycescerevisiae.Italsosecretesfewnativeproteinsand

asecretedrecombinantproductisthereforeeasilyrecovered

andpurifiedfromtheculturemedium.22,23Mostimportantly,

K. lactis can be grown ininexpensive media. Furthermore,

it has been asserted as a “Generally Recognized As Safe”

microorganismbytheUSFDAandcanthusbeappliedin

sev-eralindustriessuchasfood,beverage,flavor,vitaminandfeed

production.24

In the current study, the cloning and molecular

char-acterization ofthe gene encodingendoglucanase from the

thermotolerant fungus A. fumigatus DBiNU-1 were

investi-gated. In addition, the heterologous expression of the A.

fumigatusendoglucanasegeneinyeastK.lactisGG799andthe

enzymaticpropertiesofthegeneproductwerealsodescribed.

Wedemonstratedinthecurrentstudythattheendoglucanase

fromA.fumigatusDBiNU-1isathermostableenzyme.

Materials

and

methods

Strains,plasmidvectorsandcultureconditions

ThethermotolerantfungusA.fumigatusDBiNU-1usedinthis

workwasobtainedfromDepartmentofBiology,Facultyof

Sci-ence,NaresuanUniversity.Itwasisolatedfromasoilsample

collected inthenorthernpartofThailand,and was

identi-fiedbymorphological analysisand DNAsequencing ofthe

internaltranscribedspacer (ITS)andlarge subunit(LSU)of

rDNAregion.ItwasusedasasourceforgenomicDNA

iso-lation. Thefunguswasmaintainedonpotatodextroseagar

(PDA)and storedat4◦C.K.lactis GG799(New England

Bio-labs,US)wasusedasahostsystemforproteinexpression,

whileEscherichiacoliDH5␣wasusedasahostsystemforgene

cloning.ThepGEM-TEasy(Promega,Madison,WI,USA)and

pKLAC2vectorswereusedforgenecloninginE.coliandfor

geneexpressioninK.lactis,respectively.

GenomicDNAextraction

A.fumigatusDBiNU-1wasculturedinYPDmediumonarotary

incubatorshaker(220rpm)at30◦Cfor24h.Thefungalmycelia

were harvested byfiltration and washed twicewithsterile

distilled water.Genomic DNAwasisolated fromthe fungal

myceliausingtheGF-1nucleicacidextractionkit(Vivantis,

USA), and the purified genomic DNA was used as a DNA

templateforgeneamplificationusingthepolymerasechain

reaction(PCR)technique.

PCRamplification,cloningandnucleotidesequencingof theendoglucanasegenefromA.fumigatusDBiNU-1

Basedonthealignmentofthemultipleaminoacidsequences

oftheendoglucanasesfromA.fumigatusMKU1(AFJ54162),A.

nigerATCC10574(ADC84000)andA.oryzaeKBN616(BAA22588),

theconservedregionsattheN-terminus(GALYLSEM)and

C-terminus(IRWGDIG)werefound.Thedesignofthedegenerate

primers Cel7asper1F (5-GGNGCNYTNWSNGARATG-3) and

Cel7asper1R(5-NCCDATRTCNCCCCANCKDAT-3)werebased

onthesetworegions,andtheprimerswereusedtoamplify

apartialsequenceoftheendoglucanasegenefromA.

fumiga-tusDBiNU-1.Sincethepartialsequenceoftheendoglucanase

gene fromA.fumigatusDBiNU-1 washighlyhomologousto thatfromA.fumigatusMKU1(JQ796069),theamplificationof

thefulllengthopenreadingframe(ORF)oftheendoglucanase

gene fromA. fumigatusDBiNU-1 wasperformed using

spe-cific primers Cel7full-F (5

-ATGGACTCCAAAAGAGGCGTCGT-3) and Cel7full-R (5-CTACAGACACTGAGAGTACCACGGA-3),

whichweresynthesizedbasedonthenucleotidesequences

oftheendoglucanasegenefromA.fumigatusMKU1.ThePCR

reactionmixture(25␮l)consistedof2×KODXtremeTM PCR

buffer, 2mM dNTPs, 10pmol/␮l each forward and reverse

primer,1.0U/␮lKODXtremeTMHotStartDNApolymerase,and

100ng/␮ltemplateDNA,asperthemanufacturer’s

(3)

at95◦C for 3min. Thirty cycles of the amplification

reac-tionwerethenperformedusingofthefollowingconditions:

denaturationfor1minat94◦C,annealingfor1minat50◦C

andextensionfor2minat72◦C.Afinalextensionwas

per-formedat72◦Cfor7min.ThePCRproductwasvisualizedon

0.7%agarose gel,extractedand purifiedfrom thegelusing

theNucleoSpinExtractIIKit(Macherey-Nagel,Germany).The

RapidDNALigationandTransformationKit(Fermentas,USA)

wasusedto clonethepurified PCRproductinto thepGEM

T-easy vector and to transform the resulting plasmid into

E. coli DH5␣. Transformants were screened at 37◦C on LB

mediumcontaining 100␮g/mlampicillin. Therecombinant

plasmidDNAwasisolatedfrom theselectedtransformants

andsubjectedtoDNAsequencingbytheSangermethodusing

the MegaBACE1000automatedDNA sequencer (Pharmacia

Biotech, Sweden). The nucleotide and the deduced amino

acidsequencesoftheendoglucanasegeneproductfromA.

fumigatusDBiNU-1wereanalyzedusingGENETYX(Software

Development,Tokyo,Japan),whileahomologyanalysiswas

carriedoutusingtheFASTAandBLASTprograminthe

Gen-Bankdatabase.

Constructionoftheexpressionvectorandtransformation ofK.lactis

The ORF of the endoglucanase gene from A.

fumiga-tus DBiNU-1 was amplified by PCR using the following

primer pairs: CEL7PKLACF: 5 CGCTCGAGAAAAGAATGG

ACTCCAAAAGAGGC-3 (the underline bases

repre-sent the XhoI restriction site) and CEL7PKLACR:

5-CCGGAATTCCTACAGACACTGAGAGTACCA-3 (the

under-linebasesrepresenttheEcoRIrestrictionsite).AllPCRprimers

weresynthesizedbyIntegratedDNAtechnology(IDT,

Singa-pore).ThePCRreactionmixture(25␮l)consistedof2×KOD

XtremeTMPCRbuffer,2mMdNTPs,10pmol/␮leachforward

and reverse primer, 1.0U/␮lKOD XtremeTM Hot Start DNA

polymerase and 20ng/␮ltemplate DNA, as per the

manu-facturer’sinstruction (Merck,Germany). Thethermocycling

conditionsconsistedofa94◦Cstepfor2min,followedby35

cyclesofsuccessiveincubationat94◦Cfor30s,60◦Cfor1min

and72◦Cfor2min.Afterthethermocycling,afinalextension

wasperformed at72◦C for7min. Toconstructthe

expres-sioncassette pKLAC2-Cel7, the purifiedamplifiedfragment

wasdigestedwithXhoIand EcoRIand thenligatedintothe

XhoI/EcoRIsiteoftheK.lactisexpressionvectorpKLAC2.The

accuracyofthenucleotidesequenceofthecloned

endoglu-canasegenewasconfirmedbyDNAsequencingasdescribed

above.

ThetransformationoftheexpressioncassetteintoK.

lac-tisGG799wasperformedusinglithiumacetatewiththeheat

shockmethod.25Tointegratetheclonedendoglucanasegene

intotheLAC4locusoftheK.lactischromosome,the

expres-sioncassettepKLAC2-Cel7was linearized withBstXI before

transformation. The transformants harboring the

pKLAC2-Cel7plasmidwerescreenedandselectedat30◦Cusingyeast

carbon base (YCB)agar mediumsupplemented with 5mM

acetamide.Theselectedtransformantswerefurtheranalyzed

onYPDagarmediumcontaining1%carboxymethylcellulose

(CMC)(Fluka,Germany).

Detectionoftherecombinantendoglucanaseusing1% Congored

TheselectedtransformantsweregrowninYPGalmediumat

30◦Cinanincubatorshaker(200rpm)for24h.Thereafter,50␮l

oftheyeastculturewastransferredontotheYPDagarmedium

thatcontained1%CMCandincubatedat30◦C.Steriledistilled

waterwasusedasacontrolinthisstudy.After7daysof

incu-bation,theagarmediumwasfloodedwith1%Congoredand

subsequentlyincubatedatroomtemperature(RT)for15min.

Theagarmediumwasrinsedtwicewithsteriledistilledwater

andthenwashedwitha1MNaClsolutionfor15min.Theclear

zonethatappearedontheagarmediumwasmonitoredand

photographed.

SDS-polyacrylamidegelelectrophoresisandzymogram analysisoftherecombinantendoglucanase

TheselectedtransformantwasgrowninYPDliquidmedium

supplementedwith1%CMCat30◦Cinanincubatorshaker

(200rpm)for7days.Theculturesupernatantwascollected

by centrifugation at 13,000rpm and 4◦C for 15min, and

the endoglucanase activity inthe clearsupernatant (crude

enzyme)wasassayed.Theproteinconcentrationinthe

cul-ture supernatant was measured by the Bradfordmethod26

using bovine serum albumin (BSA) as the standard. For

SDS-polyacrylamidegelelectrophoresis(SDS-PAGE),thecrude

enzyme was prepared based on the method described by

ErikssonandPettersson27andBéguin,28usingasamplebuffer

containing2%SDS,0.5MTris–HCl(pH6.8),10%glyceroland

0.01%bromophenolblue.TheSDS-PAGEwascarriedoutbased

onthestandardmethoddescribedbyLi,29using30␮gof

pro-teinsampleanda12%polyacrylamidegel,andtheseparation

oftheproteinbandsinthegelwasvisualizedbyCoomassie

brilliantblueR-250(Sigma)staining.

The zymogram analysis was based on the method

described byGrigorevski-Lima etal.,30 andwas carriedout

to determine the enzymeactivity. The crude enzyme was

subjectedtoSDS-PAGEusinga12%polyacrylamidegelthat

contained1%CMCassubstrate.Afterelectrophoresis,thegel

wassoakedin2.5%(v/v)TritonX-100for2handthen

incu-batedin50mMsodiumacetatebuffer(pH5.0)for1hatRTin

ordertoremovetheSDSandrenaturetheenzyme.The

result-ing gelwas washedwith50mM sodiumacetatebuffer(pH

5.0)at45◦Cfor30min,stainedwith1%(w/v)Congoreddye

solutionatRTfor30min,andsubsequently destainedwith

1NNaCluntiltheexcessdyewasremoved.Theclearzone,

whichcorrespondedtoenzymeactivity,wasmonitoredand

documentedwithageldocumentationsystem(Bio-Rad,

Sin-gapore).

Purificationofproteinusinganaqueoustwo-phase system

The recombinant endoglucanase was purified using an

aqueous two-phase system.31 Various concentrations of

polyethyleneglycol6000(PEG6000)anddextranT70wereused

inthissystem.Topreparethetwo-phasesystem,astock

solu-tioncomposedof20%(w/w)dextranand40%(w/w)PEGand

(4)

1.5h. Protein samplesin the top and bottomphases were

taken,and theenzymeactivity inbothphases wasfurther

determined.

Theactivity of the purified recombinant endoglucanase

wasassayedusingthemethoddescribedbyLietal.,16using

CMCassubstrate.Oneunit(U)ofenzymeactivitywasdefined

astheamountofenzymecapableofreleasing1␮molof

reduc-ingsugarfromCMCperminuteundertheassayconditions.

d-Glucosewasusedasthestandard.

EffectofpHonenzymeactivityandstability

TheeffectofpHontheactivityofthepurifiedrecombinant

endoglucanase was evaluated using the standard method

describedbyLietal.,16withdifferentbuffersincludingsodium

acetatebuffer(pH3.0–6.0)andphosphatebuffer(pH7.0–11.0).

ThestabilityofthepurifiedendoglucanaseatdifferentpH

val-ueswasevaluatedbyincubatingthepurifiedenzymeat50◦C

for1hinthesamebuffersinthepHrangefrom 3.0to11.0

andmeasuringtheremainingenzymeactivityunderstandard

conditions.

Effectoftemperatureonenzymeactivityandstability

Theeffectoftemperatureontheactivityofthepurified

recom-binantendoglucanasewasevaluatedattheoptimumpHat

temperaturesrangingfrom30to80◦C.Thethermalstability

ofthe purifiedenzymewasevaluated bypreincubatingthe

enzymesolutionin50mMsodiumacetatebuffer(pH5.0)at

varioustemperatures(30–80◦C)for1h.Theremainingenzyme

activitywasassayedunderstandardconditions.

Results

Cloningandnucleotidesequencinganalysisofthe endoglucanasegenefromA.fumigatusDBiNU-1

The ORF of the gene encoding the endoglucanase in A.

fumigatus DBiNU-1 was amplified by PCR using a genomic

DNA templatethat was isolated from A. fumigatus

DBiNU-1 and specific primers whose design was based on the

nucleotide sequences of the endoglucanase gene from A.

fumigatus MKU1, as described in the Materials and

meth-ods section. A PCR product of approximately 1.3kb was

detected after agarose gel electrophoresis analysis, and it

waspurifiedandcloned,andtheresultingvectorwas

trans-formed into E. coli DH5␣. The recombinant plasmid DNA

thatwasisolatedfromtheselectedtransformantswasthen

subjected to DNA sequencing. As found in the present

study, the complete nucleotide sequence of the

endoglu-canasegenefromA.fumigatusDBiNU-1,designatedCel7,was

1,383 nucleotides in length and encoded a polypeptide of

460 amino acid residues (Fig. 1). The predicted molecular

weightandtheisoelectricpointoftheA.fumigatusCel7gene

product were found to be48.19kDa and 5.03,respectively.

Based on the sequence similarities in the

carbohydrate-active enzyme (CAZy) database (http://www.cazy.org/), the

deduced amino acid sequence ofthe endoglucanase gene

product from A. fumigatus DBiNU-1 was classified into

glycosidehydrolasefamily7(GH7).32–34 Thesecomprisetwo

domains, i.e., acatalytic domainatthe N-terminus, which

containstheglycosylhydrolasefamily7active-siteresidues

(aminoacidsatpositions22–398),andafungaltype

cellulose-bindingdomain/module(CBD/CBM)attheC-terminus(amino

acids atpositions 428–456), which is involved in substrate

binding,asobservedinmostfungalcellulases.35The

predic-tion oftheaminoacid sequencesbythe SignalP3.0server

(http://www.cbs.dtu.dk/services/SignalP/)revealedthesignal

peptide(MDSKRGVVAAVLALLPLVSA)attheN-terminalregion

andasignalpeptidecleavagesitebetweenAla20andGln21.

The homology analysis of the deduced amino acid

sequence showed that the endoglucanase from A.

fumi-gatus DBiNU-1 shared 98%, 74%, 59%, 51%, 46% and 34%

identity with the GH7 endoglucanases from A. fumigatus

KMU1 (AFJ54162), A. terreus MS-31 (ADR78837),T. reesei M5

(ADM08177),A.oryzaeKBN616(BAA22589),A.nidulansFGSCA4

(EAA63386),andFusariumoxysporum(AAA65586),respectively

(Fig. 2). The putative catalytic amino acid residues Asp191

and Glu369 were found to be highly conserved among the

GH7endoglucanasesandaresimilartothosereportedinthe

GH12 and AA9 family.3,7 A three-dimensional structure of

thepredictedproteinsequenceoftheendoglucanasefromA.

fumigatusDBiNU-1waspredictedusingtheSwiss-PdbViewer (http://www/expasy.org/spdbv/), and the resultisshown in

Additionalinformationsection,Fig.1.Theproteinstructure

wasobservedatthetertiarylevel,andtwocompletelydistinct

structurescorrespondingtothecatalyticdomainandCBM1

domainweredetected.

ExpressionoftheendoglucanasegenefromA.fumigatus DBiNU-1inK.lactisGG799

The expression vector pKLAC2-Cel7 was constructed and

transformedintoK.lactisGG799,andthetransformantswere

selectedusingYCBagarmedium,asdescribedinthe

Mate-rialsandmethodssection.Theselectedtransformantswere

furtheranalyzedonYPDagarmediumcontaining1%CMC.

TransformantsharboringthepKLAC2-Cel7exhibitedaclear

zoneonagarplatesafterCongoredstaining,suggestingthat

the cloned endoglucanasegene from A.fumigatus DBiNU-1

wasexpressedintheK.lactis(Fig.3).

Thecrudeenzymeinthecell-freesupernatantwas

ana-lyzedbySDS-PAGEusinga12%polyacrylamidegel,andthe

resolved proteinswere visualizedusing Coomassiebrilliant

blue R-250 staining. As shown in Fig. 4A, a protein band

ofapproximately48kDathatcorrespondedtothepredicted

molecular weight of the endoglucanase from A. fumigatus

DBiNU-1wasdetected.Theendoglucanaseactivitywasalso

determinedbasedonthedegradationofCMCinthe

polyac-rylamide gelusingazymogramanalysis.Aproteinbandof

approximately48kDathatcoincidedwiththebandthatwas

observedintheSDS-PAGEanalysiswasdetectedona

polyac-rylamidegelafterCongoredstaining(Fig.4A),suggestingthat

thisproteinbandwastherecombinantendoglucanasefromA.

fumigatusDBiNU-1.Theendoglucanaseactivityinthecell-free

supernatantfromK.lactisharboringthepKLAC2-Cel7plasmid

was measured,and thehighestenzymeactivity wasfound

(5)

Fig.1–NucleotideanddeducedaminoacidsequencesofanintronlessendoglucanasefromthermotolerantA.fumigatus

DBiNU-1.ThesignalpeptidefromMet1toAla20isunderlined.Theconservedaminoacidregions,GALYLSEMandIRWGDIG,

areshowninboldletters.TheputativecatalyticaminoacidresiduesAsp191andGlu369areshownintheboxes.

Therewasnoendoglucanaseactivity inthecell-free

super-natantfrom thenegativecontrol(K.lactistransformedwith

pKLAC2)underthesameculturalconditions.

Purificationandcharacterizationofthepurified recombinantendoglucanase

TherecombinantendoglucanasefromtheK.lactisstrainthat

harboredpKLAC2-Cel7waspurifiedusingtheaqueous

two-phase system, as described in the Materials and methods

section.Amaximumenzymeactivityandspecificactivityof

1.57U/mland15.39U/mgprotein,respectively,wereachieved

usingthetwo-phasesystemthatcontained7%PEGand5%

dextran.Fig.4BshowstheSDS-PAGEanalysisofthepurified

recombinantendoglucanasethatwasobtainedfromaqueous

two-phasesystem.Mostoftheproteinbandatapproximately

48kDa,whichcorrespondedtothemonomeroftheCel7gene

productfromA.fumigatusDBiNU-1,wasobserved,whilethose

low-molecularweightproteinsthatwerecontainedinthe

cell-freesupernatantweremostlyremoved.

TheeffectofpHontheactivityandstabilityofthepurified

recombinantendoglucanasewasevaluated, andthe results

aresummarizedinFig.5A.Thepurifiedrecombinant

endoglu-canasedisplayeditshighestactivityatpH5.0,andmorethan

80%ofitsoriginalactivityremainedinthepHrangefrom4.0

to8.0.

Theeffect oftemperature onthe recombinant

endoglu-canase activity and stability is illustrated in Fig. 5B. The

maximalactivityofthepurifiedrecombinantendoglucanase

atpH5.0wasattainedatatemperatureof60◦C.Theactivity

ofthepurifiedenzymeremarkablydecreasedattemperatures

above60◦C.Morethan80%oftheoriginalactivityofthe

puri-fiedenzymeremainedinatemperaturerangefrom30to60◦C,

whereasonlyhalfoftheoriginalactivitywasdetectedat70◦C.

Discussion

Based on the whole genome sequence of A. fumigatus

Af293,18differentgenesencodingendoglucanaseshavebeen

reported.19 They belong to various families, such as GH5,

GH7,GH12,GH45,AA9(formerlyknownasGH61),andGH81,

based on their amino acid sequence similarities.

Accord-ing toanucleotidesequenceanalysis,threeendoglucanase

(6)

Fig.2–AlignmentsbetweentheA.fumigatusDBiNU-1endoglucanasesequenceandthesequencesofotherfungal endoglucanasesfromGH7.TheputativecatalyticaminoacidresiduesAsp191andGlu369areshownintheboxes.

(7)

K. lactis

pKLAC2

pKLAC2-Cel7

Distilled water

K. lactis

Fig.3–TheactivityoftheendoglucanasefromA.fumigatus

DBiNU-1thatwasexpressedintheyeastK.lactis,as determinedusingYPDagarmediumcontaining1%CMC.

twofromAA9),andtwooutofthesethreeknownintronless

endoglucanasegenesarepredictedtohaveacellulose-binding

domain/module in the C-terminal region. In the current

study,agenethatencodesanintronlessendoglucanaseinA.

fumigatusDBiNU-1wascloned,anditsnucleotideand

puta-tive aminoacid sequences were analyzed using GENETYX

(Software Development,Tokyo, Japan). Theresults showed

that the complete sequence of the gene that encodes the

endoglucanaseinA.fumigatusDBiNU-1,designatedCel7,was

1383bpin lengthandencodeda polypeptideof460 amino

acid residues (Fig. 1). Based on the amino acid sequence

similarity in the CAZy database (http://www.cazy.org), the

endoglucanasefromA.fumigatusDBiNU-1wasclassifiedinto

theGH7family,32–34similartoendoglucanasesfromAspergillus

spp.suchasA.terreusMS-31,A.oryzaeKBN616,andA.nidulans

FGSCA4,andendoglucanasesfromT.reeseiM5andPenicillium

sp.C7.AccordingtothePfamtool(http://pfam.sanger.ac.uk/),

twodomains,i.e.,acatalyticdomainintheN-terminalregion

(amino acids from position 22 to 398) and a fungal type

CBD/CBMintheC-terminalregion(aminoacidsfromposition

428to456),werefoundinthededucedaminoacidsequences

ofthe A. fumigatusCel7 geneproduct. Asdemonstrated by

Sugimoto,36theCBD/CBMisimportantforthebindingof

cel-lulose.CellulasesthatlacktheCBD/CBMexhibitedareduction

incellulosedegradation.Itshouldbenotedfromthecurrent

studythatasignalpeptidecontaining20aminoacidresidues

was detectedin theN-terminalregion, suggestingthat the

endoglucanasefrom A. fumigatusDBiNU-1 isan

extracellu-larenzymebecausethesamefeaturehasbeenfoundinan

intronlessendoglucanasefromA.fumigatusMKU1.3In

addi-tiontoasignalpeptide,tworegions,GALYLSEMandIRWGDIG,

thatarehighlyconservedinallfungalendoglucanasesinthe

GH7familyweredetectedintheendoglucanasefromA.

fumi-gatusDBiNU-1.ThisfindingalsoverifiedthattheA.fumigatus

Cel7geneproductwasamemberofthefungalGH7family.No

putativeN-glycosylation site(N-W-T)wasfoundinthe

pre-dictedproteinsequences,suggestingthattheendoglucanase

fromA.fumigatusDBiNU-1isnotanN-glycosylatedprotein,

whichisdistinctfromthereportedcaseoftheendoglucanase

fromA.usamiiE001.7

The predicted molecular weight of the endoglucanase

fromA.fumigatusDBiNU-1,asconfirmedbySDS-PAGE

anal-ysis, was approximately 48kDa, which was distinct from

other endoglucanases from other Aspergillus strains, e.g.,

A. terreus M11 (25kDa),37 A. awamori VTCC-F099 (32kDa),38

A. fumigatus KMU1 (35kDa),3 A. oryzae AG1 (45kDa),39 A.

usamiiE001(24kDa),7andA.fumigatusABK9(56kDa).20Many

kDa

A

B

72 53 43 34 26 M 1 kDa 180 130 95 72 53 43 34 26 17 M 1 2 2 3 48 48

Fig.4–SDS-PAGEandzymogramanalysisoftheendoglucanase(A)andthepurifiedrecombinantendoglucanase(B)fromA. fumigatusDBiNU-1.Theproteinsamples(30␮g)wereloadedonthegelandsubjectedtoelectrophoresis.(A)M,protein marker;1,thecell-freesupernatantfromK.lactisGG799;2,thecell-freesupernatantfromK.lactisharboringpKLAC2-Cel7;3, zymogramanalysisoftheendoglucanaseafterCongoredstaining.(B)M,proteinmarker;1,cruderecombinant

(8)

100 A B 90 80 Relativ e activity (%) Relativ e activity (%) 70 60 50 40 30 20 10 0 100 90 80 70 60 50 40 30 20 10 0 3 30 40 50 60 70 80 4 5 6 7 pH Optimum pH Optimum temperature Thermal stability pH stability Temperature (°C) 8 9 10 11

Fig.5–TheeffectofpH(A)andtemperature(B)onthe activityandstabilityofthepurifiedrecombinant

endoglucanasefromA.fumigatusDBiNU-1.Themaximum enzymeactivity(1.57U/ml)assayedunderthestandard condition(60◦C,pH5.0)wastakenasacontroland recordedas100%.

glycoside hydrolases such as GH7, GH12, GH16 and AA9

haveamodularstructurethatconsistsofacatalyticdomain

and a substrate-binding domain.40 The Swiss-PdbViewer

(http://www/expasy.org/spdbv)wasusedtopredictthe

three-dimensionalstructureofthe putativeaminoacidsequence

oftheendoglucanasefromA.fumigatusDBiNU-1(Additional

informationsection,Fig.1).TheGH7endoglucanasefromthis

thermotolerantfungusexhibitedanarrangementofcatalytic

residues and a fold that are similar to those of the

␤-1,3-glucanasesand␤-1,3-1,4-glucanasesoffamily16.41

Theaqueoustwo-phasesystemhasbeenwidelyusedto

purifyseveralenzymes.Comparedwithconventional

purifica-tionmethods,thistechniqueprovidesahighyieldofrecovery

withhighlevelofenzymeactivityandstability.31Inthe

cur-rentstudy,therecombinantendoglucanasefromA.fumigatus

DBiNU-1thatwasexpressedinK.lactiswiththepKLAC2-Cel7

vectorwaspurifiedusingtheaqueoustwo-phasesystem.A

maximumenzymeactivityandspecificactivityof1.57U/ml

and 15.39U/mg protein, respectively, were achieved; these

valueswereapproximately2-and5-foldgreaterthanthe

cor-respondingoriginalactivities.TheoptimumpHoftheactivity

ofthepurifiedrecombinant endoglucanasefromA.

fumiga-tusDBiNU-1was5.0,andtheenzymewashighlystableina

pHrangefrom4.0to8.0(Fig.5A).Thepurifiedrecombinant

endoglucanasealsoexhibiteditshighestactivityat60◦C,and

itover80%ofitsoriginalactivityinatemperaturerangefrom

30to60◦C(Fig.5B).Theresultsofthecurrentstudywerein

goodagreementwiththosereportedformostofthe

endoglu-canasefromAspergillusstrains,suchasA.terreusDSM826,42A.

awamoriVTCC-F099,38A.usamiiE0017andA.fumigatusABK9.20

However,ahighthermalstability(70◦C)wasalsoreportedfor

endoglucanasesfromT.aurantiacus43andA.fumigatusMKU1.3

The differences inthermal stabilityindicated the different

molecularpropertiesoftheenzymes,includingthebonding

thatstabilizesinthestructuresandtheconformationsamong

thevariousspecies.Ithasbeenreportedthatendoglucanases

withoptimalactivitiesbetween55and80◦Careconsidered

thermostable enzymes.44 The high thermal stabilityof the

endoglucanasefromA.fumigatusDBiNU-1(60◦C)makethis

enzymeagoodcandidateforapplicationinthepaperindustry

andinsaccharificationprocessesfortheproductionofbiofuel

andotherchemicalsusingcellulosicmaterials.

Conflicts

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgments

Theauthors thankKhon KaenUniversityforfinancial

sup-portandtheFermentationResearchCenterforValueAdded

AgriculturalProducts(FerVAAPs)atKhonKaenUniversityfor

technicalsupport.

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,atdoi:10.1016/j.bjm.2017.10.001.

r

e

f

e

r

e

n

c

e

s

1.HongJ,WangY,KumagaiH,TamakiH.Constructionof thermotolerantyeastexpressingthermostablecellulase genes.JBiotechnol.2007;130:114–123.

2.MakutM,GodiyaE.Asurveyofcellulolyticmesophilicfungi inthesoilenvironmentofKeffiMetropolis,NasarawaState, Nigeria.AfrJMicrobiolRes.2010;4:2191–2195.

3.MeeraB,VanithaMC,RamaniG,ManjulaA,GunasekaranP. Cloningandexpressionofanintronlessgeneencoding endoglucanasefromAspergillusfumigatusMKU1.IndianJ Biotechnol.2011;10:480–486.

4.RowellRM.HandbookofWoodChemistryandWoodComposites. NewYork,USA:CRCpress;2012.

5.ChaudharyN,QaziJI.Lignocelluloseforethanolproduction: areviewofissuesrelatingtobagasseasasourcematerial. AfrJBiotechnol.2013;10:1270–1274.

6.AdsulMG,BastawdeMG,VarmaAJ,GokhaleDV.Strain improvementofPenicilliumjanthinellumNCIM1171for increasedcellulaseproduction.BioresourTechnol. 2007;98:1467–1473.

(9)

7.ShiH,YinX,WuM,TangC,ZhangH,LiJ.Cloningand bioinformaticsanalysisofanendoglucanasegene(Aucel12A) fromAspergillususamiianditsfunctionalexpressioninPichia pastoris.JIndMicrobiolBiotechnol.2012;39:347–357.

8.WangJ,GaoG,LiY,etal.Cloning,expression,and

characterizationofathermophilicendoglucanase,AcCel12B fromAcidothermuscellulolyticus11B.IntJMolSci.

2015;16:25080–25095.

9.WeiKSC,TeohTC,KoshyP,SalmahI,ZainudinA.Cloning, expressionandcharacterizationoftheendoglucanasegene fromBacillussubtilisUMC7isolatedfromthegutofthe indigenoustermiteMacrotermesmalaccensisinEscherichiacoli. ElectronJBiotechnol.2015;18:103–109.

10.delCampilloE.Multipleendo-1,4-beta-D-glucanase (cellulase)genesinArabidopsis.CurrTopDevBiol. 1999;46:39–61.

11.ChulkinAM,LoginovDS,VavilovaEA,etal.Cloningofthe Penicilliumcanescensendo-1,4-ˇ-glucanasegeneegl3andthe characterizationoftherecombinantenzyme.ApplBiochem Microbiol.2009;45:143–149.

12.SakamotoS,TamuraG,TtoK,IshikawaT,IwanoK,Nishiya N.CloningandsequencingofcellulasecDNAfromAsperillus kawachiianditsexpressioninSaccharomycescerevisiae.Curr Genet.1995;27:435–439.

13.SandgrenM,ShawA,RoppTH,etal.TheX-raycrystal structureoftheTrichodermareeseifamily12endoglucanase3 Cel12A,at1.9 ˚Aresolution.JMolBiol.2001;308:

295–310.

14.HongJ,TamakiH,AkibaS,YamamotoK,KumagaiH.Cloning ofageneencodingahighlystableendo-ˇ-1,4-glucanase fromAspergillusnigeranditsexpressioninyeast.JBiosci Bioeng.2001;92:434–441.

15.DingSJ,GeW,BuswellJA.Secretionpurificationand characterizationofarecombinantVolvariellavolvacea endoglucanaseexpressedintheyeastPichiapastoris.Enzyme MicrobTechnol.2002;31:621–626.

16.LiJF,TangCD,ShiHL,WuMC.Cloningandoptimized expressionofaneutralendoglucanasegene(ncel5A)from VolvariellavolvaceaWX32inPichiapastoris.JBiosciBioeng. 2011;111:537–540.

17.CastroAM,CaryalhoMLA,LeiteSGF,PereiraNJr.Cellulases fromPenicilliumfuniculosum:production,propertiesand applicationtocellulosehydrolysis.JIndMicrobiolBiotechnol. 2010;37:151–158.

18.EboigbeL,TzimaAK,PaplomatasEJ,TypasMA.Theroleof the␤-1,6-endoglucanasegenevegBinphysiologyand virulenceofVerticilliumdahliae.PhytopatholMediterr. 2014;53:94–107.

19.NiermanWC,PainA,AndersonMJ,etal.Genomicsequence ofthepathogenicandallergenicfilamentousfungus Aspergillusfumigatus.Nature.2005;438:1151–1156.

20.DasA,JanaA,PaulT,etal.Thermodynamicsandkinetic propertiesofhalostableendoglucanasefromAspergillus fumigatusABK9.JBasicMicrobiol.2014;54:S142–S151.

21.XuQ,KnoshaugEP,WangW,etal.Expressionandsecretion offungalendoglucanaseIIandchimericcellobiohydrolaseI intheoleaginousyeastLipomycesstarkeyi.MicrobCellFact. 2017;16:126.

22.VanderVlugt-BergmansC,VanOoyenA.Expressioncloning inKluyveromyceslactis.BiotechnolTech.1999;13:87–92.

23.SchaffrathR,BreunigKD.Geneticsandmolecularphysiology oftheyeastKluyveromyceslactis.FungalGenetBiol.

2000;30:173–190.

24.BonekampJF,OosteromJ.OnthesafetyofKluyveromyces lactis–areview.ApplMicrobiolBiotechnol.1994;41:1–3.

25.ItoH,FukudaY,MurataK,KimuraA.Transformationof intactyeastcellstreatedwithalkalications.JBacteriol. 1983;153:163–168.

26.BradfordMM.Arapidandsensitivemethodforthe

quantitationofmicrogramquantitiesofproteinutilizingthe principleofprotein-dyebinding.AnalBiochem.

1976;72:248–254.

27.ErikssonKE,PetterssonB.Azymogramtechniqueforthe detectionofcarbohydrases.AnalBiochem.1973;56:618–620.

28.BéguinP.Detectionofcellulaseactivityinpolyacrylamide gelsusingCongored-stainedagarreplicas.AnalBiochem. 1983;131:333–336.

29.LiSFY.CapillaryElectrophoresis:PrinciplesPracticeand Applications.Singapore:Elsevier;1992.

30.Grigorevski-LimaA,DaVinhaF,SouzaD,etal.Aspergillus fumigatusthermophilicandacidophilicendoglucanases.Appl BiochemBiotechnol.2009;155:18–26.

31.AsenjoJA,AndrewsBA.Aqueoustwo-phasesystemsfor proteinseparation:aperspective.JChromatogrA. 2011;1218:8826–8835.

32.NaumoffDG.Hierarchicalclassificationofglycoside hydrolases.Biochemistry.2011;76:622–635.

33.LombardV,GolacondaRamuluH,DrulaE,CoutinhoPM, HenrissatB.Thecarbohydrate-activeenzymesdatabase (CAZy)in2013.NucleicAcidsRes.2014;42:490–495.

34.TerraponN,LombardV,GilbertHJ,HenrissatB.Automatic predictionofpolysaccharideutilizationlociinBacteroidetes species.Bioinformatics.2015;31:647–655.

35.Marchler-BauerA,DerbyshireMK,GonzalesNR,etal.CDD: NCBI’sconserveddomaindatabase.NucleicAcidsRes. 2014;34:222–226.

36.SugimotoN(Ph.D.thesis)FunctionalAnalysisandApplication ofFungalCellulose-BindingDomains.Japan:Shinshu

University;2012.

37.GaoJ,WengH,XiY,ZhuD,HanS.Purificationand characterizationofanovelendo-ˇ-1,4-glucanasefromthe thermoacidophilicAspergillusterreus.BiotechnolLett. 2008;30:323–327.

38.NguyenVT,QuyenDT.Purificationandpropertiesofanovel thermoactiveendoglucanasefromAspergillusawamori VTCC-F099.AustJBasicApplSci.2010;4:6211–6216.

39.YoussefGA.Physiologicalstudiesofcellulasecomplex enzymesofAspergillusoryzaeandcharacterizationof carboxymethylcellulase.AfrJMicrobiolRes.2011;5:1311–1321.

40.DaviesG,HenrissatB.Structuresandmechanismsof glycosylhydrolases.Structure.1995;3:853–859.

41.DivneC,StåhlbergJ,ReinikainenT,etal.The

three-dimensionalcrystalstructureofthecatalyticcoreof cellobiohydrolaseIfromTrichodermareesei.Science. 1994;265:524–528.

42.ElshafeiAM,HassanMM,HarounBM,Abdel-FatahOM,Atta HM,OthmanAM.Purificationandpropertiesofan

endoglucanaseofAspergillusterreusDSM826.JBasicMicrobiol. 2009;49:426–432.

43.VoutilainenSP,PuranenT,Siika-ahoM,etal.Cloning, expression,andcharacterizationofnovelthermostable family7cellobiohydrolases.BiotechnolBioeng.

2008;101:515–528.

44.MaheshwariR,BharadwajG,BhatMK.Thermophilicfungi: theirphysiologyandenzymes.MicrobiolMolBiolR. 2000;64:461–488.

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

cultivo  da  profissionalização  e,  mais  especificamente,  no  sentido  do  pertencimento  e  da  identificação  com  a  docência,  considerando  serem 

No carcinoma cribriforme 70% dos casos analisados, observou-se uma redução da população de células marcadas pelo anticorpo E-Cad, o que demonstra comparativamente

a) Mapear os artigos publicados, índice de coautoria e visibilidade dos professores dos programas de pós-graduação. b) Realizar o ranking dos programas de pós-graduação e

Para os limites de detecção e quantificação do método, apresentados em mg kg-1, foram levados em consideração fatores de diluição e massa da amostra estabelecidos na etapa de

Desde o ano lectivo de 2004-2005 existe no Hospital de Dona Estefânia um Centro de Simulação de Técnicas em Pediatria (CSTP), criado por iniciativa do corpo docente

Em sede de IRC, foram levantadas questões relativamente ao enquadramento fiscal do desreconhecimento do ativo correspondente ao direito de contratação de jogadores

A avaliação do fechamento glótico posterior na presença de assimetria posicional das cartilagens aritenoides e do efeito que a aritenoidectomia superomedial resulta nestes casos,