• Nenhum resultado encontrado

Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS

N/A
N/A
Protected

Academic year: 2021

Share "Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS"

Copied!
20
0
0

Texto

(1)

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2013-210

Submitted to: Phys. Rev. Lett.

Search for Invisible Decays of a Higgs Boson Produced

in Association with a

Z

Boson in ATLAS

The ATLAS Collaboration

Abstract

A search for evidence of invisible-particle decay modes of a Higgs boson produced in association

with a Z boson at the Large Hadron Collider is presented. No deviation from the Standard Model

expectation is observed in 4.5 fb

−1

(20.3 fb

−1

) of 7 (8) TeV pp collision data collected by the ATLAS

experiment. Assuming the Standard Model rate for ZH production, an upper limit of 75%, at the 95%

confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson

at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper

limit on the allowed dark matter–nucleon scattering cross section within a Higgs-portal dark matter

scenario. Within the constraints of such a scenario, the results presented in this Letter provide the

strongest available limits for low-mass dark matter candidates. Limits are also set on an additional

neutral Higgs boson, in the mass range 110 < m

H

< 400

GeV, produced in association with a Z boson

and decaying to invisible particles.

c

2014 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

(2)

Search for Invisible Decays of a Higgs Boson Produced

in Association with a Z Boson in ATLAS

G. Aad et al. (ATLAS Collaboration) (Dated: October 23, 2014)

A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the Standard Model expectation is observed in 4.5 fb−1(20.3 fb−1) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the Standard Model rate for ZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter–nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110 < mH < 400 GeV, produced in association

with a Z boson and decaying to invisible particles.

PACS numbers: 14.80.Bn,14.80.Ec,12.60.Fr,95.35.+d

Some extensions of the Standard Model (SM) allow a Higgs boson [1–3] to decay to a pair of stable or long-lived particles [4–18] that are not observed by the AT-LAS detector. For instance the Higgs boson can decay into two particles with very small interaction cross sec-tions with SM particles, such as dark matter (DM) can-didates. Collider data can be used to directly constrain the branching ratio of the Higgs boson to invisible parti-cles. Similarly, limits can be placed on the cross section times branching ratio of any additional Higgs bosons decaying predominantly to invisible particles. LEP re-sults [19] put limits on an invisibly decaying Higgs bo-son, produced in association with a Z bobo-son, for Higgs masses below 120 GeV.

This Letter presents a search for invisible decays of a Higgs boson produced in association with a Z boson, as suggested in Refs. [20–22]. A Higgs boson in the mass range 110 < mH < 400 GeV is considered. The

distri-bution of the missing transverse momentum (Emiss

T ) in

events with an electron or a muon pair consistent with a Z boson decay is used to constrain the ZH produc-tion cross secproduc-tion times the branching ratio of the Higgs boson decaying to invisible particles, over the full mass range. For the newly discovered Higgs boson, a con-straint could be placed on the branching ratio to invis-ible particles. In this case the mass of the Higgs boson

is taken to be mH = 125.5 GeV, the best-fit value from

the ATLAS experiment [23], and the ZH production cross section is assumed to be that predicted for the SM Higgs boson. This assumption implies that the hy-pothesized unobserved particles that couple to the Higgs boson have sufficiently weak couplings to other SM par-ticles to not affect the Higgs boson production cross sec-tions. The total cross section for the associated

produc-tion of a SM Higgs boson, with mH = 125.5 GeV, and

a Z boson, calculated to next-to-next-to-leading order in QCD [24] and including next-to-leading-order (NLO)

electroweak corrections [25, 26], is 331 fb at√s = 7 TeV

and 410 fb at √s = 8 TeV [27]. The SM branching

ra-tio of the Higgs boson decaying to invisible particles is

1.2 × 10−3, arising from the H → ZZ(∗) → 4ν decay.

The present search is not sensitive to the low branching ratio for this decay, but instead searches for enhance-ments in the decay fraction to invisible particles due to physics beyond the Standard Model (BSM).

The search uses 4.5 fb−1 of data recorded with the

ATLAS detector in 2011 at√s = 7 TeV and 20.3 fb−1

of data recorded in 2012 at √s = 8 TeV. The ATLAS

detector has been described elsewhere [28]. Simulated signal and background event samples are produced with Monte Carlo (MC) event generators, passed through a full GEANT4 [29] simulation of the ATLAS detector [30] and reconstructed with the same software as the data.

The signal samples are generated with Herwig++ [31] and its internal POWHEG method [32, 33]. The SM ZZ and W Z backgrounds are taken from simulation, since they have limited statistics in the control regions that would allow to estimate these backgrounds with data. All the other background processes to this search are determined from data. In these cases, simulated sam-ples are only used as cross-checks for the obtained back-ground estimates. POWHEG [32–34] interfaced with PYTHIA8 [35] is used to model SM ZZ and W Z pro-duction [36]. The propro-duction of W W is modeled us-ing HERWIG [37] and SHERPA [38] for the 7 and 8 TeV data, respectively. A separate sample simulated with gg2VV [39] interfaced with JIMMY [40] accounts for W W/ZZ production through quark-box diagrams, which are not included in the above mentioned samples. The MC@NLO [41] generator interfaced with JIMMY is used to model t¯t, W t, and s-channel single top-quark production. AcerMC [42] interfaced with PYTHIA [43] models t-channel single top-quark production. Inclusive Z/γ* production is simulated with ALPGEN [44]

(3)

in-terfaced with JIMMY or PYTHIA for the 7 or 8 TeV data, respectively. Inclusive W production is simulated with ALPGEN interfaced with JIMMY. Contributions

to this search from the H → W W(∗) → `ν`ν and

H → ZZ(∗) → ``νν decays of a 125.5 GeV SM Higgs

boson are studied using POWHEG [32–34, 45, 46] in-terfaced with PYTHIA8 and found to be negligible.

Electron candidates are reconstructed from isolated energy deposits in the electromagnetic calorimeter with a shower shape consistent with electrons or photons, matched to inner detector tracks [47]. The electrons used to form a Z boson candidate are required to have

transverse momentum pT> 20 GeV and pseudorapidity

|η| < 2.47 [48]. Electrons with pT> 7 GeV that satisfy less stringent identification criteria on the calorimeter cluster shape, track quality, and track-cluster match-ing [47] are used to veto events with more than two charged leptons.

Muon candidates are reconstructed combining tracks independently found in the muon spectrometer and

in-ner tracking detector [49]. Muons forming a Z

bo-son candidate are required to have pT > 20 GeV and

|η| < 2.5. Muons with pT > 7 GeV are used to veto

events with more than two charged leptons.

Jets are reconstructed using the anti-ktalgorithm [50]

with a radius parameter R = 0.4. They must have pT>

20 GeV and |η| < 4.5. To discriminate against jets from additional minimum bias interactions, selection criteria are applied to ensure that most of the jet momentum, for jets with |η| < 2.5, is associated with tracks originating from the primary vertex, which is taken to be the vertex

with the highest summed p2

Tof associated tracks. To ensure good separation between electrons, muons and jets, electrons are removed if they are within ∆R ≤ 0.2 of an identified muon, and jets are removed if they are within ∆R ≤ 0.2 of an identified electron. Remain-ing electrons and muons are removed if they are within ∆R ≤ 0.4 of a remaining jet or if the scalar sum of track momenta, not associated with the lepton, in a cone of ∆R < 0.2 around the lepton direction is greater than 10% of the lepton pT.

The Emiss

T is the magnitude of the negative vectorial

sum of the transverse momenta from calibrated objects, such as identified electrons, muons, photons, hadronic decays of tau leptons, and jets [51]. Clusters of calorime-ter cells not matched to any object are also included. The analysis also uses a track-based missing transverse

momentum (pmiss

T ) computed from all inner detector

tracks with pT > 500 MeV and |η| < 2.5, that satisfy stringent quality criteria [52] and are consistent with originating from the primary vertex. For the pmissT cal-culation, tracks matched to electrons are discarded and

replaced by the transverse energy ET of the matched

cluster measured in the calorimeter to include any pho-ton radiation in the calculation.

Event selection criteria are determined in an opti-mization procedure, using simulated samples, to

maxi-Eve n ts 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 → ℓ ℓℓ → ℓℓ → ℓℓ → -1 L dt = 20.3 fb = 8 TeV, s ATLAS → ℓℓ 0 50 100 150 200 250 300 350 400 450 500 D a ta / MC 0.5 1 1.5

FIG. 1. Distribution of ETmiss for events with the

invari-ant mass of the two leptons 76 < m`` < 106 GeV in the

8 TeV data (dots). The stacked histograms represent the background predictions from simulation. The signal hypoth-esis is shown by a dotted line and assumes the SM ZH production rate for a mH = 125.5 GeV Higgs boson with

BR(H → inv.) = 1. The inset at the bottom of the figure shows the ratio of the data to the combined background ex-pectations as well as a band corresponding to the combined systematic uncertainties.

mize the signal significance of the search. Events are re-quired to pass a single-lepton or lepton-pair trigger, with small variations in the applied pT threshold in differ-ent data-taking periods. Evdiffer-ents must also have at least one reconstructed vertex with at least three associated

tracks with pT > 500 MeV. Data quality criteria are

applied to reject events from non-collision backgrounds or events with degraded detector performance [51].

The invariant mass of the selected dilepton system, m``, is required to satisfy 76 < m`` < 106 GeV to be consistent with leptons originating from a Z boson de-cay.

Figure 1 shows the Emiss

T distribution in the 8 TeV

data sample after the dilepton mass requirement. In this figure the data are consistent with the expected background based on simulated samples for all but the multijet background. The uncertainty band of the ex-pected background is widest in the region dominated by the steeply falling Z boson background. To reject the majority of this background, Emiss

T is required to be

greater than 90 GeV. In events where a significant Emiss T arises from mis-reconstructed energy in the calorimeter, the vectors of Emiss

T and pmissT are likely to have differ-ent azimuthal angles. Thus the azimuthal difference of these two vectors, ∆φ(Emiss

T , pmissT ), is required to be less than 0.2.

For the signal, the momentum of the reconstructed Z boson is expected to be balanced by the momentum of the invisibly decaying Higgs boson. Therefore the az-imuthal separation between the dilepton system , where

(4)

the magnitude of its transverse momentum is defined as p`` T, and the E miss T , ∆φ(p `` T, E miss T ), is required to be

greater than 2.6. The boost of the Z boson causes the decay leptons to be produced with a small opening an-gle. The azimuthal opening angle of the two leptons, ∆φ(`, `), is thus required to be less than 1.7. Further-more p``

Tand ETmissare expected to be similar. Therefore the fractional pTdifference, defined as |Emiss

T − p``T|/p``T, is required to be less than 0.2. Finally, for the major-ity of the signal no additional high-pTjets are expected to be observed in the events, while for the background

from boosted Z bosons and from t¯t pairs one or more

jets are expected. Thus, events are required to have no reconstructed jets with pT> 25 GeV and |η| < 2.5.

After the selection requirements, the dominant back-ground is SM ZZ production followed by SM W Z pro-duction, as shown in Table I. These backgrounds are simulated using MC samples normalized to NLO cross sections. The simulation of W Z events is validated by comparing them to data events in which the third-lepton veto is replaced by an explicit third-lepton requirement. The theoretical prediction of the ZZ production is in agreement with the ATLAS cross-section measurement

at √s = 7 TeV [53].

Background contributions from events with a genuine isolated lepton pair, not originating from a Z → ee or

Z → µµ decay (W W , t¯t, W t, and Z → τ τ ), are

esti-mated by exploiting the flavor symmetry in the dilepton final state of these processes. Distributions for events with an eµ pair, appropriately scaled to account for dif-ferences in electron and muon reconstruction efficien-cies, can be used to estimate this background in the electron and muon channels. The difference between the efficiencies for electrons and muons is estimated using the square root of the ratio of the numbers of dimuon

and dielectron events in data within the m`` window.

Events in the eµ control region not originating from

W W , t¯t, W t, or Z → τ τ backgrounds are subtracted

using simulated samples. Important sources of system-atic uncertainty are variations in the correction factor for the efficiencies for electrons and muons and uncer-tainties in the simulated samples used for the subtrac-tion. The combined systematic uncertainty is 23% for both the 7 and 8 TeV data. The estimated background from these sources is consistent with the expectation from the simulation.

The background from inclusive Z → ee and Z → µµ production in the signal region is estimated from the background in three sideband regions [54]. These side-band regions are formed by considering events failing one or both of the nominal selection requirements ap-plied to ∆φ(ETmiss, pmissT ) and the fractional pT

differ-ence. Contributions from non-Z backgrounds in the

sideband regions are subtracted. The impact from a correlation between the above two variables is deter-mined from the simulation and a correction, of at most 7%, is applied to account for it. The main uncertainties

are due to variations in this correction and differences in the shape of the Emiss

T distribution in the control

re-gions. The overall systematic uncertainty is 52% in the 7 TeV data and 59% in the 8 TeV data.

The small background from events with only one gen-uine isolated lepton (inclusive W , single-lepton top pairs and single top production) or from multijet events are estimated from data using control samples, selected by requiring two lepton candidates of which at least one fails the full lepton selection criteria. These samples are scaled with a measured pT-dependent factor, deter-mined from data as described in Ref. [55]. Systematic uncertainties are determined following the procedures used in Ref. [55], yielding an uncertainty of 40% in the 7 TeV data and 21% in the 8 TeV data.

Systematic uncertainties on the signal and the SM ZZ and W Z backgrounds are derived from the luminos-ity uncertainty, the propagation of reconstructed object uncertainties and from theoretical uncertainties on the production cross sections. The luminosity uncertainty is 1.8% for the 7 TeV data-taking period and 2.8% for the 8 TeV data-taking period [56].

Lepton trigger and identification efficiencies as well as the energy scale and resolution are determined from data using large samples of Z events. After appropriate corrections to the simulation, uncertainties are propa-gated to the event selection. These uncertainties con-tribute typically 1.0–1.5% to the overall selection un-certainty. Jet energy scale and resolution uncertainties are derived using a combination of techniques that use dijet, photon + jet, and Z + jet events [57, 58]. These contribute an uncertainty of between 3% and 6% on the final event selection. The uncertainties on the energy scale and resolution of leptons and jets are also prop-agated to the ETmiss calculation, and the resulting un-certainty in the latter is included in uncertainties given above. Uncertainties in the pile-up simulation, affecting in particular Emiss

T , contribute a further 1–2%

uncer-tainty.

Theoretical uncertainties on the ZH production cross section are derived from variations of the renormaliza-tion and factorizarenormaliza-tion scale, αs, and the parton distribu-tion funcdistribu-tions (PDFs) [27]. These are combined to give an uncertainty of 3.6–5.7% on the cross section. This analysis is sensitive to the distribution of the Higgs

bo-son pT through the Emiss

T , and uncertainties in the pT

boost of the Higgs boson can affect the signal yield. An additional systematic uncertainty of 1.9% is applied to the normalization [25, 26, 59], and uncertainties as a

function of the Higgs boson pTare considered as a

sys-tematic shape uncertainty.

The cross-section uncertainty on the ZZ background is 5% from varying the PDFs, αs, and QCD scale. The uncertainty on the jet veto for the ZZ background due to the parton showering is estimated to be 6.4% (5.5%)

for the 7 (8) TeV data. Because the Emiss

T

(5)

limit-Data Period 2011 (7 TeV) 2012 (8 TeV)

ZZ → ``νν 20.0 ± 0.7 ± 1.6 91 ± 1 ± 7

W Z → `ν`` 4.8 ± 0.3 ± 0.5 26 ± 1 ± 3

Dileptonic t¯t, W t, W W , Z → τ τ 0.5 ± 0.4 ± 0.1 20 ± 3 ± 5

Z → ee, Z → µµ 0.13 ± 0.12 ± 0.07 0.9 ± 0.3 ± 0.5

W + jets, multijet, semileptonic top 0.020 ± 0.005 ± 0.008 0.29 ± 0.02 ± 0.06

Total background 25.4 ± 0.8 ± 1.7 138 ± 4 ± 9

Signal (mH= 125.5 GeV, σZH,SM, BR(H → inv.) = 1) 8.9 ± 0.1 ± 0.5 44 ± 1 ± 3

Observed 28 152

TABLE I. Number of events observed in data and expected from the signal and from each background source for the 7 and 8 TeV data-taking periods. Uncertainties on the signal and background expectations are presented with statistical uncertainties first and systematic uncertainties second.

100 150 200 250 300 350 400 450 Events / 30 GeV 1 10 2 10 3 10 ATLAS -1 L dt = 20.3 fb ∫ = 8 TeV, s ZH → ℓℓ + inv. Data ZZ → ℓℓνν (incl. τ) WZ → ℓνℓℓ (incl. τ) WW, dilep. ¯, W , Z → ττ µ µ ee, Z

W + jets, multijet, semilep. top ZH → ℓℓ + inv., BR(H → inv.) = 1 [GeV] miss T E 100 150 200 250 300 350 400 450 Data / Expected 0.5 1 1.5 2

FIG. 2. Distribution of ETmissafter the full selection in the 8

TeV data (dots). The filled stacked histograms represent the background expectations. The signal expectation for a Higgs boson with mH = 125.5 GeV, a SM ZH production rate

and BR(H → inv.) = 1 is stacked on top of the background expectations. The inset at the bottom of the figure shows the ratio of the data to the combined background expectations. The hashed area shows the systematic uncertainty on the combined background expectation.

setting procedure, the impact of PDFs, αs, and QCD scale uncertainties on the shape of this distribution is also considered. The theoretical uncertainty of the W Z background is considered similarly. The total system-atic uncertainty on the SM ZZ background is 8% for both the 7 and 8 TeV data-taking periods, whereas for the W Z background it is 10% (13%) for the 7 (8) TeV data-taking periods.

Event reconstruction and theoretical uncertainties are considered as correlated between the 7 and 8 TeV data, and between the signals and backgrounds estimated from simulation. The systematic uncertainties in meth-ods that determine backgrounds from data using control regions are also assumed to be correlated between the two datasets. The luminosity uncertainty is considered as uncorrelated between the 7 and 8 TeV data.

The numbers of observed and expected events for

the 7 and 8 TeV data-taking periods are shown in

Ta-ble I. Figure 2 shows the Emiss

T distribution after the

full event selection for the 8 TeV data and the ex-pected backgrounds. The normalization of the back-grounds is extracted from a binned profile maximum likelihood fit in the signal region. Systematic uncertain-ties are considered as nuisance parameters, and are as-sumed to be constrained by Gaussian distributions. The signal expectation shown corresponds to a Higgs boson

with mH = 125.5 GeV, a SM ZH production rate and

BR(H → inv.) = 1. No significant excess is observed over the SM expectation.

Limits are set on the cross section times branching ratio for a Higgs boson decaying to invisible particles anywhere in the mass range 110 < mH < 400 GeV. The limits are computed using a maximum likelihood fit to the ETmiss distribution following the CLs (signal confi-dence level) modified frequentist formalism [60] with a profile likelihood test statistic [61]. Figure 3 shows the

95% CL upper limits on σZH× BR(H → inv.) in the

mass range 110 < mH < 400 GeV for the combined

7 and 8 TeV data. The expectation for a Higgs boson with a production cross section equal to that expected for a SM Higgs boson and BR(H → inv.) = 1 is also shown.

For the discovered Higgs boson an upper limit of 75% at 95% CL (63% at 90% CL) is set on the branching ratio to invisible particles. For this the predicted SM

ZH production rate with mH = 125.5 GeV, is assumed.

The expected limit in the absence of BSM decays to invisible particles is 62% at 95% CL (52% at 90% CL). Within the context of a Higgs-portal DM sce-nario [62], in which the Higgs boson acts as the mediator particle between DM and SM particles, the Higgs boson can decay to a pair of DM particles. In this case the limit on BR(H → inv.) for the 125.5 GeV Higgs boson can be interpreted in terms of an upper limit on the DM–nucleon scattering cross section [63]. The formal-ism used to interpret the BR(H → inv.) limit in terms of the spin-independent DM–nucleon scattering cross sec-tions is described in Refs. [64, 65]. Figure 4 shows 90% CL upper limits on the DM–nucleon scattering cross sec-tion for three model variants in which a single DM

(6)

[GeV] H m 150 200 250 300 350 400 inv.) [fb] → H BR( × ZH σ 0 100 200 300 400 500 600 ,SM ZH σ Observed 95% CL limit Expected 95% CL limit σ 1 ± σ 2 ± ATLAS ZH → ℓℓ + inv. -1 L dt = 4.5 fb ∫ = 7 TeV, s -1 L dt = 20.3 fb ∫ = 8 TeV, s

FIG. 3. Upper limits on σZH × BR(H → inv.) at 95%

CL for a Higgs boson with 110 < mH < 400 GeV, for the

combined 7 and 8 TeV data. The full and dashed lines show the observed and expected limits, respectively.

didate is considered and is either a scalar, a vector or a Majorana fermion. The Higgs–nucleon coupling is taken as 0.33+0.30−0.07 [65], the uncertainty of which is expressed by the bands in the figure. Spin-independent results from direct-search experiments are also shown [66–73]. These results do not depend on the assumptions of the Higgs-portal scenario. Within the constraints of such a scenario however, the results presented in this Letter provide the strongest available limits for low-mass DM candidates. There is no sensitivity to these models once

the mass of the DM candidate exceeds mH/2. A search

by the ATLAS experiment for DM in more generic mod-els, also using the dilepton + large Emiss

T final state, is

presented in Ref. [74].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our insti-tutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC

and NSRF, European Union; IN2P3-CNRS,

CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Rus-sia and ROSATOM, RusRus-sian Federation; JINR; MSTD,

DM Mass [GeV]

1 10 102 103

]

2

Nucleon cross section [cm

− DM -51 10 -50 10 -49 10 -48 10 -47 10 -46 10 -45 10 -44 10 -43 10 -42 10 -41 10 -40 10 -39 10 -38 10 -37 10 σ DAMA/LIBRA 3 CRESST 2σ CDMS 95% CL CoGeNT XENON10 XENON100

LUX ATLAS, scalar DM

ATLAS, vector DM ATLAS, fermion DM

ATLAS = 7 TeV, s ∫Ldt=4.5 fb-1 = 8 TeV, s ∫ -1 Ldt=20.3 fb ZH → ℓℓ + inv. Higgs-portal Model

FIG. 4. Limits on the DM–nucleon scattering cross sec-tion at 90% CL, extracted from the BR(H → inv.) limit in a Higgs-portal scenario, compared to results from direct-search experiments [66–73]. Cross-section limits and favored regions correspond to a 90% CL, unless stated otherwise in the legend. Favored regions for DAMA and CoGeNT are based on Ref. [71]. The results from the direct-search exper-iments do not depend on the assumptions of the Higgs-portal scenario.

Serbia; MSSR, Slovakia; ARRS and MIZˇS, Slovenia;

DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Can-tons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Lever-hulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG part-ners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRI-UMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

[2] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

[3] G. Guralnik, C. Hagen, and T. Kibble, Phys. Rev. Lett. 13, 585 (1964).

[4] K. Griest and H. E. Haber, Phys. Rev. D 37, 719 (1988). [5] A. Djouadi, P. Janot, J. Kalinowski, and P. M. Zerwas, Phys. Lett. B 376, 220 (1996), arXiv:hep-ph/9603368. [6] I. Antoniadis, M. Tuckmantel, and F. Zwirner, Nucl.

Phys. B 707, 215 (2005), arXiv:hep-ph/0410165. [7] T. Binoth and J. J. van der Bij, Z. Phys. C 75, 17 (1997),

arXiv:hep-ph/9608245.

[8] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. B 98, 265 (1981).

(7)

3269 (1992).

[10] R. E. Shrock and M. Suzuki, Phys. Lett. B 110, 250 (1982).

[11] R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34, 1642 (1986).

[12] M. C. Gonzalez-Garcia and J. W. F. Valle, Phys. Lett. B 216, 360 (1989).

[13] E. D. Carlson and L. J. Hall, Phys. Rev. D 40, 3187 (1989).

[14] L. F. Li, Y. Liu, and L. Wolfenstein, Phys. Lett. B 159, 45 (1985).

[15] A. Zee, Phys. Lett. B 93, 389 (1980).

[16] F. de Campos, O. J. P. ´Eboli, J. Rosiek, and J. W. F. Valle, Phys. Rev. D 55, 1316 (1997), arXiv:hep-ph/9601269.

[17] S. P. Martin and J. D. Wells, Phys. Rev. D 60, 035006 (1999), arXiv:hep-ph/9903259.

[18] G. F. Giudice, R. Rattazzi, and J. D. Wells, Nucl. Phys. B 595, 250 (2001), arXiv:hep-ph/0002178.

[19] LEP Higgs Working Group, LHWG Note 2001-06 (2001), arXiv:hep-ex/0107032.

[20] D. Choudhury, and D. Roy, Phys. Lett. B 322, 368 (1994), arXiv:hep-ph/9312347.

[21] R. M. Godbole, M. Guchait, K. Mazumdar, S. Moretti, and D.P. Roy, Phys. Lett. B 571, 184 (2003), arXiv:hep-ph/0304137.

[22] H. Davoudiasl, T. Han, H. E. Logan, Phys. Rev. D 71, 115007 (2005), arXiv:hep-ph/0412269.

[23] ATLAS Collaboration, Phys. Lett. B 726, 88 (2013), arXiv:1307.1427.

[24] O. Brein, A. Djouadi and R. Harlander, Phys. Lett. B 579, 149 (2004), arXiv:hep-ph/0307206.

[25] M. L. Ciccolini, S. Dittmaier and M. Kr¨amer, Phys. Rev. D 68, 073003 (2003), arXiv:hep-ph/0306234.

[26] A. Denner, S. Dittmaier, S. Kallweit and A. M¨uck, J. High Energy Phys. 03, 075 (2012), arXiv:1112.5142. [27] LHC Higgs Cross Section Working Group, S. Dittmaier,

C. Mariotti, G. Passarino, and R. Tanaka (Eds.), CERN-2013-004 (2013), arXiv:1307.1347.

[28] ATLAS Collaboration, JINST 3, S08003 (2008). [29] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

In-strum. Methods Phys. Res., Sect. A 506, 250 (2003). [30] ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010),

arXiv:1005.4568.

[31] M. B¨ahr et al., Eur. Phys. J. C 58, 639 (2008), arXiv:0803.0883.

[32] P. Nason, J. High Energy Phys. 11, 040 (2004), arXiv:hep-ph/0409146.

[33] S. Frixione, P. Nason and C. Oleari, J. High Energy Phys. 11, 070 (2007), arXiv:0709.2092.

[34] S. Alioli, P. Nason, C. Oleari and E. Re, J. High Energy Phys. 06, 043 (2010), arXiv:1002.2581.

[35] T. Sj¨ostrand, S. Mrenna and P. Skands, Comput. Phys. Commun. 178, 852 (2008), arXiv:0710.3820.

[36] T. Melia, P. Nason, R. R¨ontsch, and G. Zanderighi, J. High Energy Phys. 11, 078 (2011), arXiv:1107.5051. [37] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti,

K. Odagiri, P. Richardson, M. H. Seymour, B. R. Web-ber, J. High Energy Phys. 01, 010 (2001), arXiv:hep-ph/0011363.

[38] T. Gleisberg, S. H¨oche, F. Krauss, M. Sch¨onherr, S. Schumann, F. Siegert, J. Winter, J. High Energy Phys. 02, 007 (2009), arXiv:0811.4622.

[39] T. Binoth, M. Ciccolini, N. Kauer, and M. Kr¨amer, J. High Energy Phys. 12, 046 (2006),

arXiv:hep-ph/0611170.

[40] J. M. Butterworth, J. R. Forshaw and M. H. Seymour, Z. Phys. C 72, 637 (1996), arXiv:hep-ph/9601371. [41] S. Frixione and B. R. Webber, J. High Energy Phys. 06,

029 (2002), arXiv:hep-ph/0204244.

[42] B. P. Kersevan and E. Richter-Was, Comput. Phys. Commun. 184, 919 (2013), arXiv:hep-ph/0405247. [43] T. Sj¨ostrand, S. Mrenna and P. Skands, J. High Energy

Phys. 05, 026 (2006), arXiv:hep-ph/0603175.

[44] M. L. Mangano, F. Piccinini, A. D. Polosa, M. Moretti and R. Pittau, J. High Energy Phys. 07, 001 (2003), arXiv:hep-ph/0206293.

[45] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 04, 002 (2009), arXiv:0812.0578.

[46] P. Nason and C. Oleari, J. High Energy Phys. 02, 037 (2010), arXiv:0911.5299.

[47] ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012), arXiv:1110.3174.

[48] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z-axis along the beam pipe. Polar coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as η = − ln tan(θ/2), and ∆R =p(∆η)2+ (∆φ)2.

[49] ATLAS Collaboration, J. High Energy Phys. 12, 060 (2010), arXiv:1010.2130.

[50] M. Cacciari, G. P. Salam and G. Soyez, J. High Energy Phys. 04, 063 (2008), arXiv:0802.1189.

[51] ATLAS Collaboration, Eur. Phys. J. C 72, 1844 (2012), arXiv:1108.5602.

[52] ATLAS Collaboration, ATLAS-CONF-2010-020 (2010).

[53] ATLAS Collaboration, J. High Energy Phys. 03, 128 (2013), arXiv:1211.6096.

[54] ATLAS Collaboration, Eur. Phys. J. C 71, 1577 (2011), arXiv:1012.1792.

[55] ATLAS Collaboration, Phys. Rev. Lett. 107, 041802 (2011), arXiv:1104.5225.

[56] ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013), arXiv:1302.4393.

[57] ATLAS Collaboration, Eur. Phys. J. C 73, 2304 (2013), arXiv:1112.6426.

[58] ATLAS Collaboration, Eur. Phys. J. C 73, 2306 (2013), arXiv:1210.6210.

[59] ATLAS Collaboration, Phys. Lett. B 718, 369 (2012), arXiv:1207.0210.

[60] A.L. Read, J. Phys. G 28, 2693 (2002).

[61] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011), arXiv:1007.1727.

[62] B. Patt and F. Wilczek, arXiv:hep-ph/0605188. [63] P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Phys. Rev.

D 85, 056011 (2012), arXiv:1109.4398.

[64] S. Kanemura, S. Matsumoto, T. Nabeshima, and N. Okada, Phys. Rev. D 82, 055026 (2010), arXiv:1005.5651.

[65] A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Phys. Lett. B 709, 65 (2012), arXiv:1112.3299. [66] R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008),

arXiv:0804.2741.

[67] J. Angle et al. (XENON10 Collaboration), Phys. Rev. Lett. 107, 051301 (2011), arXiv:1104.3088.

[68] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 109, 181301 (2012), arXiv:1207.5988.

(8)

arXiv:1109.0702.

[70] C. E. Aalseth et al. (CoGeNT Collaboration), Phys. Rev. Lett. 107, 141301 (2011), arXiv:1106.0650. [71] P. J. Fox, J. Kopp, M. Lisanti, and N. Weiner, Phys.

Rev. D 85, 036008 (2012), arXiv:1107.0717.

[72] R. Agnese et al. (CDMS Collaboration), Phys. Rev. Lett. 111, 251301 (2013), arXiv:1304.4279.

[73] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 112, 091303 (2014), arXiv:1310.8214.

[74] ATLAS Collaboration, Phys. Rev. D 90, 012004 (2014), arXiv:1404.0051.

The ATLAS Collaboration

G. Aad48, T. Abajyan21, B. Abbott112, J. Abdallah152, S. Abdel Khalek116, O. Abdinov11, R. Aben106, B. Abi113, M. Abolins89, O.S. AbouZeid159, H. Abramowicz154, H. Abreu137, Y. Abulaiti147a,147b, B.S. Acharya165a,165b,a, L. Adamczyk38a, D.L. Adams25, T.N. Addy56, J. Adelman177, S. Adomeit99, T. Adye130, S. Aefsky23,

T. Agatonovic-Jovin13b, J.A. Aguilar-Saavedra125f,125a, M. Agustoni17, S.P. Ahlen22, A. Ahmad149,

F. Ahmadov64,b, G. Aielli134a,134b, T.P.A. ˚Akesson80, G. Akimoto156, A.V. Akimov95, M.A. Alam76, J. Albert170, S. Albrand55, M.J. Alconada Verzini70, M. Aleksa30, I.N. Aleksandrov64, F. Alessandria90a, C. Alexa26a,

G. Alexander154, G. Alexandre49, T. Alexopoulos10, M. Alhroob165a,165c, G. Alimonti90a, L. Alio84, J. Alison31, B.M.M. Allbrooke18, L.J. Allison71, P.P. Allport73, S.E. Allwood-Spiers53, J. Almond83, A. Aloisio103a,103b, R. Alon173, A. Alonso36, F. Alonso70, A. Altheimer35, B. Alvarez Gonzalez89, M.G. Alviggi103a,103b, K. Amako65, Y. Amaral Coutinho24a, C. Amelung23, V.V. Ammosov129,∗, S.P. Amor Dos Santos125a,125c, A. Amorim125a,125b, S. Amoroso48, N. Amram154, G. Amundsen23, C. Anastopoulos30, L.S. Ancu17, N. Andari30, T. Andeen35, C.F. Anders58b, G. Anders58a, K.J. Anderson31, A. Andreazza90a,90b, V. Andrei58a, X.S. Anduaga70, S. Angelidakis9, P. Anger44, A. Angerami35, F. Anghinolfi30, A.V. Anisenkov108, N. Anjos125a, A. Annovi47, A. Antonaki9, M. Antonelli47, A. Antonov97, J. Antos145b, F. Anulli133a, M. Aoki65, L. Aperio Bella18, R. Apolle119,c, G. Arabidze89, I. Aracena144, Y. Arai65, A.T.H. Arce45, J-F. Arguin94, S. Argyropoulos42,

E. Arik19a,∗, M. Arik19a, A.J. Armbruster88, O. Arnaez82, V. Arnal81, O. Arslan21, A. Artamonov96, G. Artoni23, S. Asai156, N. Asbah94, S. Ask28, B. ˚Asman147a,147b, L. Asquith6, K. Assamagan25, R. Astalos145a, A. Astbury170, M. Atkinson166, N.B. Atlay142, B. Auerbach6, E. Auge116, K. Augsten127, M. Aurousseau146b, G. Avolio30, G. Azuelos94,d, Y. Azuma156, M.A. Baak30, C. Bacci135a,135b, A.M. Bach15, H. Bachacou137, K. Bachas155, M. Backes30, M. Backhaus21, J. Backus Mayes144, E. Badescu26a, P. Bagiacchi133a,133b, P. Bagnaia133a,133b, Y. Bai33a, D.C. Bailey159, T. Bain35, J.T. Baines130, O.K. Baker177, S. Baker77, P. Balek128, F. Balli137,

E. Banas39, Sw. Banerjee174, D. Banfi30, A. Bangert151, V. Bansal170, H.S. Bansil18, L. Barak173, S.P. Baranov95, T. Barber48, E.L. Barberio87, D. Barberis50a,50b, M. Barbero84, T. Barillari100, M. Barisonzi176, T. Barklow144, N. Barlow28, B.M. Barnett130, R.M. Barnett15, A. Baroncelli135a, G. Barone49, A.J. Barr119, F. Barreiro81, J. Barreiro Guimar˜aes da Costa57, R. Bartoldus144, A.E. Barton71, P. Bartos145a, V. Bartsch150, A. Bassalat116, A. Basye166, R.L. Bates53, L. Batkova145a, J.R. Batley28, M. Battistin30, F. Bauer137, H.S. Bawa144,e, T. Beau79, P.H. Beauchemin162, R. Beccherle123a,123b, P. Bechtle21, H.P. Beck17, K. Becker176, S. Becker99,

M. Beckingham139, A.J. Beddall19c, A. Beddall19c, S. Bedikian177, V.A. Bednyakov64, C.P. Bee149,

L.J. Beemster106, T.A. Beermann176, M. Begel25, K. Behr119, C. Belanger-Champagne86, P.J. Bell49, W.H. Bell49, G. Bella154, L. Bellagamba20a, A. Bellerive29, M. Bellomo85, A. Belloni57, O.L. Beloborodova108,f, K. Belotskiy97, O. Beltramello30, O. Benary154, D. Benchekroun136a, K. Bendtz147a,147b, N. Benekos166, Y. Benhammou154, E. Benhar Noccioli49, J.A. Benitez Garcia160b, D.P. Benjamin45, J.R. Bensinger23, K. Benslama131,

S. Bentvelsen106, D. Berge106, E. Bergeaas Kuutmann16, N. Berger5, F. Berghaus170, E. Berglund106,

J. Beringer15, C. Bernard22, P. Bernat77, C. Bernius78, F.U. Bernlochner170, T. Berry76, P. Berta128, C. Bertella84, F. Bertolucci123a,123b, M.I. Besana90a, G.J. Besjes105, O. Bessidskaia147a,147b, N. Besson137, S. Bethke100,

W. Bhimji46, R.M. Bianchi124, L. Bianchini23, M. Bianco30, O. Biebel99, S.P. Bieniek77, K. Bierwagen54,

J. Biesiada15, M. Biglietti135a, J. Bilbao De Mendizabal49, H. Bilokon47, M. Bindi20a,20b, S. Binet116, A. Bingul19c, C. Bini133a,133b, B. Bittner100, C.W. Black151, J.E. Black144, K.M. Black22, D. Blackburn139, R.E. Blair6,

J.-B. Blanchard137, T. Blazek145a, I. Bloch42, C. Blocker23, W. Blum82,∗, U. Blumenschein54, G.J. Bobbink106, V.S. Bobrovnikov108, S.S. Bocchetta80, A. Bocci45, C.R. Boddy119, M. Boehler48, J. Boek176, T.T. Boek176, J.A. Bogaerts30, A.G. Bogdanchikov108, A. Bogouch91,∗, C. Bohm147a, J. Bohm126, V. Boisvert76, T. Bold38a, V. Boldea26a, A.S. Boldyrev98, N.M. Bolnet137, M. Bomben79, M. Bona75, M. Boonekamp137, C. Borer17, A. Borisov129, G. Borissov71, M. Borri83, S. Borroni42, J. Bortfeldt99, V. Bortolotto135a,135b, K. Bos106, D. Boscherini20a, M. Bosman12, H. Boterenbrood106, J. Bouchami94, J. Boudreau124, E.V. Bouhova-Thacker71, D. Boumediene34, C. Bourdarios116, N. Bousson84, S. Boutouil136d, A. Boveia31, J. Boyd30, I.R. Boyko64, I. Bozovic-Jelisavcic13b, J. Bracinik18, P. Branchini135a, A. Brandt8, G. Brandt15, O. Brandt58a, U. Bratzler157, B. Brau85, J.E. Brau115, H.M. Braun176,∗, S.F. Brazzale165a,165c, B. Brelier159, K. Brendlinger121, A.J. Brennan87, R. Brenner167, S. Bressler173, T.M. Bristow46, D. Britton53, F.M. Brochu28, I. Brock21, R. Brock89, F. Broggi90a, C. Bromberg89, J. Bronner100, G. Brooijmans35, T. Brooks76, W.K. Brooks32b, J. Brosamer15, E. Brost115,

(9)

G. Brown83, J. Brown55, P.A. Bruckman de Renstrom39, D. Bruncko145b, R. Bruneliere48, S. Brunet60,

A. Bruni20a, G. Bruni20a, M. Bruschi20a, L. Bryngemark80, T. Buanes14, Q. Buat55, F. Bucci49, P. Buchholz142, R.M. Buckingham119, A.G. Buckley53, S.I. Buda26a, I.A. Budagov64, B. Budick109, F. Buehrer48, L. Bugge118, M.K. Bugge118, O. Bulekov97, A.C. Bundock73, M. Bunse43, H. Burckhart30, S. Burdin73, B. Burghgrave107, S. Burke130, I. Burmeister43, E. Busato34, V. B¨uscher82, P. Bussey53, C.P. Buszello167, B. Butler57, J.M. Butler22, A.I. Butt3, C.M. Buttar53, J.M. Butterworth77, W. Buttinger28, A. Buzatu53, M. Byszewski10,

S. Cabrera Urb´an168, D. Caforio20a,20b, O. Cakir4a, P. Calafiura15, G. Calderini79, P. Calfayan99, R. Calkins107, L.P. Caloba24a, R. Caloi133a,133b, D. Calvet34, S. Calvet34, R. Camacho Toro49, P. Camarri134a,134b,

D. Cameron118, L.M. Caminada15, R. Caminal Armadans12, S. Campana30, M. Campanelli77, V. Canale103a,103b, F. Canelli31, A. Canepa160a, J. Cantero81, R. Cantrill76, T. Cao40, M.D.M. Capeans Garrido30, I. Caprini26a, M. Caprini26a, M. Capua37a,37b, R. Caputo82, R. Cardarelli134a, T. Carli30, G. Carlino103a, L. Carminati90a,90b, S. Caron105, E. Carquin32a, G.D. Carrillo-Montoya146c, A.A. Carter75, J.R. Carter28, J. Carvalho125a,125c,

D. Casadei77, M.P. Casado12, C. Caso50a,50b,∗, E. Castaneda-Miranda146b, A. Castelli106, V. Castillo Gimenez168, N.F. Castro125a, P. Catastini57, A. Catinaccio30, J.R. Catmore71, A. Cattai30, G. Cattani134a,134b, S. Caughron89, V. Cavaliere166, D. Cavalli90a, M. Cavalli-Sforza12, V. Cavasinni123a,123b, F. Ceradini135a,135b, B. Cerio45,

K. Cerny128, A.S. Cerqueira24b, A. Cerri150, L. Cerrito75, F. Cerutti15, M. Cerv30, A. Cervelli17, S.A. Cetin19b, A. Chafaq136a, D. Chakraborty107, I. Chalupkova128, K. Chan3, P. Chang166, B. Chapleau86, J.D. Chapman28, D. Charfeddine116, D.G. Charlton18, V. Chavda83, C.A. Chavez Barajas30, S. Cheatham86, S. Chekanov6, S.V. Chekulaev160a, G.A. Chelkov64, M.A. Chelstowska88, C. Chen63, H. Chen25, K. Chen149, L. Chen33d,g, S. Chen33c, X. Chen146c, Y. Chen35, Y. Cheng31, A. Cheplakov64, R. Cherkaoui El Moursli136e, V. Chernyatin25,∗, E. Cheu7, L. Chevalier137, V. Chiarella47, G. Chiefari103a,103b, J.T. Childers30, A. Chilingarov71, G. Chiodini72a, A.S. Chisholm18, R.T. Chislett77, A. Chitan26a, M.V. Chizhov64, S. Chouridou9, B.K.B. Chow99, I.A. Christidi77, D. Chromek-Burckhart30, M.L. Chu152, J. Chudoba126, G. Ciapetti133a,133b, A.K. Ciftci4a, R. Ciftci4a, D. Cinca62, V. Cindro74, A. Ciocio15, M. Cirilli88, P. Cirkovic13b, Z.H. Citron173, M. Citterio90a, M. Ciubancan26a, A. Clark49, P.J. Clark46, R.N. Clarke15, W. Cleland124, J.C. Clemens84, B. Clement55, C. Clement147a,147b, Y. Coadou84, M. Cobal165a,165c, A. Coccaro139, J. Cochran63, L. Coffey23, J.G. Cogan144, J. Coggeshall166, J. Colas5, B. Cole35, S. Cole107, A.P. Colijn106, C. Collins-Tooth53, J. Collot55, T. Colombo58c, G. Colon85, G. Compostella100,

P. Conde Mui˜no125a,125b, E. Coniavitis167, M.C. Conidi12, I.A. Connelly76, S.M. Consonni90a,90b, V. Consorti48, S. Constantinescu26a, C. Conta120a,120b, G. Conti57, F. Conventi103a,h, M. Cooke15, B.D. Cooper77,

A.M. Cooper-Sarkar119, N.J. Cooper-Smith76, K. Copic15, T. Cornelissen176, M. Corradi20a, F. Corriveau86,i, A. Corso-Radu164, A. Cortes-Gonzalez12, G. Cortiana100, G. Costa90a, M.J. Costa168, D. Costanzo140, D. Cˆot´e8, G. Cottin32a, G. Cowan76, B.E. Cox83, K. Cranmer109, G. Cree29, S. Cr´ep´e-Renaudin55, F. Crescioli79,

M. Crispin Ortuzar119, M. Cristinziani21, G. Crosetti37a,37b, C.-M. Cuciuc26a, C. Cuenca Almenar177, T. Cuhadar Donszelmann140, J. Cummings177, M. Curatolo47, C. Cuthbert151, H. Czirr142, P. Czodrowski3, Z. Czyczula177, S. D’Auria53, M. D’Onofrio73, A. D’Orazio133a,133b, M.J. Da Cunha Sargedas De Sousa125a,125b, C. Da Via83, W. Dabrowski38a, A. Dafinca119, T. Dai88, F. Dallaire94, C. Dallapiccola85, M. Dam36,

A.C. Daniells18, M. Dano Hoffmann36, V. Dao105, G. Darbo50a, G.L. Darlea26c, S. Darmora8, J.A. Dassoulas42, W. Davey21, C. David170, T. Davidek128, E. Davies119,c, M. Davies94, O. Davignon79, A.R. Davison77,

Y. Davygora58a, E. Dawe143, I. Dawson140, R.K. Daya-Ishmukhametova23, K. De8, R. de Asmundis103a, S. De Castro20a,20b, S. De Cecco79, J. de Graat99, N. De Groot105, P. de Jong106, C. De La Taille116, H. De la Torre81, F. De Lorenzi63, L. De Nooij106, D. De Pedis133a, A. De Salvo133a, U. De Sanctis165a,165c, A. De Santo150, J.B. De Vivie De Regie116, G. De Zorzi133a,133b, W.J. Dearnaley71, R. Debbe25, C. Debenedetti46, B. Dechenaux55, D.V. Dedovich64, J. Degenhardt121, I. Deigaard106, J. Del Peso81, T. Del Prete123a,123b,

T. Delemontex55, F. Deliot137, M. Deliyergiyev74, A. Dell’Acqua30, L. Dell’Asta22, M. Della Pietra103a,h, D. della Volpe49, M. Delmastro5, P.A. Delsart55, C. Deluca106, S. Demers177, M. Demichev64, A. Demilly79, B. Demirkoz12,j, S.P. Denisov129, D. Derendarz39, J.E. Derkaoui136d, F. Derue79, P. Dervan73, K. Desch21, P.O. Deviveiros106, A. Dewhurst130, S. Dhaliwal106, A. Di Ciaccio134a,134b, L. Di Ciaccio5,

A. Di Domenico133a,133b, C. Di Donato103a,103b, A. Di Girolamo30, B. Di Girolamo30, A. Di Mattia153, B. Di Micco135a,135b, R. Di Nardo47, A. Di Simone48, R. Di Sipio20a,20b, D. Di Valentino29, M.A. Diaz32a, E.B. Diehl88, J. Dietrich42, T.A. Dietzsch58a, S. Diglio87, A. Dimitrievska13a, K. Dindar Yagci40, J. Dingfelder21, C. Dionisi133a,133b, P. Dita26a, S. Dita26a, F. Dittus30, F. Djama84, T. Djobava51b, M.A.B. do Vale24c,

A. Do Valle Wemans125a,125g, T.K.O. Doan5, D. Dobos30, E. Dobson77, J. Dodd35, C. Doglioni49, T. Doherty53, T. Dohmae156, J. Dolejsi128, Z. Dolezal128, B.A. Dolgoshein97,∗, M. Donadelli24d, S. Donati123a,123b,

P. Dondero120a,120b, J. Donini34, J. Dopke30, A. Doria103a, A. Dos Anjos174, A. Dotti123a,123b, M.T. Dova70, A.T. Doyle53, M. Dris10, J. Dubbert88, S. Dube15, E. Dubreuil34, E. Duchovni173, G. Duckeck99, O.A. Ducu26a, D. Duda176, A. Dudarev30, F. Dudziak63, L. Duflot116, L. Duguid76, M. D¨uhrssen30, M. Dunford58a,

(10)

W. Ehrenfeld21, T. Eifert144, G. Eigen14, K. Einsweiler15, T. Ekelof167, M. El Kacimi136c, M. Ellert167, S. Elles5, F. Ellinghaus82, K. Ellis75, N. Ellis30, J. Elmsheuser99, M. Elsing30, D. Emeliyanov130, Y. Enari156,

O.C. Endner82, M. Endo117, R. Engelmann149, J. Erdmann177, A. Ereditato17, D. Eriksson147a, G. Ernis176, J. Ernst2, M. Ernst25, J. Ernwein137, D. Errede166, S. Errede166, E. Ertel82, M. Escalier116, H. Esch43,

C. Escobar124, X. Espinal Curull12, B. Esposito47, F. Etienne84, A.I. Etienvre137, E. Etzion154, D. Evangelakou54, H. Evans60, L. Fabbri20a,20b, G. Facini30, R.M. Fakhrutdinov129, S. Falciano133a, Y. Fang33a, M. Fanti90a,90b, A. Farbin8, A. Farilla135a, T. Farooque12, S. Farrell164, S.M. Farrington171, P. Farthouat30, F. Fassi168, P. Fassnacht30, D. Fassouliotis9, B. Fatholahzadeh159, A. Favareto50a,50b, L. Fayard116, P. Federic145a,

O.L. Fedin122, W. Fedorko169, M. Fehling-Kaschek48, S. Feigl30, L. Feligioni84, C. Feng33d, E.J. Feng6, H. Feng88, A.B. Fenyuk129, W. Fernando6, S. Ferrag53, J. Ferrando53, V. Ferrara42, A. Ferrari167, P. Ferrari106,

R. Ferrari120a, D.E. Ferreira de Lima53, A. Ferrer168, D. Ferrere49, C. Ferretti88, A. Ferretto Parodi50a,50b, M. Fiascaris31, F. Fiedler82, A. Filipˇciˇc74, M. Filipuzzi42, F. Filthaut105, M. Fincke-Keeler170, K.D. Finelli45, M.C.N. Fiolhais125a,125c,k, L. Fiorini168, A. Firan40, J. Fischer176, M.J. Fisher110, E.A. Fitzgerald23, M. Flechl48, I. Fleck142, P. Fleischmann175, S. Fleischmann176, G.T. Fletcher140, G. Fletcher75, T. Flick176, A. Floderus80, L.R. Flores Castillo174, A.C. Florez Bustos160b, M.J. Flowerdew100, A. Formica137, A. Forti83, D. Fortin160a, D. Fournier116, H. Fox71, P. Francavilla12, M. Franchini20a,20b, S. Franchino30, D. Francis30, M. Franklin57, S. Franz61, M. Fraternali120a,120b, S. Fratina121, S.T. French28, C. Friedrich42, F. Friedrich44, D. Froidevaux30, J.A. Frost28, C. Fukunaga157, E. Fullana Torregrosa128, B.G. Fulsom144, J. Fuster168, C. Gabaldon55,

O. Gabizon173, A. Gabrielli20a,20b, A. Gabrielli133a,133b, S. Gadatsch106, T. Gadfort25, S. Gadomski49, G. Gagliardi50a,50b, P. Gagnon60, C. Galea99, B. Galhardo125a,125c, E.J. Gallas119, V. Gallo17, B.J. Gallop130, P. Gallus127, G. Galster36, K.K. Gan110, R.P. Gandrajula62, J. Gao33b,g, Y.S. Gao144,e, F.M. Garay Walls46, F. Garberson177, C. Garc´ıa168, J.E. Garc´ıa Navarro168, M. Garcia-Sciveres15, R.W. Gardner31, N. Garelli144, V. Garonne30, C. Gatti47, G. Gaudio120a, B. Gaur142, L. Gauthier94, P. Gauzzi133a,133b, I.L. Gavrilenko95, C. Gay169, G. Gaycken21, E.N. Gazis10, P. Ge33d,l, Z. Gecse169, C.N.P. Gee130, D.A.A. Geerts106,

Ch. Geich-Gimbel21, K. Gellerstedt147a,147b, C. Gemme50a, A. Gemmell53, M.H. Genest55, S. Gentile133a,133b, M. George54, S. George76, D. Gerbaudo164, A. Gershon154, H. Ghazlane136b, N. Ghodbane34, B. Giacobbe20a, S. Giagu133a,133b, V. Giangiobbe12, P. Giannetti123a,123b, F. Gianotti30, B. Gibbard25, S.M. Gibson76,

M. Gilchriese15, T.P.S. Gillam28, D. Gillberg30, A.R. Gillman130, D.M. Gingrich3,d, N. Giokaris9, M.P. Giordani165c, R. Giordano103a,103b, F.M. Giorgi16, P. Giovannini100, P.F. Giraud137, D. Giugni90a, C. Giuliani48, M. Giunta94, B.K. Gjelsten118, I. Gkialas155,m, L.K. Gladilin98, C. Glasman81, J. Glatzer21,

A. Glazov42, G.L. Glonti64, M. Goblirsch-Kolb100, J.R. Goddard75, J. Godfrey143, J. Godlewski30, C. Goeringer82, S. Goldfarb88, T. Golling177, D. Golubkov129, A. Gomes125a,125b,125d, L.S. Gomez Fajardo42, R. Gon¸calo76, J. Goncalves Pinto Firmino Da Costa42, L. Gonella21, S. Gonz´alez de la Hoz168, G. Gonzalez Parra12,

M.L. Gonzalez Silva27, S. Gonzalez-Sevilla49, L. Goossens30, P.A. Gorbounov96, H.A. Gordon25, I. Gorelov104, G. Gorfine176, B. Gorini30, E. Gorini72a,72b, A. Goriˇsek74, E. Gornicki39, A.T. Goshaw6, C. G¨ossling43,

M.I. Gostkin64, M. Gouighri136a, D. Goujdami136c, M.P. Goulette49, A.G. Goussiou139, C. Goy5, S. Gozpinar23, H.M.X. Grabas137, L. Graber54, I. Grabowska-Bold38a, P. Grafstr¨om20a,20b, K-J. Grahn42, J. Gramling49, E. Gramstad118, F. Grancagnolo72a, S. Grancagnolo16, V. Grassi149, V. Gratchev122, H.M. Gray30, J.A. Gray149, E. Graziani135a, O.G. Grebenyuk122, Z.D. Greenwood78,n, K. Gregersen36, I.M. Gregor42, P. Grenier144,

J. Griffiths8, N. Grigalashvili64, A.A. Grillo138, K. Grimm71, S. Grinstein12,o, Ph. Gris34, Y.V. Grishkevich98, J.-F. Grivaz116, J.P. Grohs44, A. Grohsjean42, E. Gross173, J. Grosse-Knetter54, G.C. Grossi134a,134b,

J. Groth-Jensen173, Z.J. Grout150, K. Grybel142, L. Guan33b, F. Guescini49, D. Guest177, O. Gueta154,

C. Guicheney34, E. Guido50a,50b, T. Guillemin116, S. Guindon2, U. Gul53, C. Gumpert44, J. Gunther127, J. Guo35, S. Gupta119, P. Gutierrez112, N.G. Gutierrez Ortiz53, C. Gutschow77, N. Guttman154, C. Guyot137,

C. Gwenlan119, C.B. Gwilliam73, A. Haas109, C. Haber15, H.K. Hadavand8, P. Haefner21, S. Hageboeck21, Z. Hajduk39, H. Hakobyan178, M. Haleem42, D. Hall119, G. Halladjian89, K. Hamacher176, P. Hamal114, K. Hamano87, M. Hamer54, A. Hamilton146a,p, S. Hamilton162, L. Han33b, K. Hanagaki117, K. Hanawa156, M. Hance15, P. Hanke58a, J.R. Hansen36, J.B. Hansen36, J.D. Hansen36, P.H. Hansen36, P. Hansson144, K. Hara161, A.S. Hard174, T. Harenberg176, S. Harkusha91, D. Harper88, R.D. Harrington46, O.M. Harris139, P.F. Harrison171, F. Hartjes106, A. Harvey56, S. Hasegawa102, Y. Hasegawa141, S. Hassani137, S. Haug17,

M. Hauschild30, R. Hauser89, M. Havranek21, C.M. Hawkes18, R.J. Hawkings30, A.D. Hawkins80, T. Hayashi161, D. Hayden89, C.P. Hays119, H.S. Hayward73, S.J. Haywood130, S.J. Head18, T. Heck82, V. Hedberg80, L. Heelan8, S. Heim121, T. Heim176, B. Heinemann15, S. Heisterkamp36, J. Hejbal126, L. Helary22, C. Heller99, M. Heller30, S. Hellman147a,147b, D. Hellmich21, C. Helsens30, J. Henderson119, R.C.W. Henderson71, A. Henrichs177, A.M. Henriques Correia30, S. Henrot-Versille116, C. Hensel54, G.H. Herbert16, Y. Hern´andez Jim´enez168, R. Herrberg-Schubert16, G. Herten48, R. Hertenberger99, L. Hervas30, G.G. Hesketh77, N.P. Hessey106, R. Hickling75, E. Hig´on-Rodriguez168, J.C. Hill28, K.H. Hiller42, S. Hillert21, S.J. Hillier18, I. Hinchliffe15,

(11)

E. Hines121, M. Hirose117, D. Hirschbuehl176, J. Hobbs149, N. Hod106, M.C. Hodgkinson140, P. Hodgson140, A. Hoecker30, M.R. Hoeferkamp104, J. Hoffman40, D. Hoffmann84, J.I. Hofmann58a, M. Hohlfeld82, T.R. Holmes15, T.M. Hong121, L. Hooft van Huysduynen109, J-Y. Hostachy55, S. Hou152, A. Hoummada136a, J. Howard119, J. Howarth83, M. Hrabovsky114, I. Hristova16, J. Hrivnac116, T. Hryn’ova5, P.J. Hsu82, S.-C. Hsu139, D. Hu35, X. Hu25, Y. Huang146c, Z. Hubacek30, F. Hubaut84, F. Huegging21, A. Huettmann42, T.B. Huffman119, E.W. Hughes35, G. Hughes71, M. Huhtinen30, T.A. H¨ulsing82, M. Hurwitz15, N. Huseynov64,b, J. Huston89, J. Huth57, G. Iacobucci49, G. Iakovidis10, I. Ibragimov142, L. Iconomidou-Fayard116, J. Idarraga116, E. Ideal177, P. Iengo103a, O. Igonkina106, T. Iizawa172, Y. Ikegami65, K. Ikematsu142, M. Ikeno65, D. Iliadis155, N. Ilic159, Y. Inamaru66, T. Ince100, P. Ioannou9, M. Iodice135a, K. Iordanidou9, V. Ippolito133a,133b, A. Irles Quiles168, C. Isaksson167, M. Ishino67, M. Ishitsuka158, R. Ishmukhametov110, C. Issever119, S. Istin19a, A.V. Ivashin129, W. Iwanski39, H. Iwasaki65, J.M. Izen41, V. Izzo103a, B. Jackson121, J.N. Jackson73, M. Jackson73, P. Jackson1, M.R. Jaekel30, V. Jain2, K. Jakobs48, S. Jakobsen36, T. Jakoubek126, J. Jakubek127, D.O. Jamin152, D.K. Jana78, E. Jansen77, H. Jansen30, J. Janssen21, M. Janus171, R.C. Jared174, G. Jarlskog80, L. Jeanty15, G.-Y. Jeng151, I. Jen-La Plante31, D. Jennens87, P. Jenni48,q, J. Jentzsch43, C. Jeske171, S. J´ez´equel5, M.K. Jha20a, H. Ji174, W. Ji82, J. Jia149, Y. Jiang33b, M. Jimenez Belenguer42, S. Jin33a, A. Jinaru26a, O. Jinnouchi158,

M.D. Joergensen36, D. Joffe40, K.E. Johansson147a, P. Johansson140, K.A. Johns7, K. Jon-And147a,147b, G. Jones171, R.W.L. Jones71, T.J. Jones73, P.M. Jorge125a,125b, K.D. Joshi83, J. Jovicevic148, X. Ju174, C.A. Jung43, R.M. Jungst30, P. Jussel61, A. Juste Rozas12,o, M. Kaci168, A. Kaczmarska39, M. Kado116,

H. Kagan110, M. Kagan144, E. Kajomovitz45, S. Kalinin176, S. Kama40, N. Kanaya156, M. Kaneda30, S. Kaneti28, T. Kanno158, V.A. Kantserov97, J. Kanzaki65, B. Kaplan109, A. Kapliy31, D. Kar53, K. Karakostas10,

N. Karastathis10, M. Karnevskiy82, S.N. Karpov64, K. Karthik109, V. Kartvelishvili71, A.N. Karyukhin129, L. Kashif174, G. Kasieczka58b, R.D. Kass110, A. Kastanas14, Y. Kataoka156, A. Katre49, J. Katzy42, V. Kaushik7, K. Kawagoe69, T. Kawamoto156, G. Kawamura54, S. Kazama156, V.F. Kazanin108, M.Y. Kazarinov64,

R. Keeler170, P.T. Keener121, R. Kehoe40, M. Keil54, J.S. Keller139, H. Keoshkerian5, O. Kepka126, B.P. Kerˇsevan74, S. Kersten176, K. Kessoku156, J. Keung159, F. Khalil-zada11, H. Khandanyan147a,147b,

A. Khanov113, D. Kharchenko64, A. Khodinov97, A. Khomich58a, T.J. Khoo28, G. Khoriauli21, A. Khoroshilov176, V. Khovanskiy96, E. Khramov64, J. Khubua51b, H. Kim147a,147b, S.H. Kim161, N. Kimura172, O. Kind16,

B.T. King73, M. King168, R.S.B. King119, S.B. King169, J. Kirk130, A.E. Kiryunin100, T. Kishimoto66, D. Kisielewska38a, T. Kitamura66, T. Kittelmann124, K. Kiuchi161, E. Kladiva145b, M. Klein73, U. Klein73, K. Kleinknecht82, P. Klimek147a,147b, A. Klimentov25, R. Klingenberg43, J.A. Klinger83, E.B. Klinkby36,

T. Klioutchnikova30, P.F. Klok105, E.-E. Kluge58a, P. Kluit106, S. Kluth100, E. Kneringer61, E.B.F.G. Knoops84, A. Knue53, T. Kobayashi156, M. Kobel44, M. Kocian144, P. Kodys128, S. Koenig82, P. Koevesarki21, T. Koffas29, E. Koffeman106, L.A. Kogan119, S. Kohlmann176, Z. Kohout127, T. Kohriki65, T. Koi144, H. Kolanoski16, I. Koletsou5, J. Koll89, A.A. Komar95,∗, Y. Komori156, T. Kondo65, K. K¨oneke48, A.C. K¨onig105, T. Kono65,r, R. Konoplich109,s, N. Konstantinidis77, R. Kopeliansky153, S. Koperny38a, L. K¨opke82, A.K. Kopp48, K. Korcyl39, K. Kordas155, A. Korn46, A.A. Korol108, I. Korolkov12, E.V. Korolkova140, V.A. Korotkov129, O. Kortner100, S. Kortner100, V.V. Kostyukhin21, S. Kotov100, V.M. Kotov64, A. Kotwal45, C. Kourkoumelis9, V. Kouskoura155, A. Koutsman160a, R. Kowalewski170, T.Z. Kowalski38a, W. Kozanecki137, A.S. Kozhin129, V. Kral127,

V.A. Kramarenko98, G. Kramberger74, D. Krasnopevtsev97, M.W. Krasny79, A. Krasznahorkay30, J.K. Kraus21, A. Kravchenko25, S. Kreiss109, J. Kretzschmar73, K. Kreutzfeldt52, N. Krieger54, P. Krieger159, K. Kroeninger54, H. Kroha100, J. Kroll121, J. Kroseberg21, J. Krstic13a, U. Kruchonak64, H. Kr¨uger21, T. Kruker17, N. Krumnack63, Z.V. Krumshteyn64, A. Kruse174, M.C. Kruse45, M. Kruskal22, T. Kubota87, S. Kuday4a, S. Kuehn48, A. Kugel58c, T. Kuhl42, V. Kukhtin64, Y. Kulchitsky91, S. Kuleshov32b, M. Kuna133a,133b, J. Kunkle121, A. Kupco126,

H. Kurashige66, Y.A. Kurochkin91, R. Kurumida66, V. Kus126, E.S. Kuwertz148, M. Kuze158, J. Kvita143, A. La Rosa49, L. La Rotonda37a,37b, L. Labarga81, S. Lablak136a, C. Lacasta168, F. Lacava133a,133b, J. Lacey29, H. Lacker16, D. Lacour79, V.R. Lacuesta168, E. Ladygin64, R. Lafaye5, B. Laforge79, T. Lagouri177, S. Lai48, H. Laier58a, E. Laisne55, L. Lambourne77, C.L. Lampen7, W. Lampl7, E. Lan¸con137, U. Landgraf48,

M.P.J. Landon75, V.S. Lang58a, C. Lange42, A.J. Lankford164, F. Lanni25, K. Lantzsch30, A. Lanza120a, S. Laplace79, C. Lapoire21, J.F. Laporte137, T. Lari90a, A. Larner119, M. Lassnig30, P. Laurelli47,

V. Lavorini37a,37b, W. Lavrijsen15, P. Laycock73, B.T. Le55, O. Le Dortz79, E. Le Guirriec84, E. Le Menedeu12, T. LeCompte6, F. Ledroit-Guillon55, C.A. Lee152, H. Lee106, J.S.H. Lee117, S.C. Lee152, L. Lee177, G. Lefebvre79, M. Lefebvre170, F. Legger99, C. Leggett15, A. Lehan73, M. Lehmacher21, G. Lehmann Miotto30, X. Lei7,

A.G. Leister177, M.A.L. Leite24d, R. Leitner128, D. Lellouch173, B. Lemmer54, K.J.C. Leney146c, T. Lenz106, G. Lenzen176, B. Lenzi30, R. Leone7, K. Leonhardt44, S. Leontsinis10, C. Leroy94, C.G. Lester28, C.M. Lester121, J. Levˆeque5, D. Levin88, L.J. Levinson173, A. Lewis119, G.H. Lewis109, A.M. Leyko21, M. Leyton16, B. Li33b,t, B. Li84, H. Li149, H.L. Li31, S. Li45, X. Li88, Z. Liang119,u, H. Liao34, B. Liberti134a, P. Lichard30, K. Lie166, J. Liebal21, W. Liebig14, C. Limbach21, A. Limosani87, M. Limper62, S.C. Lin152,v, F. Linde106, B.E. Lindquist149,

Imagem

FIG. 1. Distribution of E T miss for events with the invari- invari-ant mass of the two leptons 76 &lt; m `` &lt; 106 GeV in the 8 TeV data (dots)
TABLE I. Number of events observed in data and expected from the signal and from each background source for the 7 and 8 TeV data-taking periods
FIG. 3. Upper limits on σ ZH × BR(H → inv.) at 95%

Referências

Documentos relacionados

Os dados do Anuário de Comunicação (Obercom) diferem dos dados da presente investigação, no que se refere à utilização da internet no local de trabalho, no grupo dos jovens e

Material e Métodos: os materiais avaliados, Cercon (Dentsply); Katana (Kuraray Noritake Dental Inc.), Lava (3M ESPE); Vita In-Ceram (Vita Zahnfabrik) e IPS e.max ZirCAD

Deste modo, far-se- á uma abordagem a questões que se colocam ao Educador/Professor, designadamente, sobre o tipo de preparação a proporcionar às crianças/alunos, que

(12), em sua revisão de literatura, constataram que a quantidade de partículas de eugenol presente no cimento temporário não é suficiente para mudar a força de adesão de

A linearidade audiovisual cinematográfica clássica, muito embora possa ser, um pretexto ou um resultado para a obra digital, não é o objectivo da nossa análise pois queremos

Therefore in choosing my program, I wish not only to contrast the differences between a more rigorous and disciplined work of a string quartet with the more reactive, spontaneous

Grande grupo, Adulto/ Suporte de áudio 20’ Palmas A criança deve ser capaz de: · Sincronizar o movimento (balanço) do corpo com a pulsação regular da música; · Utilizar

Assim, foi possível verificar que o diagnóstico da encefalitozoonose é, realmente, complexo e apresenta algum grau de dificuldade, já que não existem sinais clínicos que