• Nenhum resultado encontrado

Um Problema Elíptico no R

N/A
N/A
Protected

Academic year: 2019

Share "Um Problema Elíptico no R"

Copied!
95
0
0

Texto

(1)

❯♥✐✈❡rs✐❞❛❞❡ ❞❡ ❇r❛sí❧✐❛

■♥st✐t✉t♦ ❞❡ ❈✐ê♥❝✐❛s ❊①❛t❛s

❉❡♣❛rt❛♠❡♥t♦ ❞❡ ▼❛t❡♠át✐❝❛

❯♠ Pr♦❜❧❡♠❛ ❊❧í♣t✐❝♦ ♥♦

R

N

❆ss✐♥t♦t✐❝❛♠❡♥t❡ ▲✐♥❡❛r ❡ ❆✉tô♥♦♠♦ ♥♦

■♥✜♥✐t♦

♣♦r

▼❛②r❛ ❙♦❛r❡s ❞❛ ❙✐❧✈❛ ❈♦st❛

❇r❛sí❧✐❛

(2)
(3)

Ficha catalográfica elaborada automaticamente, com os dados fornecidos pelo(a) autor(a)

CC837p

Costa, Mayra Soares da Silva

Um Problema Elíptico no R^N Assintoticamente Linear e Autônomo no Infinito / Mayra Soares da Silva Costa; orientador Ricardo Ruviaro. --Brasília, 2016.

83 p.

Dissertação (Mestrado - Mestrado em Matemática) --Universidade de Brasília, 2016.

(4)
(5)

❆❣r❛❞❡❝✐♠❡♥t♦s

❊♠ ♣r✐♠❡✐r♦ ❧✉❣❛r ❡✉ r❡♥❞♦ ❣r❛ç❛s ❛♦ ♠❡✉ ❙❛♥t♦ ❉❡✉s q✉❡ ❛ ❝❛❞❛ ❞✐❛ ♠❡ s✉r♣r❡❡♥❞❡ ♠❛✐s✱ s❡♠♣r❡ ♠❡ ❡♥s✐♥❛♥❞♦ q✉❡ ❡✉ ♣r❡❝✐s♦ ❝♦♥✜❛r q✉❡ t✉❞♦ ❊❧❡ ✈❛✐ ♣r♦✈❡r✱ ♠❡s♠♦ q✉❛♥❞♦ ♥ã♦ ❡st♦✉ ❝♦♠♣r❡❡♥❞❡♥❞♦ ❛s ❝✐r❝✉♥stâ♥❝✐❛s q✉❡ ♠❡ ❝❡r❝❛♠✳ ❊✉ ❥❛♠❛✐s ❝❤❡❣❛r✐❛ ❛té ❛q✉✐ s❡ ❊❧❡ ♥ã♦ ❡st✐✈❡ss❡ ❛ ♠❡ ❣✉✐❛r✳

❆❣r❛❞❡ç♦ ❛♦s ♠❡✉s ❢❛♠✐❧✐❛r❡s✱ ♣r✐♥❝✐♣❛❧♠❡♥t❡ ❛ ♠✐♥❤❛ q✉❡r✐❞❛ ♠❛♠ã❡ ❘♦s❛♥❣❡❧❛ ❙♦❛r❡s✱ q✉❡ ♠❡ ❡st❡✈❡ ❛ ❛❝♦♥s❡❧❤❛r ❞✉r❛♥t❡ t♦❞♦ ❡ss❡ t❡♠♣♦ ❞❡ ❞❡❞✐❝❛çã♦ ❛♦s ❡st✉❞♦s✳ ❚❛♠❜é♠ ❛ ♠❡✉s ❛✈ós ♠❛t❡r♥♦s ▼❛r✐❛ ❞❡ ▲♦✉r❞❡s ❡ ❏♦ã♦ ❙♦❛r❡s q✉❡ ♥ã♦ tê♠ ♣♦✉♣❛❞♦ ❡s❢♦rç♦s ❛ ♠❡ ❛♣♦✐❛r ♥❡ss❡s ú❧t✐♠♦s ❞✐❛s ❞❡ ❞✐✜❝✉❧❞❛❞❡s✳

❆♦ ♠❡✉ ♦r✐❡♥t❛❞♦r ❛❣r❛❞❡ç♦✱ ✐♥❝❛♥s❛✈❡❧♠❡♥t❡✱ ♣❡❧❛s ❞✐✈❡rs❛s ✈❡③❡s ♥❛s q✉❛✐s s❡ ❞✐s♣ôs ❛ ♠❡ ♦r✐❡♥t❛r ❡ ❛✉①✐❧✐❛r✱ ♥ã♦ ❛♣❡♥❛s ❞✉r❛♥t❡ ♦ ♠❡str❛❞♦✱ ♠❛s ♣r✐♥❝✐♣❛❧♠❡♥t❡ ❞❡s❞❡ ❛ ❣r❛❞✉❛çã♦✳ ❉❡✈♦ ♠✉✐t♦ ❛♦s ❡s❢♦rç♦s ❞❡❧❡✳

❊st❡♥❞♦ ♠❡✉s ❛❣r❛❞❡❝✐♠❡♥t♦s ❛♦s ❞❡♠❛✐s ♣r♦❢❡ss♦r❡s ❞♦ ❉❡♣❛rt❛♠❡♥t♦ ❞❡ ▼❛t❡♠át✐❝❛ ❞❛ ❯♥✐✲ ✈❡rs✐❞❛❞❡ ❞❡ ❇r❛sí❧✐❛✱ ♣❡❧♦s q✉❛✐s ♥✉tr♦ ❣r❛♥❞❡ ❛❞♠✐r❛çã♦✳ ▼✉✐t♦s ❞❡❧❡s ✜③❡r❛♠ ♣❛rt❡ ❞❛ ♠✐♥❤❛ ❢♦r♠❛çã♦✱ ❡ ♣❡❧♦ tr❛❜❛❧❤♦ ár❞✉♦ ❞❡ss❛ ❡q✉✐♣❡ tã♦ ❡✜❝✐❡♥t❡✱ ♠❡ t♦r♥❡✐ ✉♠❛ ♣r♦✜ss✐♦♥❛❧ ♠❛✐s q✉❛❧✐✜❝❛❞❛✳ ❚❛♠❜é♠ ❛❣r❛❞❡ç♦ ❛♦s ❞❡♠❛✐s ❢✉♥❝✐♦♥ár✐♦s ❞♦ ❉❡♣❛rt❛♠❡♥t♦ ❞❡ ▼❛t❡♠át✐❝❛✱ q✉❡ ♠✉✐t❛s ✈❡③❡s ❛❣✐r❛♠ ❛ ♠❡✉ ❢❛✈♦r✳ ❆✐♥❞❛ q✉❡r♦ ❣r❛❞❡❝❡r à ❈❆P❊❙ ♣❡❧♦ ❛♣♦✐♦ ✜♥❛♥❝❡✐r♦ ♥♦ ❞❡❝♦rr❡r ❞♦ ♠❡✉ ❝✉rs♦ ❞❡ ♠❡str❛❞♦✱ ❡ ♥ã♦ ♣♦❞❡r✐❛ ❞❡✐①❛r ❞❡ ♠❡♥❝✐♦♥❛r ♠✐♥❤❛ ❣r❛t✐❞ã♦ ❛♦ P■❈▼❊ q✉❡ ❢♦♠❡♥t♦✉ ♠✐♥❤❛ ♣❛rt✐❝✐♣❛çã♦ ♥❡ss❡ ♣r♦✲ ❣r❛♠❛ ❞❡ ❜♦❧s❛s ♣❛r❛ ❛❧✉♥♦s ♠❡❞❛❧❤✐st❛s ❞❛s ❖❧✐♠♣í❛❞❛s ❇r❛s✐❧❡✐r❛s ❞❡ ▼❛t❡♠át✐❝❛ ❞❛s ❊s❝♦❧❛s Pú❜❧✐❝❛s ✭❖❇▼❊P✮✳

❆❣r❛❞❡ç♦ ❛♦s ♠❡✉s ❛♠✐❣♦s q✉❡ t♦r❝❡r❛♠ ♣♦r ♠✐♠✱ ❡ ❛❝r❡❞✐t❛r❛♠ q✉❡ ❡✉ s❡r✐❛ ❝❛♣❛③ ❞❡ ❛❧❝❛♥ç❛r t❛❧ ♦❜❥❡t✐✈♦✳ ❊s♣❡❝✐❛❧♠❡♥t❡ àq✉❡❧❡s q✉❡ ♦r❛r❛♠ ♣♦r ♠✐♠✱ ❡ ❡st✐✈❡r❛♠ ♣r♦♥t♦s ❛ ♠❡ ❡s❝✉t❛r ♥♦s ❞✐❛s ❞✐❢í❝❡✐s✳

❊♥✜♠✱ ❛❣r❛❞❡ç♦ ❛ t♦❞♦s q✉❡ ❡st✐✈❡r❛♠ ♣r❡s❡♥t❡s ❡♠ ♠✐♥❤❛ ✈✐❞❛ ❞✉r❛♥t❡ ❡ss❡ ♣❡rí♦❞♦✱ ❡ q✉❡ ❞❡ ❛❧❣✉♠ ♠♦❞♦ ❝♦♥tr✐❜✉ír❛♠ ♣❛r❛ q✉❡ ❡ss❡ tr❛❜❛❧❤♦ ❢♦ss❡ ❝♦♥❝r❡t✐③❛❞♦✳ ❊✉ ❧♦✉✈♦ ❛♦ ♠❡✉ ❙❡♥❤♦r ❡ ❙❛❧✈❛❞♦r ❏❡s✉s ❈r✐st♦ ♣♦r ❝❤❡❣❛r ❛té ❛q✉✐✱ ❡ ♣♦r t♦❞♦s q✉❡ ✜③❡r❛♠ ♣❛rt❡ ❞❡ss❛ ❤✐stór✐❛✳

(6)

❉❡❞✐❝❛tór✐❛

❆ ▼❡✉ ❙❡♥❤♦r ❡ ❙❛❧✈❛❞♦r ❏❡s✉s ❈r✐st♦✱ q✉❡ ♠❡ ❡r❣✉❡✉ ❡♠ ♠♦♠❡♥t♦s ♥♦s q✉❛✐s ❡✉ ❥❛♠❛✐s ❝♦♥s❡❣✉✐r✐❛ ♠❡ ❧❡✈❛♥t❛r s♦③✐♥❤❛✳

(7)

❘❡s✉♠♦

◆❡ss❡ tr❛❜❛❧❤♦ ❛♣r❡s❡♥t❛♠♦s ✉♠ ❡st✉❞♦ s♦❜r❡ ❛ ❝❛r❛❝t❡r✐③❛çã♦ ❞♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ ❛ s❡❣✉✐♥t❡ ❝❧❛ss❡ ❞❡ ♣r♦❜❧❡♠❛s ❛✉tô♥♦♠♦s✱ ♣❛r❛ N ≥2 :

−∆u=h(u), ❡♠ RN,

❡♠ q✉❡ hs❛t✐s❢❛③ ❛❧❣✉♠❛s ❤✐♣ót❡s❡s ❡s♣❡❝í✜❝❛s✳ ❊♠ s❡❣✉✐❞❛✱ t❛♠❜é♠ ♣❛r❛ N ≥2✱ ❢❛③❡♠♦s ✉♠ ❡st✉❞♦

❞♦ s❡❣✉✐♥t❡ ♣r♦❜❧❡♠❛✿

−∆u+V(x)u=f(u), ❡♠ RN,

❡♠ q✉❡ f é ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r✱ ❡ s❛t✐s❢❛③✱ ❛ss✐♠ ❝♦♠♦ ♦ ♣♦t❡♥❝✐❛❧V✱ ❝❡rt❛s ❝♦♥❞✐çõ❡s ♣r❡✈✐❛♠❡♥t❡

❡st❛❜❡❧❡❝✐❞❛s✳ ◆♦ss❛ ✜♥❛❧✐❞❛❞❡ é✱ ♣♦r ♠❡✐♦ ❞❡ té❝♥✐❝❛s ✈❛r✐❛❝✐♦♥❛✐s✱ ♦❜t❡r ✉♠❛ s♦❧✉çã♦ ♣♦s✐t✐✈❛ ❡ ✉♠❛ s♦❧✉çã♦ ❞❡ ❡♥❡r❣✐❛ ♠í♥✐♠❛ ♣❛r❛ ♦ ♣r♦❜❧❡♠❛✳

P❛❧❛✈r❛s✲❝❤❛✈❡✿ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞❀ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐❀ ●❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛❀ ■❞❡♥t✐❞❛❞❡ ❞❡ P♦❤♦③❛❡✈✳

(8)

❆❜str❛❝t

■♥ t❤✐s ✇♦r❦✱ ✇❡ ♣r❡s❡♥t ❛ st✉❞② ❛❜♦✉t t❤❡ ❝❤❛r❛❝t❡r✐③❛t✐♦♥ ♦❢ ▼♦✉♥t❛✐♥ P❛ss ❧❡✈❡❧ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝❧❛ss ♦❢ ❛✉t♦♥♦♠♦✉s ♣r♦❜❧❡♠s✱ ✇❤❡♥ N≥2 :

−∆u=h(u), ❡♠ RN,

✇❤❡r❡ hs❛t✐s✜❡s s♦♠❡ s♣❡❝✐✜❝ ❤②♣♦t❤❡s✐s✳ ❆❢t❡r t❤❛t✱ ❛❧s♦ ❢♦r N≥2✱ ✇❡ st✉❞② t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦❜❧❡♠✿

−∆u+V(x)u=f(u), ❡♠RN,

✇❤❡r❡ f ✐s ❛s②♠♣t♦t✐❝❛❧❧② ❧✐♥❡❛r ❛♥❞ s❛t✐s✜❡s✱ ❛s ✇❡❧❧ ❛s t❤❡ ♣♦t❡♥t✐❛❧V✱ ❝❡rt❛✐♥ ♣r❡✈✐♦✉s❧② ❡st❛❜❧✐s❤❡❞

❝♦♥❞✐t✐♦♥s✳ ❖✉r ♣✉r♣♦s❡ ✐s ✉s✐♥❣ ✈❛r✐❛t✐♦♥❛❧ t❡❝❤♥✐q✉❡s t♦ ❣❡t ❛ ♣♦s✐t✐✈❡ s♦❧✉t✐♦♥ ❛♥❞ ❛ ❧❡❛st ❡♥❡r❣② s♦❧✉t✐♦♥ ♦❢ t❤❡ ♣r♦❜❧❡♠✳

❑❡② ✇♦r❞s✿ ❊❦❡❧❛♥❞ ❱❛r✐❛t✐♦♥❛❧ Pr✐♥❝✐♣❧❡❀ ❈❡r❛♠✐ ❙❡q✉❡♥❝❡❀ ▼♦✉♥t❛✐♥ P❛ss ●❡♦♠❡tr②❀ P♦❤♦③❛❡✈ ■❞❡♥t✐t②✳

(9)

◆♦t❛çã♦

BR ❜♦❧❛ ❛❜❡rt❛ ❝❡♥tr❛❞❛ ❡♠ ③❡r♦ ❝♦♠ r❛✐♦R❀

BR(x) ❜♦❧❛ ❛❜❡rt❛ ❝❡♥tr❛❞❛ ❡♠x❝♦♠ r❛✐♦ R❀

BR[x] ❜♦❧❛ ❢❡❝❤❛❞❛ ❝❡♥tr❛❞❛ ❡♠x❝♦♠ r❛✐♦ R❀

un →u ❝♦♥✈❡r❣ê♥❝✐❛ ❢♦rt❡ ✭❡♠ ♥♦r♠❛✮❀

un ⇀ u ❝♦♥✈❡r❣ê♥❝✐❛ ❢r❛❝❛❀

un →u,q✳t✳♣✳ ❡♠Ω ❝♦♥✈❡r❣ê♥❝✐❛ ❡♠ q✉❛s❡ t♦❞♦ ♣♦♥t♦x❞❡Ω❀

u= ∂ku

∂xa11 ...∂xaN

N

❞❡r✐✈❛❞❛ ❢r❛❝❛ ❝♦♠ ♠✉❧t✐✲í♥❞✐❝❡

α= (a1, ..., aN),❡♠ q✉❡ N

X

i=1 ai=k❀

∇u=

∂u

∂x1

, ..., ∂u ∂xN

❣r❛❞✐❡♥t❡ ❞❡u❀

∂u

∂η =η· ∇u ❞❡r✐✈❛❞❛ ♥♦r♠❛❧ ❡①t❡r✐♦r❀

∆u=

N

X

i=1 ∂2u ∂x2

i

❧❛♣❧❛❝✐❛♥♦ ❞❡ ✉❀

ω⊂⊂Ω ω¯ é ❝♦♠♣❛❝t♦ ❡ ❡stá ❝♦♥t✐❞♦ ❡♠Ω❀

|Ω| ♠❡❞✐❞❛ ❞❡Ω❀

¯

Ω ❢❡❝❤♦ ❞❡Ω❀

∂Ω ❢r♦♥t❡✐r❛ ❞❡Ω❀

(10)

❞✐❛♠(Ω) ❞✐â♠❡tr♦ ❞❡Ω❀

p′ = p

p−1 ❝♦♥❥✉❣❛❞♦ ❞♦ ❡①♣♦❡♥t❡ ❤♦❧❞❡r✐❛♥♦p❀

f =o(g)✱ q✉❛♥❞♦x→x0 lim

x→x0 |f(x)|

g(x) = 0❀

s✉♣♣f s✉♣♦rt❡ ❞❛ ❢✉♥çã♦f❀

C(X, Y) ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ❞❡X ❡♠Y❀

C1(X, Y) ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s ❝♦♥t✐♥✉❛♠❡♥t❡

❞✐❢❡r❡♥❝✐á✈❡✐s ❞❡X ❡♠Y❀

X′ ❡s♣❛ç♦ ❞✉❛❧ ❞❡X

Lp(Ω) ❡s♣❛ç♦ ❞❡ ▲❡❜❡s❣✉❡ ❞❛s ❢✉♥çõ❡sp✲✐♥t❡❣rá✈❡✐s❀

Lp❧♦❝(RN) Lp❧♦❝(Ω) ={u∈Lp(Ω), ⊂⊂}

Wk,p(Ω) Wk,p(Ω) ={uLp(Ω) :DαuLp(Ω), ∀ |α| ≤k}

H1(Ω) ❡s♣❛ç♦ ❞❡ ❙♦❜♦❧❡✈W1,2(Ω)❀

H−1(Ω) ❡s♣❛ç♦ ❞✉❛❧ ❞❡H1(Ω)❀

H2(Ω) ❡s♣❛ç♦ ❞❡ ❙♦❜♦❧❡✈W2,2(Ω)❀

H2

❧♦❝(Ω) W❧♦❝2,2(Ω) ={u∈W2,2(Ω′), ∀Ω′⊂⊂Ω}❀

kukH1 =

k∇uk2 2+kuk22

1/2

♥♦r♠❛ ✉s✉❛❧ ❞❡H1(RN)❀ kuk=k∇uk2

2+kV(x)uk22 1/2

♥♦r♠❛ ❛❧t❡r♥❛t✐✈❛ ♣❛r❛H1(RN)❀

kukp=

Z

RN|

u|pdx

1/p

, ∀p∈[1,+∞) ♥♦r♠❛ ✉s✉❛❧ ❞❡Lp(RN)❀

kukLp(Ω)=

Z

Ω| u|pdx

1/p

, ∀p∈[1,+∞) ♥♦r♠❛ ✉s✉❛❧ ❞❡Lp(Ω), p[1,)❀

kuk∞= sup

x∈RN

❡ss|u(x)| ♥♦r♠❛ ✉s✉❛❧ ❞❡L∞(RN)❀

| · | ♥♦r♠❛ ❞♦RN✳

(11)

❙✉♠ár✐♦

■♥tr♦❞✉çã♦ ✶

✶ ❖ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞ ✹

✶✳✶ ❙❡q✉ê♥❝✐❛s P❛❧❛✐s✲❙♠❛❧❡ ❡ ❙❡q✉ê♥❝✐❛s ❞❡ ❈❡r❛♠✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✷ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✸ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵

✷ ❯♠ Pr♦❜❧❡♠❛ ❆✉tô♥♦♠♦ ♥♦ RN ✶✹

✷✳✶ ❆ ●❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✷✳✷ ❆ ❊①✐stê♥❝✐❛ ❞❡ ✉♠ ❈❛♠✐♥❤♦γ∈Γ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✷✳✸ ❯♠❛ ❈❛r❛❝t❡r✐③❛çã♦ ❞♦ ◆í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✽

✸ ❯♠❛ ❙♦❧✉çã♦ P♦s✐t✐✈❛ ♣❛r❛ ✉♠ Pr♦❜❧❡♠❛ ❆ss✐♥t♦t✐❝❛♠❡♥t❡ ▲✐♥❡❛r ❡ ❆✉tô♥♦♠♦ ♥♦

■♥✜♥✐t♦ ✸✺

✸✳✶ ❆ ●❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✾ ✸✳✷ ❆ ▲✐♠✐t❛çã♦ ❞❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✹ ✸✳✸ ❯♠ P♦♥t♦ ❈rít✐❝♦ ◆ã♦✲❚r✐✈✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✺ ✸✳✹ ❯♠❛ ❙♦❧✉çã♦ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✷

❆ ❉✐❢❡r❡♥❝✐❛❜✐❧✐❞❛❞❡ ❞♦s ❋✉♥❝✐♦♥❛✐s ❏ ❡ ■ ✻✹

❇ ❘❡s✉❧t❛❞♦s ■♠♣♦rt❛♥t❡s ✼✺

❇✳✶ ■♠❡rsõ❡s ❞❡ ❙♦❜♦❧❡✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✺ ❇✳✷ ■❞❡♥t✐❞❛❞❡ ❞❡ P♦❤♦③❛❡✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✻ ❇✳✸ ❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✻ ❇✳✹ ❚❡♦r❡♠❛ ❞❡ ❚♦♥❡❧❧✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✼ ❇✳✺ ❋✉♥çõ❡s ❘❡❣✉❧❛r✐③❛♥t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✽ ❇✳✻ ❈❛r❛❝t❡r✐③❛çã♦ ❊s♣❡❝tr❛❧ ❞❡ ✉♠ ❖♣❡r❛❞♦r ❆✉t♦❛❞❥✉♥t♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✽

(12)

❇✳✼ ❚❡♦r❡♠❛ ❞❛ ❈♦♥✈❡r❣ê♥❝✐❛ ❉♦♠✐♥❛❞❛ ❞❡ ▲❡❜❡s❣✉❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✾ ❇✳✽ ▲❡♠❛ ❞❡ ▲✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✾ ❇✳✾ ❚❡♦r❡♠❛ ❞❡ ❱❛✐♥❜❡r❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✵ ❇✳✶✵ Pr✐♥❝í♣✐♦ ❞♦ ▼á①✐♠♦ ❋♦rt❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✵ ❇✳✶✶ ▲❡♠❛ ❞❡ ❋❛t♦✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✶

(13)

■♥tr♦❞✉çã♦

❖ ♦❜❥❡t✐✈♦ ♣r✐♥❝✐♣❛❧ ❞❡ss❡ tr❛❜❛❧❤♦ é ❡st✉❞❛r ♦ r❡s✉❧t❛❞♦ ❞❡✈✐❞♦ ❛ ❏❡❛♥❥❡❛♥ ❡ ❚❛♥❛❦❛ ❬✶✻❪ q✉❡✱ s♦❜ ❝❡rt❛s ❝♦♥❞✐çõ❡s✱ ❣❛r❛♥t❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s♦❧✉çã♦ ♣♦s✐t✐✈❛u∈H1(RN)♣❛r❛ ♦ ♣r♦❜❧❡♠❛

−∆u+V(x)u=f(u), ❡♠RN, ✭✶✮

❝✉❥❛s ♣r✐♥❝✐♣❛✐s ✈❛♥t❛❣❡♥s ❡stã♦ ❡♠ ❛ss✉♠✐r ❤✐♣ót❡s❡s q✉❡ t♦r♥❛♠ ❛ ♥ã♦ ❧✐♥❡❛r✐❞❛❞❡ ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r ❡ ♦ ♣r♦❜❧❡♠❛ ❛ss♦❝✐❛❞♦ ❛♦ ✏✐♥✜♥✐t♦✑ ❛✉tô♥♦♠♦✳ ❚r❛❜❛❧❤❛♠♦s ♣♦r ♠❡✐♦ ❞❡ ♠ét♦❞♦s ✈❛r✐❛❝✐♦♥❛✐s✱ ✐st♦ é✱ ❛ss♦❝✐❛♥❞♦ ❛♦ ♣r♦❜❧❡♠❛ ✭✶✮ ♦ ❢✉♥❝✐♦♥❛❧ ❡♥❡r❣✐❛ ♥❛t✉r❛❧I:H1(RN)R❞❡✜♥✐❞♦ ♣♦r

I(u) =1 2

Z

RN

|∇u|2+V(x)u2dx−

Z

RN

F(u)dx,

❡♠ q✉❡ F(u) =

Z u

0

f(s)ds✱ ❡ ❝♦♠ ✐ss♦✱ ❛ ✜♠ ❞❡ ♦❜t❡r s♦❧✉çã♦ ❢r❛❝❛ ♣❛r❛ ✭✶✮✱ ♦ ♦❜❥❡t✐✈♦ é ❡♥❝♦♥tr❛r ✉♠

♣♦♥t♦ ❝rít✐❝♦ ♥ã♦ tr✐✈✐❛❧ ♣❛r❛ I✳ P❛r❛ t❛♥t♦✱ s♦❜ ❛s ❤✐♣ót❡s❡s ❞♦ ♣r♦❜❧❡♠❛✱ ♠♦str❛♠♦s q✉❡I ♣♦ss✉✐ ❛

❣❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛❀ q✉❡ ❡①✐st❡ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ I✱ q✉❡ é ❧✐♠✐t❛❞❛ ❡♠ H1(RN)❀ ❡ q✉❡ t❛❧ s❡q✉ê♥❝✐❛ ♣♦ss✉✐ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ ❝♦♥✈❡r❣❡♥t❡ ♣❛r❛ ✉♠

♣♦♥t♦ ❝rít✐❝♦ ♥ã♦ tr✐✈✐❛❧ ❞❡ I✳ ❉❡ss❡ ♠♦❞♦ ♥♦ss♦s ♠❛✐♦r❡s ❞❡s❛✜♦s sã♦ ♠♦str❛r ❛ ❧✐♠✐t❛çã♦ ❞❛ s❡q✉ê♥❝✐❛

❞❡ ❈❡r❛♠✐ ❡ ❣❛r❛♥t✐r ❛ ❝♦♥✈❡r❣ê♥❝✐❛ ❞❡ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ ♣❛r❛ ✉♠ ♣♦♥t♦ ❝rít✐❝♦ ♥ã♦ tr✐✈✐❛❧✳

❆ ♥♦ss❛ ❞✐✜❝✉❧❞❛❞❡ ❡♠ ♣r♦✈❛r ❛ ❧✐♠✐t❛çã♦ ❞❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ❡stá r❡❧❛❝✐♦♥❛❞❛ ❝♦♠ ♦ ❢❛t♦ ❞❡ ❝♦♥s✐❞❡r❛r♠♦s ✉♠ ♣r♦❜❧❡♠❛ ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r✳ ●❡r❛❧♠❡♥t❡✱ ♣❛r❛ ❣❛r❛♥t✐r ❛ ❧✐♠✐t❛çã♦ ❞❛ s❡q✉ê♥✲ ❝✐❛ ❞❡ ❈❡r❛♠✐✱ ❛ ♠❛✐♦r✐❛ ❞♦s ❛✉t♦r❡s ❛ss✉♠❡ ❛ s❡❣✉✐♥t❡ ❝♦♥❞✐çã♦ ❞❡ s✉♣❡r❧✐♥❡❛r✐❞❛❞❡ ✐♥tr♦❞✉③✐❞❛ ♣♦r ❆♠❜r♦s❡tt✐ ❡ ❘❛❜✐♥♦✇✐t③ ❬✸❪✿

∃µ >2 : 0< µF(s)≤f(s)s, ♣❛r❛ t♦❞♦ s >0. ✭✷✮

❖❜s❡r✈❡ q✉❡ ❛ ❝♦♥❞✐çã♦ ❞❛❞❛ ❡♠ ✭✷✮ ✐♠♣❧✐❝❛ ❡♠

lim inf

s→+∞

f(s)

sµ−1 >0,

❝♦♥t✉❞♦✱ t❛❧ ❤✐♣ót❡s❡ ❞❡ ❝r❡s❝✐♠❡♥t♦ é ❝♦♥trár✐❛ àq✉❡❧❛s ❝♦♠ ❛s q✉❛✐s tr❛❜❛❧❤❛♠♦s✳

(14)

■♥tr♦❞✉çã♦ ✷

❡ss❛ ❝♦♥❞✐çã♦✱ ❞❡ ❝❡rt♦ ♠♦❞♦✱ ♦ ♣r♦❜❧❡♠❛ ✜❝❛ ❞❡✜♥✐❞♦ ❡♠ R✱ ♦ q✉❡ ❣❛r❛♥t❡ ❛ ❝♦♠♣❛❝✐❞❛❞❡✳ ❖ ❡st✉❞♦

♠❛✐s ♣ró①✐♠♦ ❛♦ q✉❡ s❡rá ❞❡s❡♥✈♦❧✈✐❞♦ ♥❡ss❡ tr❛❜❛❧❤♦✱ ❢♦✐ ❛♣r❡s❡♥t❛❞♦ ♣♦r ❏❡❛♥❥❡❛♥ ❬✶✺❪ ❡ s❡ tr❛t❛ ❞❡ ✉♠ ♣r♦❜❧❡♠❛ ❞❛ ❢♦r♠❛

∆u+Ku=f(x, u), ❡♠ RN,

❡♠ q✉❡ K >0 é ✉♠❛ ❝♦♥st❛♥t❡ ❡f(x, s)é ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r ❡♠s❡ ♣❡r✐ó❞✐❝❛ ❡♠x∈RN✳ ❉❡♣♦✐s

❞✐ss♦✱ ✈❛❧❡ ♠❡♥❝✐♦♥❛r q✉❡ ❢❛③❡♥❞♦ ✉s♦ ❞❡ ❛❧❣✉♠❛s té❝♥✐❝❛s ✉t✐❧✐③❛❞❛s ❡♠ ❬✶✺❪✱ ❙t✉❛rt ❡ ❩❤♦✉ ❛♣r❡s❡♥t❛r❛♠ ✉♠ ❡st✉❞♦ ♠❛✐s ❞❡t❛❧❤❛❞♦ s♦❜r❡ ♣r♦❜❧❡♠❛s r❛❞✐❛❧♠❡♥t❡ s✐♠étr✐❝♦s ♥♦ RN ✭❝❢✳ ❬✷✹❪✮✳ ❊ t❛♠❜é♠ ♥ã♦

♣♦❞❡♠♦s ❞❡✐①❛r ❞❡ ❝✐t❛r ❝♦♠♦ ✐♥s♣✐r❛çã♦ ♦ tr❛❜❛❧❤♦ ❡♠ ❬✷✺❪✱ ❞❡✈✐❞♦ ❛ ❙③✉❧❦✐♥ ❡ ❩♦✉✱ q✉❡ tr❛t❛ s✐st❡♠❛s ❍❛♠✐❧t♦♥✐❛♥♦s ❞❡ ♣r✐♠❡✐r❛ ♦r❞❡♠ ❝♦♠ ✉♠❛ ♣❛rt❡ ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r✳

❙❡❣✉✐♥❞♦ ❛ ❧✐♥❤❛ ❞❡ r❛❝✐♦❝í♥✐♦ ❞❡s❡♥✈♦❧✈✐❞❛ ❡♠ ❬✶✺❪✱ ❛ ❧✐♠✐t❛çã♦ ❞❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ❞❡♠♦♥s✲ tr❛❞❛ ♥❡ss❡ tr❛❜❛❧❤♦ é ❜❛s❡❛❞❛ ❡♠ ❬✶✽❪✳ ❈♦♥t✉❞♦✱ ❞❡ss❛ ✈❡③ ❞❡✈✐❞♦ à ❡str✉t✉r❛ ❡s♣❡❝tr❛❧ ❡ ❛ ❢❛❧t❛ ❞❡ ✐♥✈❛r✐â♥❝✐❛ ♣♦r tr❛♥s❧❛çõ❡s✱ ♦ ❛r❣✉♠❡♥t♦ é ✉♠ ♣♦✉❝♦ ♠❛✐s s♦✜st✐❝❛❞♦✳

◆♦ q✉❡ ❞✐③ r❡s♣❡✐t♦ ❛♦ s❡❣✉♥❞♦ ❞❡s❛✜♦ ❞❡ss❡ tr❛❜❛❧❤♦✱ ✐st♦ é✱ ♠♦str❛r q✉❡ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ ❞❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ❝♦♥✈❡r❣❡ ♣❛r❛ ✉♠ ♣♦♥t♦ ❝rít✐❝♦ ♥ã♦ tr✐✈✐❛❧✱ ❛ s✐t✉❛çã♦ é ✉♠ ♣♦✉❝♦ ♠❛✐s ❝♦♠♣❧✐❝❛❞❛✳ ❆ ❣r❛♥❞❡ ♠❛✐♦r✐❛ ❞♦s ❛✉t♦r❡s tr❛❜❛❧❤❛ s♦❜ ❛ ❤✐♣ót❡s❡ ❞❡ q✉❡ ❛ ❢✉♥çã♦s7→f(s)s−1é ♥ã♦ ❞❡❝r❡s❝❡♥t❡✱ ❡

❛ss✐♠✱ s♦❜ t❛❧ ❝♦♥❞✐çã♦✱ ❢❛③❡♠ ✉s♦ ❞❡ ✉♠❛ r❡str✐çã♦ ♥❛t✉r❛❧ ❞♦ ❡s♣❛ç♦ ❛♠❜✐❡♥t❡✳ ❈♦♠♦ ❡①❡♠♣❧♦ ♣♦❞❡♠♦s ❝✐t❛r ❬✷✵❪ ❡ ❬✷✷❪✳ ◆♦ ❡♥t❛♥t♦✱ ♥ã♦ s❡❣✉✐♠♦s ❡ss❛ ❧✐♥❤❛✱ ❡♠ ✈❡③ ❞✐ss♦✱ t✐r❛♠♦s ✈❛♥t❛❣❡♠ ❞❛s ♣r♦♣r✐❡❞❛❞❡s ❞❡ ❞✐❧❛t❛çã♦ ❞❛ ❢✉♥çã♦ t7→u(x/t)✳

❆ ✐❞❡✐❛ é ❡①♣❧♦r❛r ♦ ♣r♦❜❧❡♠❛ ♥♦ ✏✐♥✜♥✐t♦✑ q✉❡ é ❛✉tô♥♦♠♦✳ P❛r❛ ✐ss♦✱ ❛♥❛❧✐s❛♠♦s ♣r♦❜❧❡♠❛s ❛✉tô♥♦♠♦s ❞❛ ❢♦r♠❛

−∆u=h(u), ❡♠ RN. ✭✸✮

❆ss✐♠✱ ❛ ❝❤❛✈❡ ♣❛r❛ ❛✈❛♥ç❛r ❡stá ♥♦s r❡s✉❧t❛❞♦s s♦❜r❡ ♣r♦❜❧❡♠❛s ❛✉tô♥♦♠♦s ❡st❛❜❡❧❡❝✐❞♦s ♣♦r ✲❡st②❝❦✐ ❡ ▲✐♦♥s ❬✻❪ q✉❛♥❞♦ N ≥ 3✱ ❡ ♣♦r ❇❡r❡st②❝❦✐✱ ●❛❧❧♦✉ët ❡ ❑❛✈✐❛♥ ❬✺❪✱ ♣❛r❛ N = 2✳ P♦r ♠❡✐♦ ❞❡ss❡s

r❡s✉❧t❛❞♦s ♦❜t❡♠♦s ✉♠❛ ❝♦♥❞✐çã♦ ♥❡❝❡ssár✐❛ ♣❛r❛ q✉❡ ♦ ♣r♦❜❧❡♠❛ ✏♥♦ ✐♥✜♥✐t♦✑ ♣♦ss✉❛ s♦❧✉çã♦✳ ❊♥tã♦ r❡❧❛❝✐♦♥❛♥❞♦ ♦ ♣r♦❜❧❡♠❛ ❞❛❞♦ ❡♠ ✭✶✮ ❝♦♠ ❛q✉❡❧❡ ❛ss♦❝✐❛❞♦ ✏♥♦ ✐♥✜♥✐t♦✑✱ ❞❡s❡♥✈♦❧✈❡♠♦s ✉♠ ❛r❣✉♠❡♥t♦ q✉❡✱ ♣♦r ❝♦♥tr❛❞✐çã♦✱ ♣r♦✈❛ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠ ♣♦♥t♦ ❝rít✐❝♦ ♥ã♦ tr✐✈✐❛❧ ♣❛r❛ I✳

❖ ♣r❡s❡♥t❡ tr❛❜❛❧❤♦ ❡stá ❡str✉t✉r❛❞♦ ❝♦♠♦ s❡❣✉❡✳ ◆♦ ❈❛♣ít✉❧♦ ✶✱ ❛♣r❡s❡♥t❛♠♦s ✉♠ ❜r❡✈❡ ❡st✉❞♦ s♦❜r❡ ♦ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞✱ t❛❧ ❢❡rr❛♠❡♥t❛ é ❞❡ s✉♠❛ ✐♠♣♦rtâ♥❝✐❛ ♥❛ ♦❜t❡♥çã♦ ❞❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ I✱ ✉t✐❧✐③❛❞❛ ♥❛ ❛r❣✉♠❡♥t❛çã♦ ❞♦ ❈❛♣ít✉❧♦ ✸✳ ❊①✐❜✐♠♦s

✉♠❛ ♣r♦✈❛ ♣❛r❛ ♦ t❡♦r❡♠❛ ♣r✐♥❝✐♣❛❧ ❜❛s❡❛❞❛ ❡♠ ❬✶✵❪✱ ❬✾❪ ❡ ❬✶✷❪✳ ❊♠ s❡❣✉✐❞❛✱ ❛✐♥❞❛ ❝♦♠ ❜❛s❡ ♥❛s r❡❢❡rê♥❝✐❛s ❛♥t❡r✐♦r❡s✱ ❛ss✐♠ ❝♦♠♦ ❡♠ ❬✶✹❪✱ ♠♦str❛♠♦s ❝♦♠♦ ❛♣❧✐❝❛r t❛❧ r❡s✉❧t❛❞♦ ♣❛r❛ ♦❜t❡r ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♣❛r❛ ❞❡t❡r♠✐♥❛❞♦ ❢✉♥❝✐♦♥❛❧✱ t❛♥t♦ ♥♦ ♥í✈❡❧ ❞❡ ♠í♥✐♠♦✱ q✉❛♥t♦ ♥♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✳

◆♦ ❈❛♣ít✉❧♦ ✷✱ ❡st✉❞❛♠♦s ♣r♦❜❧❡♠❛s ❛✉tô♥♦♠♦s ❝♦♠♦ ❞❛❞♦ ❡♠ ✭✸✮✳ P❛r❛ ✐ss♦ t♦♠❛♠♦s ❝♦♠♦ r❡❢❡rê♥❝✐❛ ❬✻❪ ❡ ❬✺❪ ♣❛r❛✱ s♦❜ ❝❡rt❛s ❤✐♣ót❡s❡s✱ ❣❛r❛♥t✐r ✉♠❛ s♦❧✉çã♦ ❞❡ ❡♥❡r❣✐❛ ♠í♥✐♠❛ s❛t✐s❢❛③❡♥❞♦ ❛ ■❞❡♥t✐❞❛❞❡ ❞❡ P♦❤♦③❛❡✈ ✭❝❢✳ ❆♣ê♥❞✐❝❡ ❇✳✷✮✳ ❈♦♠ ✐ss♦✱ ❡①♣❧❛♥❛♠♦s ♦ r❡s✉❧t❛❞♦ ❛♣r❡s❡♥t❛❞♦ ♣♦r ❏❡❛♥❥❡❛♥ ❡ ❚❛♥❛❦❛ ❡♠ ❬✶✼❪✳ ◆❡st❡ tr❛❜❛❧❤♦ ♦s ❛✉t♦r❡s ❝❛r❛❝t❡r✐③❛♠ ♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ ♦ ❢✉♥❝✐♦♥❛❧ ♥❛t✉r❛❧ ❛ss♦❝✐❛❞♦ ❛♦ ♣r♦❜❧❡♠❛ ❞❛❞♦ ❡♠ ✭✸✮✱ ✐st♦ é✱J :H1(RN)R❞❛❞♦ ♣♦r

J(u) = 1 2

Z

RN|∇

u|2dx−

Z

RN

H(u)dx,

❡♠ q✉❡ H(u) =

Z u

0

h(s)ds✱ ♠♦str❛♥❞♦ q✉❡ t❛❧ ♥í✈❡❧ ❝♦✐♥❝✐❞❡ ❝♦♠ ♦ ♥í✈❡❧ ❞❡ ♠í♥✐♠♦ ❞♦ ♠❡s♠♦

(15)

■♥tr♦❞✉çã♦ ✸

q✉❡ ♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ J ❡st❡❥❛ ❜❡♠ ❞❡✜♥✐❞♦✱ ❡ss❡ ❝❛♠✐♥❤♦ é t❛♠❜é♠ ❛ ❢❡rr❛♠❡♥t❛

♣r✐♥❝✐♣❛❧ ♣❛r❛ ♣r♦✈❛r ❛ ✐❣✉❛❧❞❛❞❡ ❞♦s ♥í✈❡✐s s✉♣r❛❝✐t❛❞♦s✳ ❆❧é♠ ❞✐ss♦✱ ❛❧❣♦ q✉❡ ✈❛❧❡ ❛ ♣❡♥❛ r❡ss❛❧t❛r é q✉❡ ♣❛r❛ ♣r♦✈❛r ❛ ❡①✐stê♥❝✐❛ ❞❡ss❡ ❝❛♠✐♥❤♦ ❡s♣❡❝í✜❝♦✱ r❡❧❛❝✐♦♥❛♠♦s r❡s✉❧t❛❞♦s ❛♣r❡s❡♥t❛❞♦s ❡♠ ❬✶✻❪ ❡ ❬✶✼❪✳ ◆❛ ✈❡r❞❛❞❡✱ ♦ q✉❡ ❢❛③❡♠♦s é ♣r♦✈❛r ✉♠ r❡s✉❧t❛❞♦ q✉❡ é ♠❛✐s ❣❡r❛❧ q✉❡ ♦ ❡①✐❣✐❞♦ ❡♠ ❬✶✼❪✱ ♠❛s q✉❡ é ❛♣r❡s❡♥t❛❞♦ ❡♠ ❬✶✻❪ ❡ ♣♦rt❛♥t♦ ✉t✐❧✐③❛❞♦ ♥❛ s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛ ❞❛❞♦ ❡♠ ✭✶✮✳

P♦r ✜♠✱ ♥♦ ❈❛♣ít✉❧♦ ✸✱ ❝♦♠❡ç❛♠♦s ♣♦r ❣❛r❛♥t✐r q✉❡ ♦ ❢✉♥❝✐♦♥❛❧ I ❛ss♦❝✐❛❞♦ ❛♦ ♣r♦❜❧❡♠❛ ✭✶✮

♣♦ss✉✐ ❛ ●❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ❡ ♣❛r❛ t❛♥t♦ ✉t✐❧✐③❛♠♦s ❛s ❤✐♣ót❡s❡s ❞❡ ❝r❡s❝✐♠❡♥t♦ ❛ss✉♠✐❞❛s s♦❜r❡ ❛ ❢✉♥çã♦ f ❡ ♦ ♣♦t❡♥❝✐❛❧ V✳ ❉❡♣♦✐s ❞❡ ❝❡rt✐✜❝❛r q✉❡ I t❡♠ ❛ ❣❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✱

❢❛③❡♠♦s ✉s♦ ❞♦s r❡s✉❧t❛❞♦s ❞♦ ❈❛♣ít✉❧♦ ✶ ❡ ❣❛r❛♥t✐♠♦s ❛ ❡①✐stê♥❝✐❛ ❞❡ (un)✱ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐

♣❛r❛I♥♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✳ ▲♦❣♦ ❛♣ós✱ ❜❛s❡❛❞♦s ♥♦ Pr✐♥❝í♣✐♦ ❞❡ ❈♦♥❝❡♥tr❛çã♦ ❡ ❈♦♠♣❛❝✐❞❛❞❡

❞❡s❡♥✈♦❧✈✐❞♦ ❡♠ ❬✶✽❪✱ s✉♣♦♠♦s ♣♦r ❝♦♥tr❛❞✐çã♦ q✉❡ (un)é ✐❧✐♠✐t❛❞❛✱ ❛ss✐♠ ✉t✐❧✐③❛♠♦s ✉♠ ❛r❣✉♠❡♥t♦ ❞❡

❛♥✉❧❛♠❡♥t♦ ♦✉ ♥ã♦ ❛♥✉❧❛♠❡♥t♦ ❞❛ s❡q✉ê♥❝✐❛ unkunk−1❡ ♣♦r ♠❡✐♦ ❞❛ t❡♦r✐❛ ❡s♣❡❝tr❛❧ ♦❜t❡♠♦s ✉♠❛

❝♦♥tr❛❞✐çã♦✱ ♦ q✉❡ ♣r♦✈❛ ❛ ❧✐♠✐t❛çã♦ ❞❡ (un)✳

❊♠ s❡❣✉✐❞❛✱ ❛ ✜♠ ❞❡ ♠♦str❛r q✉❡ ♦ ❧✐♠✐t❡ ❢r❛❝♦ ❞❡ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ ❞❡ (un) é ✉♠ ♣♦♥t♦

❝rít✐❝♦ ♥ã♦ tr✐✈✐❛❧ I✱ ❧❛♥ç❛♠♦s ♠ã♦ ❞♦s r❡s✉❧t❛❞♦s ❞♦ ❈❛♣ít✉❧♦ ✷ ♣❛r❛ ❡st✉❞❛r ♦ ♣r♦❜❧❡♠❛ ❛ss♦❝✐❛❞♦ ❛♦

✏✐♥✜♥✐t♦✑✳ ❈♦♠♦H1(RN)é r❡✢❡①✐✈♦✱ ❛ ❝♦♥✈❡r❣ê♥❝✐❛ ❢r❛❝❛ ❞❡(u

n)✱ ❛ ♠❡♥♦s ❞❡ s✉❜s❡q✉ê♥❝✐❛✱ é ❣❛r❛♥t✐❞❛✱

❡ ❛✐♥❞❛ s♦❜ ❛s ❤✐♣ót❡s❡s ❞♦ ♣r♦❜❧❡♠❛ ✭✶✮ ❝♦♥s❡❣✉✐♠♦s ♣r♦✈❛r ❛ ♥ã♦ ♥❡❣❛t✐✈✐❞❛❞❡ ❞♦ ❧✐♠✐t❡ ❢r❛❝♦ u✳

P♦rt❛♥t♦ r❡st❛ ♠♦str❛r q✉❡ ué ♥ã♦ ♥✉❧♦✳ ❖✉tr❛ ✈❡③ ❛r❣✉♠❡♥t❛♥❞♦ ♣♦r ❝♦♥tr❛❞✐çã♦✱ ❛ ✐❞❡✐❛ é ♠♦str❛r

✉♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❡str✐t❛ ❡♥tr❡ ❛ ❡♥❡r❣✐❛ ❞♦ ❢✉♥❝✐♦♥❛❧ I ❡ ❛ ❡♥❡r❣✐❛ ❞♦ ❢✉♥❝✐♦♥❛❧ ❛ss♦❝✐❛❞♦ ❛♦ ♣r♦❜❧❡♠❛

✏♥♦ ✐♥✜♥✐t♦✑✱ q✉❛♥❞♦ ❡st❡s sã♦ ❛♣❧✐❝❛❞♦s ❛♦ ❝❛♠✐♥❤♦ ❝♦♥str✉í❞♦ ♥♦ ❈❛♣ít✉❧♦ ✷✳ ❉❡ ❢❛t♦✱ ❞❡s❡♥✈♦❧✈❡♥❞♦ ❡ss❡ r❛❝✐♦❝í♥✐♦ ❝❤❡❣❛♠♦s ❛ ✉♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞♦ t✐♣♦ c < c✱ ❡♠ q✉❡c é ♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛

♣❛r❛ I✳ ❉❡ss❡ ♠♦❞♦✱ ❝♦♥❝❧✉í♠♦s ♣♦r ❝♦♥tr❛❞✐çã♦ q✉❡u 6= 0 é ✉♠❛ s♦❧✉çã♦ ♣♦s✐t✐✈❛ ♣❛r❛ ♦ ♣r♦❜❧❡♠❛✳ ❋✐♥❛❧✐③❛♥❞♦ ❡ss❡ tr❛❜❛❧❤♦✱ ❛✐♥❞❛ ♥♦ ❈❛♣ít✉❧♦ ✸✱ ❛♣r❡s❡♥t❛♠♦s ✉♠ r❡s✉❧t❛❞♦ ♣❛rt✐❝✉❧❛r q✉❡ ❣❛r❛♥t❡ ✉♠❛ s♦❧✉çã♦ ❞❡ ❡♥❡r❣✐❛ ♠í♥✐♠❛ ♣❛r❛ ♦ ♣r♦❜❧❡♠❛ ❞❛❞♦ ❡♠ ✭✶✮✱ ♣❛r❛ ✐ss♦ ❛r❣✉♠❡♥t❛♠♦s ❛ss✉♠✐♥❞♦ ♦ r❡s✉❧t❛❞♦ ♣r♦✈❛❞♦ ❛♦ ❧♦♥❣♦ ❞♦ ❝❛♣ít✉❧♦✱ ✐st♦ é✱ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s♦❧✉çã♦ ♣♦s✐t✐✈❛ ♣❛r❛ ♦ ♣r♦❜❧❡♠❛✳

❆❧é♠ ❞✐ss♦✱ ❛ ✜♠ ❞❡ ❢❛❝✐❧✐t❛r ❛ ❝♦♠♣r❡❡♥sã♦ ❞♦ tr❛❜❛❧❤♦✱ ❛❝r❡s❝❡♥t❛♠♦s ♦s ❆♣ê♥❞✐❝❡s ❆ ❡ ❇✳ ◆♦ ♣r✐♠❡✐r♦✱ ❞❡♠♦♥str❛♠♦s ❛ ❞✐❢❡r❡♥❝✐❛❜✐❧✐❞❛❞❡ ❞♦s ❢✉♥❝✐♦♥❛✐s I ❡ J ❞❡✜♥✐❞♦s ❛❝✐♠❛✳ ❊ ♥♦ s❡❣✉♥❞♦

❛♣r❡s❡♥t❛♠♦s ❛❧❣✉♥s r❡s✉❧t❛❞♦s ✐♠♣♦rt❛♥t❡s q✉❡ sã♦ ✉s❛❞♦s ❢♦rt❡♠❡♥t❡ ❛♦ ❧♦♥❣♦ ❞♦ tr❛❜❛❧❤♦✳ P❛r❛ ✉♠ ❡st✉❞♦ ♠❛✐s ❛♣r♦❢✉♥❞❛❞♦ ❞❡ t❛✐s r❡s✉❧t❛❞♦s✱ ❞❡✐①❛♠♦s s✉❛s r❡s♣❡❝t✐✈❛s r❡❢❡rê♥❝✐❛s✳

❋✐♥❛❧♠❡♥t❡ r❡ss❛❧t❛♠♦s q✉❡ ❛♦ ❧♦♥❣♦ ❞♦ tr❛❜❛❧❤♦ ❛ ❧❡tr❛ C✱ ❜❡♠ ❝♦♠♦ ❛ ❧❡tr❛ M ❡ ❛❧❣✉♠❛s

(16)

❈❛♣ít✉❧♦

1

❖ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞

◆❡ss❡ ♣r✐♠❡✐r♦ ❝❛♣ít✉❧♦ ✈❛♠♦s ❛❜♦r❞❛r ♦ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞✱ q✉❡ é ✉♠❛ ❢❡rr❛♠❡♥t❛ ✈❛r✐❛❝✐♦♥❛❧ ❜❛st❛♥t❡ ✉s❛❞❛ ♥❛ r❡s♦❧✉çã♦ ❞❡ ♣r♦❜❧❡♠❛s ❡❧í♣t✐❝♦s✱ ❛ ✜♠ ❞❡ ♦❜t❡r ✉♠ ♣♦♥t♦ ❝rít✐❝♦ ♥ã♦ tr✐✈✐❛❧ ♣❛r❛ ❞❡t❡r♠✐♥❛❞♦ ❢✉♥❝✐♦♥❛❧✳ ❊ss❡ ❡st✉❞♦ s❡rá ❜❛s❡❛❞♦ ♥♦s tr❛❜❛❧❤♦s ❬✶✵❪✱ ❬✾❪ ❡ ❬✶✷❪✳

✶✳✶ ❙❡q✉ê♥❝✐❛s P❛❧❛✐s✲❙♠❛❧❡ ❡ ❙❡q✉ê♥❝✐❛s ❞❡ ❈❡r❛♠✐

❆ ❛♣❧✐❝❛çã♦ ❞♦ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞ t❡♠ ❝♦♠♦ ♦❜❥❡t✐✈♦✱ s♦❜ ❝❡rt❛s ❤✐♣ót❡s❡s✱ ❛ ♦❜✲ t❡♥çã♦ ❞❡ ✉♠❛ s❡q✉ê♥❝✐❛ P❛❧❛✐s✲❙♠❛❧❡ ♦✉ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐✱ ♣❛r❛ ✉♠ ❞❡t❡r♠✐♥❛❞♦ ❢✉♥❝✐♦♥❛❧✳ ◆❡ss❛ s❡çã♦ ✈❛♠♦s ❞❡✜♥✐r ♦ ❝♦♥❝❡✐t♦ ❞❡ s❡q✉ê♥❝✐❛ P❛❧❛✐s✲❙♠❛❧❡ ❡ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐✳

❉❡✜♥✐çã♦ ✶✳✶✳ ❙❡❥❛ X ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❡I :X →R✱ ✉♠ ❢✉♥❝✐♦♥❛❧ ❞❡ ❝❧❛ss❡ C1✳ ❙✉♣♦♥❤❛

q✉❡ ❡①✐st❛♠ c∈R❡(un)⊂X t❛✐s q✉❡

I(un)→c ❡ kI′(un)k →0,

❡♥tã♦ ❞✐③❡♠♦s q✉❡ (un) é ✉♠❛ s❡q✉ê♥❝✐❛ P❛❧❛✐s✲❙♠❛❧❡ ♥♦ ♥í✈❡❧ ❝ ♣❛r❛ I✱ ♦✉ ❞❡ ❢♦r♠❛ ❛❜r❡✈✐❛❞❛✱ (un)

é ✉♠❛ s❡q✉ê♥❝✐❛ (P S)c ♣❛r❛ I✳ ❆❧é♠ ❞✐ss♦✱ ❞✐③❡♠♦s q✉❡ I s❛t✐s❢❛③ ❛ ❝♦♥❞✐çã♦ P❛❧❛✐s✲❙♠❛❧❡ ♥♦ ♥í✈❡❧ c✱

q✉❛♥❞♦ t♦❞❛ s❡q✉ê♥❝✐❛ (P S)c ♣❛r❛I✱ ♣♦ss✉✐ s✉❜s❡q✉ê♥❝✐❛ ❝♦♥✈❡r❣❡♥t❡✳

❉❡✜♥✐çã♦ ✶✳✷✳ ❙❡❥❛ X ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❡I :X →R✱ ✉♠ ❢✉♥❝✐♦♥❛❧ ❞❡ ❝❧❛ss❡ C1✳ ❙✉♣♦♥❤❛

q✉❡ ❡①✐st❛♠ c∈R❡(un)⊂X t❛✐s q✉❡

I(un)→c ❡ kI′(un)kH−1 1 +kunk→0,

❡♥tã♦ ❞✐③❡♠♦s q✉❡(un)é ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ♥í✈❡❧ ❝ ♣❛r❛I✱ ♦✉ ❞❡ ❢♦r♠❛ ❛❜r❡✈✐❛❞❛✱(un)é ✉♠❛

s❡q✉ê♥❝✐❛ (Ce)c ♣❛r❛I✳ ❆❧é♠ ❞✐ss♦✱ ❞✐③❡♠♦s q✉❡I s❛t✐s❢❛③ ❛ ❝♦♥❞✐çã♦ ❞❡ ❈❡r❛♠✐ ♥♦ ♥í✈❡❧c✱ q✉❛♥❞♦ t♦❞❛

(17)

✶✳✷ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛ ✺

❖❜s❡r✈❡ q✉❡ t♦❞❛ s❡q✉ê♥❝✐❛ (Ce)c ♣❛r❛ I✱ é t❛♠❜é♠ ✉♠❛ s❡q✉ê♥❝✐❛ (P S)c ♣❛r❛ I✳ ❆❧é♠ ❞✐ss♦✱

♣♦r ♠❡✐♦ ❞❡ ✉♠❛ ❞❡ss❛s s❡q✉ê♥❝✐❛s✱ ✉t✐❧✐③❛♥❞♦ ❛❧❣✉♠ ❛r❣✉♠❡♥t♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡✱ é ♣♦ssí✈❡❧ ❝♦♥❝❧✉✐r q✉❡✱ ❛ ♠❡♥♦s ❞❡ s✉❜s❡q✉ê♥❝✐❛✱ ❡❧❛ ❝♦♥✈❡r❣❡ ♣❛r❛ ✉♠ ♣♦♥t♦ ❝rít✐❝♦ ❞♦ ❢✉♥❝✐♦♥❛❧ ❡♠ q✉❡stã♦✱ ♦ q✉❡ ❢♦r♥❡❝❡ ✉♠❛ s♦❧✉çã♦ ♣❛r❛ ♦ ♣r♦❜❧❡♠❛ ❛ss♦❝✐❛❞♦ ❛♦ ❢✉♥❝✐♦♥❛❧✳

✶✳✷ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛

❖ ♦❜❥❡t✐✈♦ ❞❡ss❛ s❡çã♦ é ❡♥✉♥❝✐❛r ❡ ♣r♦✈❛r ♦ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞✱ ❡ ♠❛✐s ❛✐♥❞❛ ❣❛r❛♥t✐r ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ♥í✈❡❧ ❞❡ ❡♥❡r❣✐❛ ♠í♥✐♠❛ ♣❛r❛ ✉♠ ❢✉♥❝✐♦♥❛❧ ❞❛❞♦✳

❚❡♦r❡♠❛ ✶✳✶✳ ❙❡❥❛♠ X, d

✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦ ❡ I : x → (−∞,+∞] ✉♠ ❢✉♥❝✐♦♥❛❧ s❡♠✐❝♦♥tí♥✉♦ ✐♥❢❡r✐♦r♠❡♥t❡✳ ❙✉♣♦♥❤❛ q✉❡Is❡❥❛ ❧✐♠✐t❛❞♦ ✐♥❢❡r✐♦r♠❡♥t❡✱ ♦✉ s❡❥❛✱ inf

u∈XI(u)>−∞✳ ❊♥tã♦

❞❛❞♦ε >0 ❡v0∈X t❛✐s q✉❡

I(v0)≤ inf

u∈XI(u) +ε, ✭✶✳✶✮

❡①✐st❡ uε∈X✱ t❛❧ q✉❡

✭❛✮I(uε)≤I(v0)≤ inf

u∈XI(u) +ε;

✭❜✮d(v0, uε)≤√ε;

✭❝✮ P❛r❛ ❝❛❞❛w∈X, w6=uε✱ ✈❛❧❡ q✉❡

I(uε)< I(w) +√ε d(uε, w).

Pr♦✈❛✳ Pr✐♠❡✐r❛♠❡♥t❡ ❝♦♥s✐❞❡r❡ ❡♠ X, d❛ s❡❣✉✐♥t❡ r❡❧❛çã♦ ❞❡ ♦r❞❡♠ ♣❛r❝✐❛❧✿

w≺v⇔I(w)≤I(v)−√ε d(w, v).

❱❛♠♦s ♠♦str❛r q✉❡≺é r❡✢❡①✐✈❛✱ ❛♥t✐ss✐♠étr✐❝❛ ❡ tr❛♥s✐t✐✈❛✳ ❉❡ ❢❛t♦✱ ❞❛❞♦w∈X✱ ✈❛❧❡ q✉❡

I(w) =I(w)−√ε d(w, w),

♦✉ s❡❥❛✱w≺w, ❡ ❝♦♠ ✐ss♦✱ ✈❡♠♦s q✉❡≺é r❡✢❡①✐✈❛✳ ❚❛♠❜é♠✱ ❞❛❞♦sw, v ∈X t❛✐s q✉❡w≺v ❡v≺w✱

s❡❣✉❡ q✉❡

I(w)≤I(v)−√ε d(w, v) ❡ I(v)≤I(w)−√ε d(v, w),

❧♦❣♦✱ s♦♠❛♥❞♦ t❛✐s ❞❡s✐❣✉❛❧❞❛❞❡s✱ ♦❜t❡♠♦s q✉❡

0≤ −2√ε d(w, v)≤0,

♦✉ s❡❥❛✱ d(w, v) = 0❡w =v✱ ❛ss✐♠≺é ❛♥t✐ss✐♠étr✐❝❛✳ P♦r ✜♠✱ ❞❛❞♦s w, v ❡u∈X t❛✐s q✉❡w ≺v ❡ v≺u✱ ✈❛❧❡ q✉❡

(18)

✶✳✷ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛ ✻

❊♥tã♦ s♦♠❛♥❞♦ t❛✐s ❞❡s✐❣✉❛❧❞❛❞❡s ❡ ❛♣❧✐❝❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ tr✐❛♥❣✉❧❛r✱ ♦❜t❡♠♦s

I(w) ≤ I(u)−√ε d(w, v)−√ε d(v, u)

≤ I(u)−√ε d(w, u),

✐st♦ é✱ w≺u❡≺é tr❛♥s✐t✐✈❛✳ ❆ss✐♠✱ ❝♦♥❝❧✉í♠♦s q✉❡ ≺é r❡❧❛çã♦ ❞❡ ♦r❞❡♠ ♣❛r❝✐❛❧✳

❆❣♦r❛ ❝♦♥s✐❞❡r❡ ❛ s❡q✉ê♥❝✐❛(An)❞❡ s✉❜❝♦♥❥✉♥t♦s ❞❡X✱ ❞❡ ♠♦❞♦ q✉❡

A0={w∈X:w≺v0},

❧♦❣♦v0∈A0 ❡ ❝♦♠ ✐ss♦A06=∅✳ ❊♥tã♦✱ ♣❡❧❛ ❞❡✜♥✐çã♦ ❞❡ í♥✜♠♦✱ t♦♠❡v1∈A0✱ t❛❧ q✉❡ I(v1)≤ inf

u∈A0I(u) + 1,

❡ ❛ss✐♠ ❞❡✜♥❛

A1={w∈X:w≺v1}.

❆♥❛❧♦❣❛♠❡♥t❡✱ ♥♦t❡ q✉❡ v1∈A1 ❡A16=∅✳ ❆ss✐♠✱ ♣❡❧❛ ❞❡✜♥✐çã♦ ❞❡ í♥✜♠♦ t♦♠❡v2∈A1✱ t❛❧ q✉❡ I(v2)≤ inf

u∈A1I(u) +

1 2.

❈♦♠ ✐ss♦✱ ❞❡✜♥❛

A2={w∈X:w≺v2},

❡ ♣r♦❝❡❞❡♥❞♦ r❡❝✉rs✐✈❛♠❡♥t❡✱ ♣❛r❛ t♦❞♦ n∈ N, ❝♦♠♦ vn−1 ∈An−1✱ ❡♥tã♦ An−1 6= ∅✱ ❛ss✐♠ t♦♠❛♥❞♦ vn∈An−1 t❛❧ q✉❡

I(vn)≤ inf u∈An−1

I(u) + 1

n, ✭✶✳✷✮

❞❡✜♥❛

An={w∈X:w≺vn}.

❊ ♦❜s❡r✈❡ q✉❡An ⊃An+1✱ ♣❛r❛ t♦❞♦n∈N✱ ♣♦✐s ❞❛❞♦w∈An+1s❡❣✉❡ q✉❡w≺vn+1❡ ❝♦♠♦vn+1∈An✱

❡♥tã♦ vn+1≺vn ❡ ♣❡❧❛ tr❛♥s✐t✐✈✐❞❛❞❡w≺vn✱ ❡w∈An✳

❆❧é♠ ❞✐ss♦✱Ané ❢❡❝❤❛❞♦✱ ♣♦✐s ❞❛❞❛ (wk)⊂An t❛❧ q✉❡wk →w∈X✱ q✉❛♥❞♦k→ ∞✱ s❡❣✉❡ q✉❡

wk ≺vn ❡ ❛ss✐♠

I(wk)≤I(vn)−√ε d(wk, vn).

❚❛♠❜é♠✱ ❝♦♠♦I é s❡♠✐❝♦♥tí♥✉♦ ✐♥❢❡r✐♦r♠❡♥t❡✱ ❡♥tã♦ s❡k→ ∞✱ ✈❛❧❡ q✉❡

I(w) ≤ lim inf

k→∞ I(wk)

≤ lim inf

k→∞

h

I(vn)−√ε d(wk, vn)

i

= I(vn)−√εlim sup k→∞

d(wk, vn)

(19)

✶✳✷ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛ ✼

✐♠♣❧✐❝❛♥❞♦ q✉❡ w≺vn✱ ❡ ♣♦r ❞❡✜♥✐çã♦w∈An✱ ♣♦rt❛♥t♦An é ❢❡❝❤❛❞♦✳ ❆❣♦r❛ ❛✜r♠❛♠♦s q✉❡

\

n=0

An6=∅.

❉❡ ❢❛t♦✱ ♥♦t❡ q✉❡vk∈An ♣❛r❛k≥n✱ ❛❧é♠ ❞✐ss♦✱ ❞❛❞♦sk > l≥ns❡❣✉❡ q✉❡An⊃Al⊃Ak✱ ❧♦❣♦vk≺vl

❡ ♣♦r ✭✶✳✷✮✱ ♦❜t❡♠♦s q✉❡

d(vk, vl) ≤

1

ε

h

I(vl)−I(vk)

i

≤ √1

ε

h

I(vl)− inf u∈Al−1

I(u)i

≤ √1

ε l,

♣♦rt❛♥t♦ (vn)é s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ❡♠ An✱ ♣❛r❛ t♦❞♦n∈N✳ ❆ss✐♠(vn)❝♦♥✈❡r❣❡ ♣❛r❛ uε∈An✱ ♣❛r❛

t♦❞♦ n ∈ N✱ ♦✉ s❡❥❛✱ uε ∈

\

n=0

An 6=∅. ❊ ❛✐♥❞❛ ❛✜r♠❛♠♦s q✉❡ ❞✐❛♠(An) →0✱ q✉❛♥❞♦ n → ∞✱ ❧♦❣♦

❝♦♥❝❧✉í♠♦s q✉❡

\

n=0

An={uε}.

❉❡ ❢❛t♦✱ ❞❛❞♦w∈An ✈❛❧❡ q✉❡w≺vn≺vn−1❡ ❛ss✐♠

ε d(w, vn)≤I(vn)−I(w).

❈♦♠♦ w∈An ⊂An−1✱ ❡♥tã♦−I(w)≤ − inf

u∈An−1

I(u)❡ ♣♦r ✭✶✳✷✮✱ ✈❛❧❡ q✉❡

d(w, vn) ≤

1

ε

inf

u∈An−1

I(u) +1

n−u∈infAn−1

I(u)

= √1

ε n.

❈♦♠ ✐ss♦✱ ♣❛r❛ q✉❛✐sq✉❡rw, v∈An✱ s❡❣✉❡ q✉❡

d(w, v)≤d(w, vn) +d(vn, v)≤

2

ε n.

❖✉ s❡❥❛✱

0≤ lim

n→∞w,vsupA

n

d(w, v)≤ lim

n→∞ 2

ε n = 0.

❉❡ss❛ ❢♦r♠❛✱ ❝♦♠♦ ❞✐❛♠(An) = sup w,v∈An

d(w, v)✱ ❡♥tã♦ ❞✐❛♠(An)→0✱ q✉❛♥❞♦n→ ∞.P♦rt❛♥t♦✱ ❝♦♥❝❧✉í✲

♠♦s q✉❡ ∞

\

n=0

An={uε}✱ ❝❛s♦ ❝♦♥trár✐♦✱ ❤❛✈❡r✐❛v∈

\

n=0

An✱ ❝♦♠v6=uε✱ ❡ ❛ss✐♠ ❞✐❛♠(An)≥d(v, uε)>0✱

♣❛r❛ t♦❞♦n∈N✱ ❝♦♥tr❛❞✐③❡♥❞♦ q✉❡ ❞✐❛♠(An)→0✱ q✉❛♥❞♦n→ ∞.

P♦r ✜♠✱ ✈❛♠♦s ♠♦str❛r q✉❡uεs❛t✐s❢❛③ ✭❛✮✱ ✭❜✮ ❡ ✭❝✮✳ ❉❡ ❢❛t♦✱ ❝♦♠♦uε∈A0✱ ♣♦r ❞❡✜♥✐çã♦ s❡❣✉❡

q✉❡uε≺v0 ❡ ❛ss✐♠

(20)

✶✳✷ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛ ✽

♦ q✉❡ ♣r♦✈❛ ✭❛✮✳ ❚❛♠❜é♠ ♦❜s❡r✈❡ q✉❡−I(uε)≤ − inf

u∈XI(u)❡ ♣♦r ✭✶✳✶✮✱ ✈❛❧❡ q✉❡

d(v0, uε) ≤ √1

ε

h

I(v0)−I(uε)

i

≤ √1

ε

inf

u∈XI(u) +ε−uinf∈XI(u)

≤ √ε,

♦ q✉❡ ♣r♦✈❛ ✭❜✮✳ ❊ ♣♦r ú❧t✐♠♦✱ ❞❛❞♦ w6=uε✱ ♥♦t❡ q✉❡ w ♥ã♦ ❡stá r❡❧❛❝✐♦♥❛❞♦ ❝♦♠uε✱ ❝❛s♦ ❝♦♥trár✐♦✱

✈❛❧❡r✐❛ q✉❡

w≺uε≺vn, ∀ n∈N,

❡ ❝♦♠ ✐ss♦✱w∈

\

n=0

An={uε},♦ q✉❡ é ✉♠❛ ❝♦♥tr❛❞✐çã♦✳ ❆ss✐♠✱ ❝♦♠♦w⊀uε✱ ✈❛❧❡ q✉❡

I(w)> I(uε)−√ε d(w, uε),

♦ q✉❡ ♣r♦✈❛ ✭❝✮✱ ❡ ❝♦♠♣❧❡t❛ ♦ r❡s✉❧t❛❞♦✳

P❛r❛ ♦ ❝❛s♦ ♣❛rt✐❝✉❧❛r ♥♦ q✉❛❧ X,k · k

é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ❛ ✜♠ ❞❡ ✉t✐❧✐③❛r ♦ ❚❡♦r❡♠❛ ✶✳✶ ♣❛r❛ ♣r♦✈❛r ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♣❛r❛ I ♥♦ ♥í✈❡❧ m= inf

u∈XI(u)✱ ✈❛♠♦s ❞❡✜♥✐r

✉♠❛ ♥♦✈❛ ♠étr✐❝❛δ:X×X →R+ s♦❜r❡X ❡ ♠♦str❛r q✉❡ ❛ ♠étr✐❝❛ ❞❛❞❛ ♣❡❧❛ ♥♦r♠❛ ❡ ❛ ♠étr✐❝❛ δs❡

r❡❧❛❝✐♦♥❛♠✳

❉❡✜♥✐çã♦ ✶✳✸✳ ❙❡❥❛ c∈C([0,1];X) ✉♠❛ ❝✉r✈❛ q✉❛❧q✉❡r✱ ❞❡✜♥✐♠♦s ♦ ❝♦♠♣r✐♠❡♥t♦ ❣❡♦❞és✐❝♦ℓ(c) ❞❛ ❝✉r✈❛ c ❝♦♠♦ s❡♥❞♦ ❞❛❞♦ ♣♦r✿

ℓ(c) =

Z 1

0

kc′(t)k 1 +kc(t)kdt.

❈♦♠ ✐ss♦✱ ♣♦❞❡♠♦s ❞❡✜♥✐r t❛♠❜é♠δ:X×X →R+✱ ❛ ❞✐stâ♥❝✐❛ ❣❡♦❞és✐❝❛ ❡♥tr❡ ❞♦✐s ♣♦♥t♦suvX

❝♦♠♦ s❡♥❞♦ ❞❛❞❛ ♣♦r

δ(u, v) := inf

ℓ(c) :c∈C1([0,1], X), c(0) =u, c(1) =v . ✭✶✳✸✮

❈❧❛r❛♠❡♥t❡ δ(u, v) ≤ ku−vk, ♣♦✐s ❞❛❞♦ ˜c(t) = (1−t)u−tv ∈ C1([0,1];X)✱ s❡❣✉❡ q✉❡

k˜c′(t)k=kuvk✱ ❧♦❣♦

ℓ(˜c) =

Z 1

0

ku−vk

1 +k(1−t)u−tvkdt≤ ku−vk,

❡ ❛♣❧✐❝❛♥❞♦ ♦ í♥✜♠♦✱

δ(u, v)≤ ku−vk.

P♦r ♦✉tr♦ ❧❛❞♦✱ ❞❛❞♦ q✉❛❧q✉❡r ❝♦♥❥✉♥t♦ B⊂X ❧✐♠✐t❛❞♦ ♥❛ ♥♦r♠❛ ❞❡X✱ ❡①✐st❡R >0✱ t❛❧ q✉❡kxk ≤R✱

(21)

✶✳✷ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞❡ ❊♥❡r❣✐❛ ▼í♥✐♠❛ ✾

s❡❣✉❡ q✉❡kc(t)k ≤R, ∀t∈[0,1]✱ ❡ ❢❛③❡♥❞♦ β= 1

1 +R✱ ♦❜t❡♠♦s q✉❡

ℓ(c) =

Z 1

0

kc′(t)k 1 +kc(t)kdt

1 +1R

Z 1

0 k

c′(t)kdt

1 +1R

Z 1

0

c′(t)dt

= 1

1 +R

c(1)−c(0)

= βku−vk.

❈♦♠ ✐ss♦✱ ❛♣❧✐❝❛♥❞♦ ♦ í♥✜♠♦ s♦❜r❡ t♦❞♦s ♦s ❝❛♠✐♥❤♦s c∈C1([0,1], B

R[0])✱ ❝♦♥❝❧✉í♠♦s q✉❡ ❡①✐st❡β >0✱

t❛❧ q✉❡

δ(u, v)≥βku−vk, ∀ u, v∈B.

❉❡ss❛ ❢♦r♠❛✱ B ⊂X é ❧✐♠✐t❛❞♦ ♥❛ ♠étr✐❝❛ ❞❛ ♥♦r♠❛ ❞❡ X s❡✱ ❡ s♦♠❡♥t❡ s❡✱ B é ❧✐♠✐t❛❞♦ ♥❛

♠étr✐❝❛δ✳ ▼❛✐s ❛✐♥❞❛✱ q✉❛❧q✉❡r s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ❡♠δ✱ é s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ♥❛ ♠étr✐❝❛ ❞❛ ♥♦r♠❛✱

❧♦❣♦ é ❝♦♥✈❡r❣❡♥t❡ ♥❛ ♠étr✐❝❛ ❞❛ ♥♦r♠❛✱ ♣♦✐s X,k · k é ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ❡ ♣❡❧❛ r❡❧❛çã♦ ❛❝✐♠❛ ❡♥tr❡

❛s ♠étr✐❝❛s✱ ❝♦♥✈❡r❣❡ t❛♠❜é♠ ❡♠ δ✳ P♦rt❛♥t♦✱ ❝♦♥❝❧✉í♠♦s q✉❡ X, δ

é ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦✱ ❡ ♣♦❞❡♠♦s ❛♣❧✐❝❛r s♦❜r❡ ❡❧❡ ♦ ❚❡♦r❡♠❛ ✶✳✶✳

❈♦r♦❧ár✐♦ ✶✳✶✳ ❙❡❥❛♠ X,k · k

✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ❡I:X →R✉♠ ❢✉♥❝✐♦♥❛❧ ❞❡ ❝❧❛ss❡C1✱ ❡

❧✐♠✐t❛❞♦ ✐♥❢❡r✐♦r♠❡♥t❡✳ ❊♥tã♦ ❡①✐st❡ ✉♠❛ s❡q✉ê♥❝✐❛ (un)⊂X t❛❧ q✉❡

I(un)→ inf

u∈XI(u) =m

1 +kunkkI′(un)kX′ →0.

■st♦ é✱ ❡①✐st❡ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♣❛r❛ I ♥♦ ♥í✈❡❧m.

Pr♦✈❛✳ ❈♦♠♦ X,k·k

é ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ♣❡❧❛s ❝♦♥s✐❞❡r❛çõ❡s ❛❝✐♠❛✱ ❝♦♥❝❧✉í♠♦s q✉❡ X, δ

é ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦✳ ❚❛♠❜é♠ ♣♦r ❤✐♣ót❡s❡Ié s❡♠✐❝♦♥tí♥✉♦ ✐♥❢❡r✐♦r♠❡♥t❡ ❡ é ❧✐♠✐t❛❞♦ ✐♥❢❡r✐♦r♠❡♥t❡✳

❈♦♠ ✐ss♦✱ ❞❛❞♦n∈N,t♦♠❡ε= 1

n2✱ ❡ ❡♥tã♦ ♦ ❚❡♦r❡♠❛ ✶✳✶ ❣❛r❛♥t❡ ❛ ❡①✐stê♥❝✐❛ ❞❡un∈X✱ t❛❧ q✉❡ ♣♦r

✭❛✮✱ ✈❛❧❡ q✉❡

I(un)≤ inf u∈XI(u) +

1

n2,

❡ ♣♦r ✭❝✮✱ ✈❛❧❡ q✉❡

I(w)≥I(un)−

1

nδ(w, un), ∀ w∈X.

❉❡ss❡ ♠♦❞♦✱ ♦❜t❡♠♦s ✉♠❛ s❡q✉ê♥❝✐❛(un)⊂X✱ ❝♦♠n∈N✱ t❛❧ q✉❡

inf

u∈XI(u)≤I(un)≤uinf∈XI(u) +

1

(22)

✶✳✸ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✶✵

♣♦rt❛♥t♦✱ s❡❣✉❡ q✉❡

lim

n→∞I(un) = infu∈XI(u).

❆❧é♠ ❞✐ss♦✱ ❢❛③❡♥❞♦w=un+tu✱ ♣❛r❛ t >0❡u∈X ❛r❜✐trár✐♦s✱ s❡❣✉❡ q✉❡

I(un+tu)−I(un)≥ −1

nδ(un, un+tu).

❆ss✐♠ ❞✐✈✐❞✐♥❞♦ ❛♠❜♦s ♦s ❧❛❞♦s ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❛❝✐♠❛ ♣♦r t✱ ❡ r❡❧❡♠❜r❛♥❞♦ ❛ ❞❡✜♥✐çã♦ ❞❛ ❞✐stâ♥❝✐❛

❣❡♦❞és✐❝❛ δ✱ ♦❜t❡♠♦s

1

t

h

I(un+tu)−I(un)

i

≥ −nt1 δ(un, un+tu)

≥ −1

nkuk

Z t

0

ds

1 +kun+suk

,

❡♥tã♦✱ ❢❛③❡♥❞♦t→0✱ ❝♦♠♦ Ié ❞❡ ❝❧❛ss❡C1✱ ❝♦♥❝❧✉í♠♦s q✉❡

I′(un)u≥ −1

n 1 +kunk

−1

kuk.

❆❣♦r❛ ❝♦♠♦ ué ❛r❜✐trár✐♦✱ tr♦❝❛♥❞♦u♣♦r−u✱ ♦❜t❡♠♦s t❛♠❜é♠

I′(un)u≤

1

n 1 +kunk

−1

kuk,

❡ ❛ss✐♠✱

|I′(u

n)u| kuk ≤

1

n 1 +kunk

−1

,

♦ q✉❡ ✐♠♣❧✐❝❛ ❡♠

0≤ 1 +kunk

kI′(u

n)kX′ ≤

1

n.

P♦rt❛♥t♦

lim

n→∞ 1 +kunk

kI′(un)kX′ = 0.

❊ ❞❡ss❛ ❢♦r♠❛✱ (un)é ❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♣r♦❝✉r❛❞❛✳

✶✳✸ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛

◆❡ss❛ s❡çã♦✱ ✈❛♠♦s ❞❡✜♥✐r ❛ ❣❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ❡ ♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ ✉♠ ❞❛❞♦ ❢✉♥❝✐♦♥❛❧I:X →R✱ ❡♠ q✉❡(X,k · k)é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✳ ❊♠ s❡❣✉✐❞❛✱ ✈❛♠♦s ✉s❛r ♦ Pr✐♥❝í♣✐♦ ❱❛r✐❛❝✐♦♥❛❧ ❞❡ ❊❦❡❧❛♥❞ ♣❛r❛ ♣r♦✈❛r ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ ✉♠ ❢✉♥❝✐♦♥❛❧ Iq✉❡ ♣♦ss✉❛ ❛ ❣❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✳

❉❡✜♥✐çã♦ ✶✳✹✳ ❈♦♥s✐❞❡r❡ (X,k · k) ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ❡ I : X → R ✉♠ ❢✉♥❝✐♦♥❛❧ t❛❧ q✉❡

I(0) = 0✱ ❞✐③❡♠♦s q✉❡I♣♦ss✉✐ ❛ ❣❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✱ ♦✉ ❛❜r❡✈✐❛❞❛♠❡♥t❡✱ ❛ ❣❡♦♠❡tr✐❛ P▼✱

(23)

✶✳✸ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✶✶

✭P▼✶✮ ❊①✐st❡♠ρ, α >0 t❛✐s q✉❡I(u)≥α >0✱ ♣❛r❛ t♦❞♦ u∈X,❝♦♠kuk=ρ;

✭P▼✷✮ ❊①✐st❡ e∈X✱ ❝♦♠kek> ρ✱ t❛❧ q✉❡I(e)<0✳

❉❡✜♥✐çã♦ ✶✳✺✳ ❈♦♥s✐❞❡r❡ X,k · k

✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ❡ I: X →R ✉♠ ❢✉♥❝✐♦♥❛❧ q✉❡ ♣♦ss✉✐

❛ ❣❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✱ ❡♥tã♦ ✜❝❛ ❜❡♠ ❞❡✜♥✐❞♦ ♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ♣❛r❛ I✱ ♦✉

❛❜r❡✈✐❛❞❛♠❡♥t❡✱ ♦ ♥í✈❡❧ P▼ ♣❛r❛ I✱ ❞❛❞♦ ♣♦r

c= inf

˜

γ∈Γ˜tmax∈[0,1]I(˜γ(t)), ✭✶✳✹✮

❡♠ q✉❡

˜

Γ ={˜γ∈C([0,1], X) ; ˜γ(0) = 0, γ˜(1) =e}. ✭✶✳✺✮

◆♦t❡ q✉❡✱ ❞❡ ❢❛t♦✱ Γ =˜ {γ˜ C([0,1], X) ; ˜γ(0) = 0, ˜γ(1) = e} 6=✱ ♣♦✐s s❡ γ˜(t) = te✱ ❡♥tã♦ ˜

γ ∈Γ˜. ❆❧é♠ ❞✐ss♦✱ ♣❡❧❛ ❞❡✜♥✐çã♦ ❞❡ c ❝♦♥❝❧✉í♠♦s q✉❡ c ≥α > 0✳ ❆ s❡❣✉✐r ❛♣r❡s❡♥t❛r❡♠♦s ✉♠ r❡s✉❧✲

t❛❞♦ q✉❡ é ❞❡ s✉♠❛ ✐♠♣♦rtâ♥❝✐❛ ♥❛ r❡s♦❧✉çã♦ ❞❡ ✐♥ú♠❡r♦s ♣r♦❜❧❡♠❛s✱ ♣♦✐s ❣❛r❛♥t❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ♥í✈❡❧ P▼ ♣❛r❛ ✉♠ ❢✉♥❝✐♦♥❛❧ ❞❡ ❝❧❛ss❡C1✱ ❞❡s❞❡ q✉❡ ❡st❡ s❛t✐s❢❛ç❛ ❛ ❣❡♦♠❡tr✐❛ P▼✳

❚❡♦r❡♠❛ ✶✳✷✳ ❙❡❥❛♠ X,k · k ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ❡

I : X → R ✉♠ ❢✉♥❝✐♦♥❛❧ ❞❡ ❝❧❛ss❡ C1

q✉❡ ♣♦ss✉✐ ❛ ❣❡♦♠❡tr✐❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✱ ❡♥tã♦ ❡①✐st❡ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♣❛r❛I ♥♦ ♥í✈❡❧ ❞♦

P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✱ ✐st♦ é✱ ❡①✐st❡ (un)⊂X✱ t❛❧ q✉❡

I(un)→c ❡ kI′(un)k 1 +kunk

→0,

q✉❛♥❞♦ n→ ∞✱ ❡♠ q✉❡ cé ❞❛❞♦ ♣♦r ✭✶✳✹✮✳

Pr♦✈❛✳ ❆ ✐❞❡✐❛ é s❡❣✉✐r ♦s ♣❛ss♦s ❞♦ ❈♦r♦❧ár✐♦ ✶✳✶ ♣❛r❛ ♦❜t❡r ❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♣r♦❝✉r❛❞❛✳ P❛r❛ ✐ss♦✱ ❞❛❞♦ Γ˜ C([0,1], X)✱ ❞❡✜♥✐❞♦ ❡♠ ✭✶✳✺✮✱ ❝♦♥s✐❞❡r❡✲♦ ❝♦♠♦ s✉❜❡s♣❛ç♦ ♠étr✐❝♦ ❞❡C([0,1], X) ❝♦♠ ❛ ♠étr✐❝❛ ❞❛❞❛ ♣❡❧❛ ♥♦r♠❛k · k∞✱ ♦✉ s❡❥❛✱ Γ˜, d

é ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ t❛❧ q✉❡

d(˜γ1,γ˜2) =k˜γ1−˜γ2k∞= max

t∈[0,1]k˜γ1(t)−˜γ2(t)k, ∀ γ˜1,γ˜2∈

˜ Γ.

❆ss✐♠✱ ❝♦♠♦ C([0,1], X) é ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦✱ ❜❛st❛ ♠♦str❛r q✉❡ Γ˜ é ❢❡❝❤❛❞♦✱ ❝♦♠ r❡s♣❡✐t♦ ❛ ♠étr✐❝❛ d✱ ♣❛r❛ ❣❛r❛♥t✐r q✉❡ Γ˜, d

é ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦✳ ❉❡ss❛ ❢♦r♠❛✱ ❞❛❞❛ (˜γn)⊂ Γ˜ ✉♠❛

s❡q✉ê♥❝✐❛ ❝♦♥✈❡r❣✐♥❞♦ ♣❛r❛ γ˜ ❡♠ (C([0,1], X)✱ q✉❛♥❞♦n → ∞✱ ♥♦t❡ q✉❡γ˜n(0) = 0❡ ˜γn(1) =e✱ ♣❛r❛

t♦❞♦ n∈N✳ ▲♦❣♦ ❝♦♠♦k˜γn−γ˜k∞→0✱ q✉❛♥❞♦n→ ∞✱ ❡♥tã♦˜γ(0) = 0 ❡˜γ(1) =e✱ ❛ss✐♠˜γ∈˜Γ,❡ s❡❣✉❡ q✉❡ Γ˜ é ❢❡❝❤❛❞♦✱ ♣♦rt❛♥t♦ ˜Γ, d) é ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦✳ ❈♦♠ ✐ss♦✱ ♣♦❞❡♠♦s ✉t✐❧✐③❛r ❛ ♠étr✐❝❛

d✱ q✉❡ ❛❞✈é♠ ❞❛ ♥♦r♠❛✱ ❡ ❝♦♥str✉✐r ❛ ♠étr✐❝❛ ❣❡♦❞és✐❝❛δΓ˜✱ ♣❛r❛ ˜Γ✳ ❈♦♠♦ ✈✐st♦ ♥❛ s❡çã♦ ❛♥t❡r✐♦r✱ ✉♠❛

✈❡③ q✉❡ Γ˜, d

é ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦✱ s❡❣✉❡ q✉❡ Γ˜, δ˜

Γ

é t❛♠❜é♠ ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦ ❝♦♠♣❧❡t♦✱ ❧♦❣♦ ♣♦❞❡♠♦s ❛♣❧✐❝❛r ♦ ❚❡♦r❡♠❛ ✶✳✶ ♣❛r❛ ❡ss❡ ❡s♣❛ç♦✳

❆❣♦r❛ ❞❡✜♥❛ ♦ ❢✉♥❝✐♦♥❛❧Ψ : ˜Γ→R✱ ❞❛❞♦ ♣♦r

Ψ(˜γ) = max

(24)

✶✳✸ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✶✷

P❛r❛ ❝❛❞❛t∈[0,1]✜①❛❞♦✱ ❝♦♥s✐❞❡r❡Xt=

n

˜

γ(t) ; ˜γ∈Γ˜o⊂X✳ ❈♦♠♦ ♣♦r ❤✐♣ót❡s❡I:X →Ré ❞❡ ❝❧❛ss❡

C1✱ ❡♥tã♦ é s❡♠✐❝♦♥tí♥✉♦ ✐♥❢❡r✐♦r♠❡♥t❡✱ ❡ ❞❡♥♦t❛♥❞♦ ♣♦r I

t ❛ r❡str✐çã♦ I|Xt✱ s❡❣✉❡ q✉❡ It : Xt →R é

s❡♠✐❝♦♥tí♥✉♦ ✐♥❢❡r✐♦r♠❡♥t❡✳ ▼❛s ♦❜s❡r✈❡ q✉❡Ψ = max

t∈[0,1]It✱ ❡ ❝♦♠♦Ité s❡♠✐❝♦♥tí♥✉♦ ✐♥❢❡r✐♦r♠❡♥t❡✱ ♣❛r❛

t♦❞♦ t∈[0,1]✱ s❡❣✉❡ q✉❡Ψé s❡♠✐❝♦♥tí♥✉♦ ✐♥❢❡r✐♦r♠❡♥t❡✳

P♦r ♦✉tr♦ ❧❛❞♦✱ ❞❛❞♦γ˜ ∈Γ✱ ❝♦♠♦˜ I s❛t✐s❢❛③ ❛ ❣❡♦♠❡tr✐❛ P▼✱ ❡ ✈❛❧❡˜γ(0) = 0✱ kγ˜(1)k> ρ

❡ γ˜∈C([0,1], X)✱ ❡♥tã♦ ❡①✐st❡ t0∈(0,1)❝♦♠kγ˜(t0)k=ρ✱ ❡ ♣♦r(P M1)✱ s❡❣✉❡ q✉❡

Ψ(˜γ)≥I(˜γ(t0))≥α >0,

❛ss✐♠Ψé ❧✐♠✐t❛❞♦ ✐♥❢❡r✐♦r♠❡♥t❡✳ ❈♦♠ ✐ss♦ ❡st❛♠♦s ♥❛s ❤✐♣ót❡s❡s ❞♦ ❚❡♦r❡♠❛ ✶✳✶✱ ❡ ♣r♦❝❡❞❡♥❞♦ ♣❛r❛ ♦ ❡s♣❛ç♦ Γ˜, δ˜

Γ

❞❡ ❢♦r♠❛ s❡♠❡❧❤❛♥t❡ ❛ ♣r♦✈❛ ❞♦ ❈♦r♦❧ár✐♦ ✶✳✶ ✱ ❞❛❞♦

n∈N ❡ ε= 1

n2✱ ❡①✐st❡γ˜n ∈Γ✱ t❛❧˜

q✉❡

Ψ(˜γn)≤ inf

˜

γ∈Γ˜Ψ(˜γ) +

1

n2 =c+

1

n2, ✭✶✳✼✮

Ψ(γ)≥Ψ(˜γn)−

1

nδΓ˜(γ,γ˜n), ∀ γ∈Γ˜. ✭✶✳✽✮

P♦rt❛♥t♦ ❞❡✜♥✐♥❞♦

Mn=

n

t∈[0,1] ; I(˜γn(t)) = max

s∈[0,1]I(˜γn(s)) = Ψ(˜γn) o

,

❡ t♦♠❛♥❞♦t˜nMn✱ ♣♦r ✭✶✳✼✮ s❡❣✉❡ q✉❡

c≤I(˜γn(˜tn))≤c+ 1

n2, ∀ n∈N,

✐st♦ é✱

lim

n→∞I(˜γn(˜tn)) =c. ✭✶✳✾✮

❆❧é♠ ❞✐ss♦✱ ✜①❛❞♦ n∈ N✱ ❝♦♥s✐❞❡r❡ γ˜ ∈ C([0,1], X)❛r❜✐trár✐♦✱ t❛❧ q✉❡ kγ˜k˜Γ =k˜γ(˜tn)k✱ ❡

˜

γ(0) = ˜γ(1) = 0✱ ❡♥tã♦ ❢❛③❡♥❞♦γ(s) = ˜γn(s) +tγ˜(s)✱ ❝♦♠ t >0✱ ❝♦♠♦˜γn ∈Γ✱ s❡❣✉❡ q✉❡˜ γ∈Γ✱ ❡ ♣❛r❛˜

t s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✱ ♣❡❧❛ ❝♦♥t✐♥✉✐❞❛❞❡ ✈❛❧❡ q✉❡ max

s∈[0,1]I(γ(s)) = I(γ(˜tn)) = I ˜γn(˜tn) +t˜γ(˜tn)

,

❛ss✐♠ ♣♦r ✭✶✳✽✮ s❡❣✉❡ q✉❡

I γ˜n(˜tn) +t˜γ(˜tn)

−I(˜γn(˜tn))≥ −

1

nδ˜Γ(˜γn+t˜γ,˜γn).

❈♦♠ ✐ss♦✱ ❞✐✈✐❞✐♥❞♦ ❛♠❜♦s ♦s ❧❛❞♦s ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❛❝✐♠❛ ♣♦r t✱ ❡ r❡❧❡♠❜r❛♥❞♦ ❛ ❞❡✜♥✐çã♦ ❞❛ ❞✐stâ♥❝✐❛

❣❡♦❞és✐❝❛ δγ˜✱ ❡ ❛ ❞❡✜♥✐çã♦ ❞❡k · kΓ˜✱ ♦❜t❡♠♦s

1

t

h

I γ˜n(˜tn) +t˜γ(˜tn)

−I(˜γn(˜tn))

i

≥ −nt1 δ˜Γ(˜γn+t˜γ,γ˜n)

≥ −nt1

Z t

0

kγ˜kΓ˜

1 +kγ˜n+sγ˜k˜Γ ds

≥ −nt1

Z t

0

k˜γ(˜tn)k

1 +kγ˜n(˜tn) +s˜γ(˜tn)k

ds

≥ −nt1 k˜γ(˜tn)k

Z t

0

ds

1 +kγ˜n(˜tn) +sγ˜(˜tn)k

(25)

✶✳✸ ❯♠❛ ❙❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♥♦ ◆í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ✶✸

❊ ❝♦♠♦ Ié ❞❡ ❝❧❛ss❡ C1✱ ❛♣❧✐❝❛♥❞♦ ♦ ❧✐♠✐t❡ ❝♦♠ t0✱ ♦❜t❡♠♦s q✉❡

I′(˜γn(˜tn))˜γ(˜tn)≥ −

1

n

1 +k˜γn(˜tn)k

−1

k˜γ(˜tn)k.

❆❣♦r❛ ❝♦♠♦ γ˜ é ❛r❜✐trár✐♦✱ tr♦❝❛♥❞♦γ˜ ♣♦r−˜γ✱ ♦❜t❡♠♦s

I′(˜γn(˜tn))˜γ(˜tn)≤ 1

n

1 +kγ˜n(˜tn)k

−1

k˜γ(˜tn)k,

❡ ❛ss✐♠✱

I

γ

n(˜tn))˜γ(˜tn)

k˜γ(˜tn)k ≤

1

n

1 +kγ˜n(˜tn)k

−1

,

♦ q✉❡ ✐♠♣❧✐❝❛ ❡♠

0≤1 +kγ˜n(˜tn)k

kI′(˜γn(˜tn))kX′ ≤

1

n.

❈♦♠♦ n∈N✱ ✜①❛❞♦ ❛❝✐♠❛✱ é q✉❛❧q✉❡r✱ ❝♦♥❝❧✉í♠♦s q✉❡

lim

n→∞

1 +kγ˜n(˜tn)k

kI′(˜γn(˜tn))kX′ = 0. ✭✶✳✶✵✮

P♦r ✜♠✱ ❝♦♥s✐❞❡r❛♥❞♦(un)⊂X✱ t❛❧ q✉❡ un = ˜γn(˜tn)✱ ♣❛r❛ t♦❞♦n∈N✱ ♣♦r ✭✶✳✾✮ ❡ ✭✶✳✶✵✮ s❡❣✉❡ q✉❡

lim

n→∞I(un) =c ❡ nlim→∞ 1 +kunk

kI′(un)kX′ = 0.

P♦rt❛♥t♦ ♦❜t❡♠♦s ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❡r❛♠✐ ♣❛r❛I ♥♦ ♥í✈❡❧ P▼✳

(26)

❈❛♣ít✉❧♦

2

❯♠ Pr♦❜❧❡♠❛ ❆✉tô♥♦♠♦ ♥♦

R

N

❖ ♦❜❥❡t✐✈♦ ❞❡ss❡ ❝❛♣ít✉❧♦ é ❛♥❛❧✐s❛r ❞❡t❡r♠✐♥❛❞❛ ❝❧❛ss❡ ❞❡ ♣r♦❜❧❡♠❛s ❛✉tô♥♦♠♦s✱ ❛ ✜♠ ❞❡ r❡❧❛❝✐✲ ♦♥❛r ♦ ♥í✈❡❧ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛ ❝♦♠ ♦ ♥í✈❡❧ ❞❡ ♠í♥✐♠♦ ❞♦ ❢✉♥❝✐♦♥❛❧ ❛ss♦❝✐❛❞♦ ❛♦ ♣r♦❜❧❡♠❛✳ P❛r❛ ✐ss♦ ❢❛r❡♠♦s ✉s♦ ❞❡ r❡s✉❧t❛❞♦s ❝❧áss✐❝♦s ❞❡✈✐❞♦s ❛ ❇❡r❡st②❝❦✐ ❡ ▲✐♦♥s ❬✻❪ ♣❛r❛N ≥3✱ ❡ ❛ ❇❡r❡st②❝❦✐✱ ●❛❧❧♦✉ët

❡ ❑❛✈✐❛♥ ❬✺❪✱ ♣❛r❛N = 2✳ ❈♦♥s✐❞❡r❡ ♦ ♣r♦❜❧❡♠❛ ❛♣r❡s❡♥t❛❞♦ ❡♠ ✭✸✮✱ ♥❛ ✐♥tr♦❞✉çã♦ ❞❡ss❡ tr❛❜❛❧❤♦✱ ✐st♦

é✱

−∆u=h(u), ❡♠ RN,

♣❛r❛ ♦ q✉❛❧ ✈❛♠♦s ❛ss✉♠✐r ❛s s❡❣✉✐♥t❡s ❤✐♣ót❡s❡s s♦❜r❡ h✿

✭❤✵✮ h:R→Ré ❝♦♥tí♥✉❛ ❡ í♠♣❛r❀

✭❤✶✮ s❡N ≥3✱−∞<lim inf

s→0 h(s)

s <lim sups→0 h(s)

s =−L <0,

s❡N= 2✱ lim

s→0 h(s)

s =−L∈(−∞,0)❀

✭❤✷✮ s❡N ≥3✱ lim

s→+∞|h(s)|s

−(N+2)/(N−2)= 0✱

s❡N= 2✱ ♣❛r❛ ❝❛❞❛α >0 ❡①✐st❡ ✉♠Cα>0✱ t❛❧ q✉❡

|h(s)| ≤Cαeαs 2

, ♣❛r❛ t♦❞♦ s∈R.

❆ss♦❝✐❛♠♦s ❛♦ ♣r♦❜❧❡♠❛ ❡♠ q✉❡stã♦ ♦ ❢✉♥❝✐♦♥❛❧ ♥❛t✉r❛❧J :H →R✱ ❞❛❞♦ ♣♦r

J(u) =

Z

RN

1

2|∇u|

2

−H(u)dx, ✭✷✳✶✮

❡♠ q✉❡ H(u) =

Z u

0

h(s)ds✳ ❙♦❜ ❛s ❤✐♣ót❡s❡s ✭❤✵✮✲✭❤✷✮ ♣♦❞❡♠♦s ❝♦♥❝❧✉✐r q✉❡ J ❡stá ❜❡♠ ❞❡✜♥✐❞♦✱ ❡

Referências

Documentos relacionados

Como parte das ações do Programa de Desenvolvimento Gerencial – PDG, a Fiocruz por meio da Diretoria de Recursos Humanos firmou contrato com a Fundação Getúlio Vargas,

Nunca deixe o diálogo ir para o lado pessoal – NÃO SE ESTRESSE Não responda de maneira brusca e nunca bata o telefone quando estiver irritado.. Seja amável

Em nossa hipótese, Percepção Somática será uma semiose que se apresenta diagramaticamente dessa forma: Percepção Somática [o percepto (o corpo) interpretado, um

No Brasil o estabelecimento de um sistema para formação do professor secundário tem origem na década de 1930, a partir da necessidade de formalizar a profissionalização docente,

Do mesmo modo, consideramos que a questão da subjetividade é maior e para verificar os efeitos de sentido, é importante analisar as condições sócio-históricas de produção, ou

Considerando-se a expressão territorial do Amazonas, para atender a esse cenário, o Plano Diretor da Embrapa Amazônia Ocidental para o período de 2000 a 2003 prioriza a implantação

Embora cada empresa desenvolva um conjunto específico de processos a fim de criar valor para os clientes e produzir resultados financeiros, existe uma cadeia de valor genérica

Como discutido na Seção 3.4, aplicações SGX são divididas entre parte segura, que executa dentro de enclaves SGX, e parte insegura, usada para instanciar o enclave da