• Nenhum resultado encontrado

Luis Ernesto Bueno Salasar

N/A
N/A
Protected

Academic year: 2018

Share "Luis Ernesto Bueno Salasar"

Copied!
69
0
0

Texto

(1)

❯◆■❱❊❘❙■❉❆❉❊ ❋❊❉❊❘❆▲ ❉❊ ❙➹❖ ❈❆❘▲❖❙

❈❊◆❚❘❖ ❉❊ ❈■✃◆❈■❆❙ ❊❳❆❚❆❙ ❊ ❚❊❈◆❖▲Ó●■❈❆❙ ✭❈❈❊❚✮ P❘❖●❘❆▼❆ ❉❊ PÓ❙✲●❘❆❉❯❆➬➹❖ ❊▼ ❊❙❚❆❚❮❙❚■❈❆

▲✉✐s ❊r♥❡st♦ ❇✉❡♥♦ ❙❛❧❛s❛r

❊❧✐♠✐♥❛çã♦ ❞❡ ♣❛râ♠❡tr♦s ♣❡rt✉r❜❛❞♦r❡s ❡♠

✉♠ ♠♦❞❡❧♦ ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛

❚❡s❡ ❛♣r❡s❡♥t❛❞❛ ❛♦ ❉❡♣❛rt❛♠❡♥t♦ ❞❡ ❊st❛✲ tíst✐❝❛ ❞❛ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❙ã♦ ❈❛r✲ ❧♦s ✲ ❉❊s✴❯❋❙❈❛r✱ ❝♦♠♦ ♣❛rt❡ ❞♦s r❡q✉✐s✐t♦s ♣❛r❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ❉♦✉t♦r ❡♠ ❊st❛✲ tíst✐❝❛✳

(2)

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária/UFSCar

S161ep

Salasar, Luis Ernesto Bueno.

Eliminação de parâmetros perturbadores em um modelo de captura-recaptura / Luis Ernesto Bueno Salasar. -- São Carlos : UFSCar, 2012.

67 f.

Tese (Doutorado) -- Universidade Federal de São Carlos, 2011.

1. Estatística. 2. Estimativas de máxima verossimilhança. 3. Tamanho populacional. 4. População fechada. I. Título.

(3)
(4)

❘❡s✉♠♦

❖ ♣r♦❝❡ss♦ ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛✱ ❛♠♣❧❛♠❡♥t❡ ✉t✐❧✐③❛❞♦ ♥❛ ❡st✐♠❛çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ❡❧❡♠❡♥t♦s ❞❡ ✉♠❛ ♣♦♣✉❧❛çã♦ ❞❡ ❛♥✐♠❛✐s✱ é t❛♠❜é♠ ❛♣❧✐❝❛❞♦ ❛ ♦✉tr❛s ár❡❛s ❞♦ ❝♦♥❤❡✲ ❝✐♠❡♥t♦ ❝♦♠♦ ❊♣✐❞❡♠✐♦❧♦❣✐❛✱ ▲✐♥❣✉íst✐❝❛✱ ❈♦♥✜❛❜✐❧✐❞❛❞❡ ❞❡ ❙♦❢t✇❛r❡✱ ❊❝♦❧♦❣✐❛✱ ❡♥tr❡ ♦✉tr❛s✳ ❯♠❛ ❞❛s ♣r✐♠❡✐r❛s ❛♣❧✐❝❛çõ❡s ❞❡st❡ ♠ét♦❞♦ ❢♦✐ ❢❡✐t❛ ♣♦r ▲❛♣❧❛❝❡ ❡♠ 1783✱ ❝♦♠

♦ ♦❜❥❡t✐✈♦ ❞❡ ❡st✐♠❛r ♦ ♥ú♠❡r♦ ❞❡ ❤❛❜✐t❛♥t❡s ❞❛ ❋r❛♥ç❛✳ P♦st❡r✐♦r♠❡♥t❡✱ ❈❛r❧ ●✳ ❏✳ P❡t❡rs❡♥ ❡♠ 1889 ❡ ▲✐♥❝♦❧♥ ❡♠ 1930 ✉t✐❧✐③❛r❛♠ ♦ ♠❡s♠♦ ❡st✐♠❛❞♦r ♥♦ ❝♦♥t❡①t♦ ❞❡ ♣♦✲

(5)

❆❜str❛❝t

❚❤❡ ❝❛♣t✉r❡✲r❡❝❛♣t✉r❡ ♣r♦❝❡ss✱ ❧❛r❣❡❧② ✉s❡❞ ✐♥ t❤❡ ❡st✐♠❛t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❡❧❡✲ ♠❡♥ts ♦❢ ❛♥✐♠❛❧ ♣♦♣✉❧❛t✐♦♥✱ ✐s ❛❧s♦ ❛♣♣❧✐❡❞ t♦ ♦t❤❡r ❜r❛♥❝❤❡s ♦❢ ❦♥♦✇❧❡❞❣❡ ❧✐❦❡ ❊♣✐❞❡♠✐♦✲ ❧♦❣②✱ ▲✐♥❣✉✐st✐❝s✱ ❙♦❢t✇❛r❡ r❡❧✐❛❜✐❧✐t②✱ ❊❝♦❧♦❣②✱ ❛♠♦♥❣ ♦t❤❡rs✳ ❖♥❡ ♦❢ t❤❡ ✜rst ❛♣♣❧✐❝❛t✐♦♥s ♦❢ t❤✐s ♠❡t❤♦❞ ✇❛s ❞♦♥❡ ❜② ▲❛♣❧❛❝❡ ✐♥ 1783✱ ✇✐t❤ ❛✐♠ ❛t ❡st✐♠❛t❡ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❤❛✲

❜✐t❛♥ts ♦❢ ❋r❛♥❝❡✳ ▲❛t❡r✱ ❈❛r❧ ●✳ ❏✳ P❡t❡rs❡♥ ✐♥ 1889 ❛♥❞ ▲✐♥❝♦❧♥ ✐♥ 1930 ❛♣♣❧✐❡❞ t❤❡

s❛♠❡ ❡st✐♠❛t♦r ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ❛♥✐♠❛❧ ♣♦♣✉❧❛t✐♦♥s✳ ❚❤✐s ❡st✐♠❛t♦r ❤❛s ❜❡✐♥❣ ❦♥♦✇♥ ✐♥ ❧✐t❡r❛t✉r❡ ❛s ✏▲✐♥❝♦❧♥✲P❡t❡rs❡♥✑ ❡st✐♠❛t♦r✳ ■♥ t❤❡ ♠✐❞✲t✇❡♥t✐❡t❤ ❝❡♥t✉r② s❡✈❡r❛❧ r❡s❡❛r✲ ❝❤❡rs ❞❡❞✐❝❛t❡❞ t❤❡♠s❡❧✈❡s t♦ t❤❡ ❢♦r♠✉❧❛t✐♦♥ ♦❢ st❛t✐st✐❝❛❧ ♠♦❞❡❧s ❛♣♣r♦♣r✐❛t❡❞ ❢♦r t❤❡ ❡st✐♠❛t✐♦♥ ♦❢ ♣♦♣✉❧❛t✐♦♥ s✐③❡✱ ✇❤✐❝❤ ❝❛✉s❡❞ ❛ s✉❜st❛♥t✐❛❧ ✐♥❝r❡❛s❡ ✐♥ t❤❡ ❛♠♦✉♥t ♦❢ t❤❡♦✲ r❡t✐❝❛❧ ❛♥❞ ❛♣♣❧✐❡❞ ✇♦r❦s ♦♥ t❤❡ s✉❜❥❡❝t✳ ❚❤❡ ❝❛♣t✉r❡✲r❡❝❛♣t✉r❡ ♠♦❞❡❧s ❛r❡ ❝♦♥str✉❝t❡❞ ✉♥❞❡r ❝❡rt❛✐♥ ❛ss✉♠♣t✐♦♥s r❡❧❛t✐♥❣ t♦ t❤❡ ♣♦♣✉❧❛t✐♦♥✱ t❤❡ s❛♠♣❧✐♥❣ ♣r♦❝❡❞✉r❡ ❛♥❞ t❤❡ ❡①♣❡r✐♠❡♥t❛❧ ❝♦♥❞✐t✐♦♥s✳ ❚❤❡ ♠❛✐♥ ❛ss✉♠♣t✐♦♥ t❤❛t ❞✐st✐♥❣✉✐s❤❡s ♠♦❞❡❧s ❝♦♥❝❡r♥s t❤❡ ❝❤❛♥❣❡ ✐♥ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❞✐✈✐❞✉❛❧s ✐♥ t❤❡ ♣♦♣✉❧❛t✐♦♥ ❞✉r✐♥❣ t❤❡ ♣❡r✐♦❞ ♦❢ t❤❡ ❡①♣❡r✐✲ ♠❡♥t✳ ▼♦❞❡❧s t❤❛t ❛❧❧♦✇ ❢♦r ❜✐rt❤s✱ ❞❡❛t❤s ♦r ♠✐❣r❛t✐♦♥ ❛r❡ ❝❛❧❧❡❞ ♦♣❡♥ ♣♦♣✉❧❛t✐♦♥ ♠♦❞❡❧s✱ ✇❤✐❧❡ ♠♦❞❡❧s t❤❛t ❞♦❡s ♥♦t ❛❧❧♦✇ ❢♦r t❤❡s❡ ❡✈❡♥ts t♦ ♦❝❝✉r ❛r❡ ❝❛❧❧❡❞ ❝❧♦s❡❞ ♣♦♣✉❧❛t✐♦♥ ♠♦❞❡❧s✳ ■♥ t❤✐s ✇♦r❦✱ t❤❡ ❣♦❛❧ ✐s t♦ ❝❤❛r❛❝t❡r✐③❡ ❧✐❦❡❧✐❤♦♦❞ ❢✉♥❝t✐♦♥s ♦❜t❛✐♥❡❞ ❜② ❛♣♣❧②✐♥❣ ♠❡t❤♦❞s ♦❢ ❡❧✐♠✐♥❛t✐♦♥ ♦❢ ♥✉✐ss❛♥❝❡ ♣❛r❛♠❡t❡rs ✐♥ t❤❡ ❝❛s❡ ♦❢ ❝❧♦s❡❞ ♣♦♣✉❧❛t✐♦♥ ♠♦❞❡❧s✳ ❇❛s❡❞ ♦♥ t❤❡s❡ ❧✐❦❡❧✐❤♦♦❞ ❢✉♥❝t✐♦♥s✱ ✇❡ ❞✐s❝✉ss ♠❡t❤♦❞s ❢♦r ♣♦✐♥t ❛♥❞ ✐♥t❡r✈❛❧ ❡st✐♠❛t✐♦♥ ♦❢ t❤❡ ♣♦♣✉❧❛t✐♦♥ s✐③❡✳ ❚❤❡ ❡st✐♠❛t✐♦♥ ♠❡t❤♦❞s ❛r❡ ✐❧❧✉str❛t❡❞ ♦♥ ❛ r❡❛❧ ❞❛t❛✲s❡t ❛♥❞ t❤❡✐r ❢r❡q✉❡♥t✐st ♣r♦♣❡rt✐❡s ❛r❡ ❛♥❛❧✐s❡❞ ✈✐❛ ▼♦♥t❡ ❈❛r❧♦ s✐♠✉❧❛t✐♦♥✳

(6)

❙✉♠ár✐♦

✶ ■♥tr♦❞✉çã♦ ♣✳ ✻

✷ ▼♦❞❡❧♦ ❇✐♥♦♠✐❛❧ ♣✳ ✽

✷✳✶ ▼♦❞❡❧♦ ❊st❛tíst✐❝♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✽ ✷✳✷ ❋✉♥çõ❡s ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✶✵ ✷✳✷✳✶ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ P❡r✜❧❛❞❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✶✵ ✷✳✷✳✷ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ❈♦♥❞✐❝✐♦♥❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✶✶ ✷✳✷✳✸ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ■♥t❡❣r❛❞❛ ❯♥✐❢♦r♠❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✶✷ ✷✳✷✳✹ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ■♥t❡❣r❛❞❛ ❞❡ ❏❡✛r❡②s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✶✷

✸ ❊st✐♠❛çã♦ ❞❡ ▼á①✐♠❛ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ❡ ■♥t❡r✈❛❧❛r ♣✳ ✶✹ ✸✳✶ ❊st✐♠❛çã♦ ❞❡ ▼á①✐♠❛ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✶✹ ✸✳✶✳✶ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ P❡r✜❧❛❞❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✶✹ ✸✳✶✳✷ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ❈♦♥❞✐❝✐♦♥❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✷✷ ✸✳✶✳✸ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ■♥t❡❣r❛❞❛ ❯♥✐❢♦r♠❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✸✵ ✸✳✶✳✹ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ■♥t❡❣r❛❞❛ ❞❡ ❏❡✛r❡②s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✸✼ ✸✳✶✳✺ ❊①❡♠♣❧♦ ■❧✉str❛t✐✈♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✹✷ ✸✳✷ ❊st✐♠❛çã♦ ■♥t❡r✈❛❧❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✹✹ ✸✳✸ ❊①❡♠♣❧♦ ◆✉♠ér✐❝♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♣✳ ✹✼

✹ ❊st✉❞♦ ❞❡ ❙✐♠✉❧❛çã♦ ♣✳ ✺✵

(7)

✺ ❈♦♥s✐❞❡r❛çõ❡s ❋✐♥❛✐s ♣✳ ✻✸

(8)

✶ ■♥tr♦❞✉çã♦

❖ ♣r♦❝❡ss♦ ❞❡ ❛♠♦str❛❣❡♠ ❝♦♥❤❡❝✐❞♦ ❝♦♠♦ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛ é ❢r❡q✉❡♥t❡♠❡♥t❡ ✉s❛❞♦ ♥❛ ❡st✐♠❛çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s ❡♠ ✉♠❛ ❞❛❞❛ r❡❣✐ã♦✳ ❊st❡ ♣r♦❝❡ss♦ ❝♦♥s✐st❡ ♥❛ s❡❧❡çã♦ ❞❡ ✉♠ ♥ú♠❡r♦ ✜①♦ ♦✉ ❛❧❡❛tór✐♦ ❞❡ ✐♥❞✐✈í❞✉♦s ❡♠ ❞✐❢❡r❡♥t❡s é♣♦❝❛s ♦✉ ♦❝❛s✐õ❡s ❞❡ ❛♠♦str❛❣❡♠✳ ◆❛ ♣r✐♠❡✐r❛ é♣♦❝❛ ❞❡ ❛♠♦str❛❣❡♠✱ ♦s ✐♥❞✐✈í❞✉♦s s❡❧❡❝✐♦♥❛❞♦s sã♦ t♦❞♦s ♠❛r❝❛❞♦s✱ ❝♦♥t❛❞♦s ❡ ❞❡✈♦❧✈✐❞♦s à ♣♦♣✉❧❛çã♦✳ ❆♣ós ✉♠ ♣❡rí♦❞♦ ❞❡ t❡♠♣♦ q✉❡ ♣❡r♠✐t❛ ❛♦s ✐♥❞✐✈í❞✉♦s ♠❛r❝❛❞♦s s❡ ♠✐st✉r❛r❡♠ ❛♦s ♥ã♦ ♠❛r❝❛❞♦s ♥❛ ♣♦♣✉❧❛çã♦✱ ✉♠❛ s❡❣✉♥❞❛ ❛♠♦str❛ é s❡❧❡❝✐♦♥❛❞❛ ♥❛ q✉❛❧ ❝♦♥t❛✲s❡ ♦ ♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s ❝♦♠ ❡ s❡♠ ♠❛r❝❛s✱ ♠❛r❝❛✲ s❡ ♦s q✉❡ ❛✐♥❞❛ ♥ã♦ ♣♦ss✉❡♠ ♠❛r❝❛ ❡ t♦❞♦s ♦s ✐♥❞✐✈í❞✉♦s sã♦ ❞❡✈♦❧✈✐❞♦s à ♣♦♣✉❧❛çã♦✳ ❖ ♣r♦❝❡❞✐♠❡♥t♦ é r❡♣❡t✐❞♦ ❛té s❡ ❛t✐♥❣✐r ✉♠ ♥ú♠❡r♦ ✜①❛❞♦ ❞❡ é♣♦❝❛s ❞❡ ❛♠♦str❛❣❡♠✳

❯♠❛ ❞❛s ♣r✐♠❡✐r❛s ❛♣❧✐❝❛çõ❡s ❞♦ ♠ét♦❞♦ ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛ ❢♦✐ ❢❡✐t❛ ♣♦r ▲❛♣❧❛❝❡ ✭✶✼✽✸✮ ♣❛r❛ ❡st✐♠❛r ♦ t❛♠❛♥❤♦ ❞❛ ♣♦♣✉❧❛çã♦ ❞❛ ❋r❛♥ç❛✳ ▼❛✐s t❛r❞❡✱ P❡t❡rs❡♥ ✭✶✽✾✻✮ ❛♣❧✐❝♦✉ ♦ ♠ét♦❞♦ ♣❛r❛ ❡st✉❞❛r ♦ ✢✉①♦ ♠✐❣r❛tór✐♦ ❞❡ ♣❡✐①❡s ♥♦ ♠❛r ❇á❧t✐❝♦ ❡✱ ✐♥❞❡♣❡♥✲ ❞❡♥t❡♠❡♥t❡✱ ▲✐♥❝♦❧♥ ✭✶✾✸✵✮ ❛♣❧✐❝♦✉ ♦ ♠❡s♠♦ ♠ét♦❞♦ ♥❛ ❡st✐♠❛çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ♣❛t♦s s❡❧✈❛❣❡♥s ♥❛ ❆♠ér✐❝❛ ❞♦ ◆♦rt❡✳ ❖ ♠ét♦❞♦ ✉t✐❧③❛❞♦ ♣♦r ❡st❡s ♣❡sq✉✐s❛❞♦r❡s ❜❛s❡✐❛✲s❡ ❡♠ ✉♠ ❡①♣❡r✐♠❡♥t♦ ❝♦♠ ❞✉❛s é♣♦❝❛s ❞❡ ❛♠♦str❛❣❡♠ ❡ ♦ ❡st✐♠❛❞♦r ♣♦♥t✉❛❧ ✉t✐❧✐③❛❞♦ ♣❛r❛ ❡st✐♠❛r ♦ t❛♠❛♥❤♦ ♣♦♣✉❧❛❝✐♦♥❛❧ ✜❝♦✉ ❝♦♥❤❡❝✐❞♦ ❝♦♠♦ ❡st✐♠❛❞♦r ❞❡ ✏▲✐♥❝♦❧♥✲P❡t❡rs❡♥✑✳ ❊st❡ ❡st✐♠❛❞♦r é ♦❜t✐❞♦ ❛♦ s❡ ✐❣✉❛❧❛r ❛ ♣r♦♣♦rçã♦ ❞❡ ✐♥❞✐✈í❞✉♦s ♠❛r❝❛❞♦s ♥❛ s❡❣✉♥❞❛ ❛♠♦str❛ ❝♦♠ ❛ ♣r♦♣♦rçã♦ ❞❡ ✐♥❞✐✈í❞✉♦s ♠❛r❝❛❞♦s ♥❛ ♣♦♣✉❧❛çã♦ ✐♠❡❞✐❛t❛♠❡♥t❡ ❛♥t❡s ❞❛ s❡❣✉♥❞❛ s❡❧❡çã♦✳

❆ ♣❛rt✐r ❞❛ ❞é❝❛❞❛ ❞❡1950❢♦r❛♠ ♣✉❜❧✐❝❛❞♦s ✈ár✐♦s ❛rt✐❣♦s ❝✐❡♥tí✜❝♦s r❡❧❡✈❛♥t❡s s♦❜r❡

♦ t❡♠❛ ❡♥tr❡ ❡❧❡s ❈❤❛♣♠❛♥ ✭✶✾✺✹✮✱ ❉❛rr♦❝❤ ✭✶✾✺✽✮✱ ❉❛rr♦❝❤ ✭✶✾✺✾✮✱ ❙❡❜❡r ✭✶✾✻✺✮✱ ❏♦❧❧② ✭✶✾✻✺✮ ❡ ❈♦r♠❛❝❦ ✭✶✾✻✽✮✳ ❆t✉❛❧♠❡♥t❡✱ ♦s ♠ét♦❞♦s ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛ t❡♠ ❛♣❧✐❝❛çõ❡s ♥❛s ♠❛✐s ❞✐❢❡r❡♥t❡s ár❡❛s ❞♦ ❝♦♥❤❡❝✐♠❡♥t♦ t❛✐s ❝♦♠♦ ❈♦♥✜❛❜✐❧✐❞❛❞❡ ❞❡ ❙♦❢t✇❛r❡ ✭◆❆❨❆❑✱

✶✾✽✽❀ ❇❆❙❯❀ ❊❇❘❆❍■▼■✱ ✷✵✵✶✮✱ ❊♣✐❞❡♠✐♦❧♦❣✐❛ ✭❙❊❇❊❘❀ ❍❯❆❑❆❯❀ ❙■▼▼❖◆❙✱ ✷✵✵✵❀ ▲❊❊ ❡t ❛❧✳✱ ✷✵✵✶❀ ❈❍❆❖ ❡t ❛❧✳✱ ✷✵✵✶❀ ▲❊❊✱ ✷✵✵✷✮✱ ▲✐♥❣✉íst✐❝❛ ✭❇❖❊◆❉❊❘❀ ❘■◆❖❖❨ ❑❆◆✱ ✶✾✽✼❀ ❚❍■❙❚❊❉❀ ❊❋❘❖◆✱ ✶✾✽✼✮ ❡♥tr❡ ♦✉tr❛s✳ ◆❛ ❧✐t❡r❛t✉r❛ é ♣♦ssí✈❡❧ ❡♥❝♦♥tr❛r ✈ár✐❛s r❡✈✐sõ❡s ❞♦s

(9)

✶✾✽✻❀ ❙❊❇❊❘✱ ✶✾✾✷❀ ❙❈❍❲❆❘❩❀ ❙❊❇❊❘✱ ✶✾✾✾❀ ❲❍■❚❊❀ ●❆❘❘❖❚✱ ✶✾✾✵❀ P❖▲▲❖❈❑✱ ✶✾✾✶❀ P❖▲▲❖❈❑✱ ✷✵✵✵❀ ❈❍❆❖✱ ✷✵✵✶❀ ❆▼❙❚❘❯P❀ ▼❈❉❖◆❆▲❉❀ ▼❆◆▲❨✱ ✷✵✵✸✮✳

❖s ♠♦❞❡❧♦s ❡st❛tíst✐❝♦s ♣❛r❛ ❡st✐♠❛çã♦ ❞♦ t❛♠❛♥❤♦ ♣♦♣✉❧❛❝✐♦♥❛❧ ❛ ♣❛rt✐r ❞♦ ♣r♦❝❡ss♦ ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛ ❞✐st✐♥❣✉❡♠✲s❡ ❡♥tr❡ s✐✱ ♣r✐♥❝✐♣❛❧♠❡♥t❡✱ ♣❡❧❛s s✉♣♦s✐çõ❡s ❛❞♦t❛❞❛s✳ ❆ s✉♣♦s✐çã♦ ❜ás✐❝❛ q✉❡ ❞✐❢❡r❡♥❝✐❛ ♦s ♠♦❞❡❧♦s é ❛ ❞❡ q✉❡ ❛ ♣♦♣✉❧❛çã♦ é ❢❡❝❤❛❞❛✱ ✐st♦ é✱ ♦ ♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s ♥ã♦ s❡ ❛❧t❡r❛ ❞✉r❛♥t❡ ♦ ♣r♦❝❡ss♦ ❞❡ ❛♠♦str❛❣❡♠✱ ♥ã♦ ❤❛✈❡♥❞♦ ♣♦rt❛♥t♦ ♠✐❣r❛çã♦✱ ♠♦rt❡s ♦✉ ♥❛s❝✐♠❡♥t♦s✳ ◗✉❛♥❞♦ ❡st❛ s✉♣♦s✐çã♦ ♥ã♦ é s❛t✐s❢❡✐t❛✱ ❞✐✲ ③❡♠♦s q✉❡ ❛ ♣♦♣✉❧❛çã♦ é ❛❜❡rt❛✳ ❖✉tr❛s s✉♣♦s✐çõ❡s ✉s✉❛❧♠❡♥t❡ ❛❞♦t❛❞❛s ♣❡❧♦s ♠♦❞❡❧♦s ♠❛✐s r❡str✐t✐✈♦s sã♦✿ ✭✐✮ ♦s ✐♥❞✐✈í❞✉♦s ♥ã♦ ♣❡r❞❡♠ s✉❛s ♠❛r❝❛s ❞✉r❛♥t❡ ♦ ❡①♣❡r✐♠❡♥t♦❀ ✭✐✐✮ t♦❞❛s ❛s ♠❛r❝❛s sã♦ ♦❜s❡r✈❛❞❛s ❡ r❡❣✐str❛❞❛s ❝♦rr❡t❛♠❡♥t❡❀ ✭✐✐✐✮ ♦s ✐♥❞✐✈í❞✉♦s t❡♠ ❛ ♠❡s♠❛ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❡ s❡r❡♠ ❝❛♣t✉r❛❞♦s ❡♠ q✉❛❧q✉❡r é♣♦❝❛ ❞❡ ❛♠♦str❛❣❡♠✱ ✐st♦ é✱ ♦ ♣r♦❝❡ss♦ ❞❡ ❝❛♣t✉r❛ ❡ ♠❛r❝❛çã♦ ♥ã♦ ❛❧t❡r❛ ❛s ♣r♦❜❛❜✐❧✐❞❛❞❡s ❞❡ ❝❛♣t✉r❛✳ ❖t✐s ❡t ❛❧✳ ✭✶✾✼✽✮ ❞✐s❝✉t❡8♠♦❞❡❧♦s ♣❛r❛ ♣♦♣✉❧❛çã♦ ❢❡❝❤❛❞❛ ❡♠ q✉❡ ❛ s✉♣♦s✐çã♦ ✭✐✐✐✮ é ✢❡①✐❜✐❧✐③❛❞❛✱ ❝♦♠❜✐✲

♥❛♥❞♦ três t✐♣♦s ❞❡ ✈❛r✐❛çã♦ ♣❛r❛ ❛s ♣r♦❜❛❜✐❧✐❞❛❞❡s ❞❡ ❝❛♣t✉r❛✿ ✭✶✮ ❛s ♣r♦❜❛❜✐❧✐❞❛❞❡s ❞❡ ❝❛♣t✉r❛ ✈❛r✐❛♠ ❞❡ ❛❝♦r❞♦ ❝♦♠ ❛ é♣♦❝❛ ❞❡ ❛♠♦str❛❣❡♠❀ ✭✷✮ ❛ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❡ ❝❛♣t✉r❛ ❞❡ ✉♠ ✐♥❞✐✈í❞✉♦ s❡ ❛❧t❡r❛ q✉❛♥❞♦ ❡st❡ ✐♥❞✐✈í❞✉♦ ❥á ❢♦✐ ❝❛♣t✉r❛❞♦❀ ✭✸✮ ❛s ♣r♦❜❛❜✐❧✐❞❛❞❡s ❞❡ ❝❛♣t✉r❛♠ ✈❛r✐❛♠ ❞❡ ✐♥❞✐✈í❞✉♦ ♣❛r❛ ✐♥❞✐✈í❞✉♦✳

P❛r❛ ♠✉✐t♦s ♠♦❞❡❧♦s ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛✱ ♦ ✐♥t❡r❡ss❡ ♣r✐♥❝✐♣❛❧ r❡s✐❞❡ ♥❛ ❡st✐♠❛çã♦ ❞♦ t❛♠❛♥❤♦ ♣♦♣✉❧❛❝✐♦♥❛❧✳ ❆ss✐♠✱ ❛s ♣r♦❜❛❜✐❧✐❞❛❞❡s ❞❡ ❝❛♣t✉r❛ t♦r♥❛♠✲s❡ ♣❛râ♠❡tr♦s ♣❡rt✉r❜❛❞♦r❡s ♦✉ ♥✉✐s❛♥❝❡✱ ♠❛s q✉❡ sã♦ ✐♠♣r❡s❝✐♥❞í✈❡✐s ♥❛ ❝♦♥str✉çã♦ ❞♦s ♠♦❞❡❧♦s ♣r♦✲ ❜❛❜✐❧íst✐❝♦s✳ ◆❡st❡ ❝♦♥t❡①t♦✱ ♦ ❡st✉❞♦ ❞❡ ❢✉♥çõ❡s ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ q✉❡ ❞❡♣❡♥❞❛♠ ❛♣❡♥❛s ❞♦ ♣❛râ♠❡tr♦ ❞❡ ✐♥t❡r❡ss❡ t♦r♥❛✲s❡ ✐♠♣♦rt❛♥t❡✳ ❖ ✉s♦ ❞❡ ♠ét♦❞♦s ♣❛r❛ ❡❧✐♠✐♥❛çã♦ ❞❡ ♣❛✲ râ♠❡tr♦s ♣❡rt✉r❜❛❞♦r❡s sã♦ ❛♠♣❧❛♠❡♥t❡ ❞✐s❝✉t✐❞♦s ♥❛ ❧✐t❡r❛t✉r❛ ❡st❛tíst✐❝❛ ✭❈❖❳✱ ✶✾✼✺❀ ❇❊❘●❊❘❀ ▲■❙❊❖❀ ❲❖▲P❊❘❚✱ ✶✾✾✾❀❇❆❙❯✱ ✶✾✼✼✮✳

(10)

✷ ▼♦❞❡❧♦ ❇✐♥♦♠✐❛❧

◆❡st❡ ❝❛♣ít✉❧♦ ❞✐s❝✉t✐♠♦s ❝♦♠♦ ♦s ❞✐❢❡r❡♥t❡s ♠ét♦❞♦s ❞❡ ❡❧✐♠✐♥❛çã♦ ❞❡ ♣❛râ♠❡tr♦s ♣❡rt✉r❜❛❞♦r❡s ✭♥✉✐s❛♥❝❡✮ ❝♦♥s✐❞❡r❛❞♦s ♥♦ ❈❛♣ít✉❧♦ 1 ♣♦❞❡♠ s❡r ✉s❛❞♦s ♥❛ ♦❜t❡♥çã♦ ❞❡

❡st✐♠❛t✐✈❛s ♣♦♥t✉❛✐s ❡ ✐♥t❡r✈❛❧❛r❡s ♣❛r❛ ♦ t❛♠❛♥❤♦ ♣♦♣✉❧❛❝✐♦♥❛❧✱ ❝♦♥s✐❞❡r❛♥❞♦ ✉♠ ♠♦❞❡❧♦ ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛ ❝♦♠ ♠❛r❝❛çã♦ ♣❛r❛ ✉♠❛ ♣♦♣✉❧❛çã♦ ❢❡❝❤❛❞❛✳

✷✳✶ ▼♦❞❡❧♦ ❊st❛tíst✐❝♦

❈♦♥s✐❞❡r❡♠♦s ✉♠ ♣r♦❝❡ss♦ ❞❡ ❝❛♣t✉r❛✲r❡❝❛♣t✉r❛ ❡♠ q✉❡ ♦s ✐♥❞✐✈í❞✉♦s sã♦ s❡❧❡❝✐♦♥❛✲ ❞♦s ❞❛ ♣♦♣✉❧❛çã♦ ❡♠ k ♦❝❛s✐õ❡s ❞❡ ❛♠♦str❛❣❡♠✱ k ≥ 2✳ ❊♠ ❝❛❞❛ ♦❝❛s✐ã♦ ❝♦♥t❛✲s❡ ♦

♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s r❡❝❛♣t✉r❛❞♦s ✭❥á ♣♦ss✉❡♠ ♠❛r❝❛✮ ❡ ♦ ♥ú♠❡r♦ t♦t❛❧ ❞❡ ✐♥❞✐✈í❞✉♦s✱ ❡❢❡t✉❛✲s❡ ❛ ♠❛r❝❛çã♦ ❞♦s ✐♥❞✐✈í❞✉♦s s❡♠ ♠❛r❝❛ ❡ t♦❞♦s ♦s ✐♥❞✐✈í❞✉♦s sã♦ ❞❡✈♦❧✈✐❞♦s à ♣♦♣✉❧❛çã♦✳ ❯♠❛ ♣ró①✐♠❛ ❝❛♣t✉r❛ é r❡❛❧✐③❛❞❛ ❛♣ós ♣❡r♠✐t✐r q✉❡ ♦s ✐♥❞✐✈í❞✉♦s ♠❛r❝❛❞♦s ❡ ♥ã♦ ♠❛r❝❛❞♦s s❡ ❞✐str✐❜✉❛♠ ♥❛ ♣♦♣✉❧❛çã♦✳

❉❡♥♦t❡♠♦s ♣♦r N ♦ ♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s ♥❛ ♣♦♣✉❧❛çã♦✳ ❙✉♣♦♥❤❛♠♦s q✉❡✱ ❡♠ ❝❛❞❛

♦❝❛s✐ã♦✱ ✉♠ ✐♥❞✐✈í❞✉♦ s❡❥❛ ❝❛♣t✉r❛❞♦ ✐♥❞❡♣❡♥❞❡♥t❡♠❡♥t❡ ❡ ❝♦♠ ❛ ♠❡s♠❛ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞♦s ❞❡♠❛✐s ❡ q✉❡ ❛s ♦❝❛s✐õ❡s ❞❡ ❝❛♣t✉r❛ s❡❥❛♠ ✐♥❞❡♣❡♥❞❡♥t❡s ❡♥tr❡ s✐✱ ✐st♦ é✱ ♦ ❢❛t♦ ❞❡ ✉♠ ✐♥❞✐✈í❞✉♦ s❡r ❝❛♣t✉r❛❞♦ ♦✉ ♥ã♦ ❡♠ ✉♠❛ ♦❝❛s✐ã♦ ♥ã♦ ✐♥✢✉❡♥❝✐❛ ♥❛ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❡ ❝❛♣t✉r❛ ❡♠ ♦✉tr❛ ♦❝❛s✐ã♦✳

◆❡st❡ ❝♦♥t❡①t♦✱ ❞❡♥♦t❡♠♦s ♣♦r

• pi ❛ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❡ ✉♠ ✐♥❞✐✈í❞✉♦ s❡r ❝❛♣t✉r❛❞♦ ♥❛ i✲és✐♠❛ ♦❝❛s✐ã♦❀

• ni ♦ ♥ú♠❡r♦ t♦t❛❧ ❞❡ ✐♥❞✐✈í❞✉♦s ❝❛♣t✉r❛❞♦s ♥❛i✲és✐♠❛ ♦❝❛s✐ã♦❀

• mi ♦ ♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s r❡❝❛♣t✉r❛❞♦s ♥❛i✲és✐♠❛ ♦❝❛s✐ã♦ ✭m1 = 0✮❀ • Mi =

iP−1

j=1

(nj−mj)♦ ♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s ❞✐st✐♥t♦s ♠❛r❝❛❞♦s ♣r❡s❡♥t❡s ♥❛ ♣♦♣✉❧❛çã♦

(11)

• r = Mk+1 =

k

P

j=1

(nj −mj) ♦ ♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s ❞✐st✐♥t♦s ❝❛♣t✉r❛❞♦s ❞✉r❛♥t❡ ♦

♣r♦❝❡ss♦❀

♣❛r❛ i= 1, . . . , k✳

P♦rt❛♥t♦✱ ❞❛❞♦ ♦ ✈❡t♦r ❞❡ ♣❛râ♠❡tr♦s θ= (N,p)✱ ♦♥❞❡N é ♦ ♣❛râ♠❡tr♦ ❞❡ ✐♥t❡r❡ss❡

❡ p = (p1, . . . , pk) ♦ ✈❡t♦r ❞❡ ♣❛râ♠❡tr♦s ♥✉✐s❛♥❝❡✱ ❛ ❞✐str✐❜✉✐çã♦ ❞❡ ♣r♦❜❛❜✐❧✐❞❛❞❡s ❞♦s

❞❛❞♦s ❛♠♦str❛✐s n= (n1, . . . , nk) ❡ m= (m1, . . . , mk)é ❞❛❞❛ ♣♦r

n,m =Pθ

n1, m1 Pθ

n2, m2|n1, m1 · · ·Pθ

nk, mk|n1, m1;n2, m2;. . .;nk−1, mk−1

=

k

Y

i=1

N −Mi

ni−mi

pni−mi

i (1−pi)N−Mi−ni+mi

Mi

mi

pmi

i (1−pi)Mi−mi

=

k

Y

i=1

Mi

mi

×

k

Y

i=1

N−Mi

ni−mi

pni

i (1−pi)N−ni. ✭✷✳✶✮

❈♦♠♦ Mi+1 =Mi+ni−mi ♣❛r❛ i= 1, . . . , k✱ ❡♥tã♦ k

Y

i=1

N −Mi

ni−mi

=

k

Y

i=1

(N −Mi)!

(ni−mi)!(N −Mi −ni+mi)!

=

k

Y

i=1

1 (ni−mi)!

k

Y

i=1

(N −Mi)!

(N −Mi+1)!

=

Yk

i=1

1 (ni−mi)!

× N!

(N −r)!. ✭✷✳✷✮

❙✉❜st✐t✉✐♥❞♦ ❛ r❡❧❛çã♦ (2.2)❡♠ (2.1)✱ s❡❣✉❡ q✉❡ ❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❞❡ θ = (N,p) é ❞❛❞❛ ♣♦r

L(N,p) =Pθ{n,m}

=

Yk

i=1

Mi!

mi!(Mi−mi)!(ni−mi)!

× N!

(N −r)!

k

Y

i=1

pni

i (1−pi)N−ni, ✭✷✳✸✮

N ≥r✱ 0< pi <1✱ i= 1, . . . , k✳

P♦rt❛♥t♦✱ ♦ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ é ❞❛❞♦ ♣♦r

K(N,p) = N! (N −r)!

k

Y

i=1

pni

(12)

✶✵

❡ s❡✉ ❧♦❣❛r✐t♠♦ ❞❛❞♦ ♣♦r

log K(N,p)= log N!−log (N −r)!+

k

X

i=1

nilog(pi) + k

X

i=1

(N −ni) log(1−pi),

✭✷✳✺✮

N ≥r✱ 0< pi <1✱ i= 1, . . . , k✳

❙❛❧✐❡♥t❛♠♦s q✉❡ ♦ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✭✷✳✹✮ ❞❡♣❡♥❞❡ ❞♦s ❞❛❞♦s ❛♠♦s✲ tr❛✐s s♦♠❡♥t❡ ❛tr❛✈és ❞❡n ❡ r✱ ✐st♦ é✱ (n, r) é ✉♠❛ ❡st❛tíst✐❝❛ s✉✜❝✐❡♥t❡ ♣❛r❛(N, p)✳

✷✳✷ ❋✉♥çõ❡s ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛

◆❡st❛ s❡çã♦ ✈❛♠♦s ❛♣❧✐❝❛r ♦s ♠ét♦❞♦s ❞❡ ❡❧✐♠✐♥❛çã♦ ❞❡ ♣❛râ♠❡tr♦s ♣❡rt✉r❜❛❞♦r❡s ❞✐s✲ ❝✉t✐❞♦s ♥♦ ❈❛♣ít✉❧♦1à ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✭✷✳✸✮ ❡ ♦❜t❡r ❢✉♥çõ❡s ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛

q✉❡ ❞❡♣❡♥❞❡♠ ❡①❝❧✉s✐✈❛♠❡♥t❡ ❞♦ ♣❛râ♠❡tr♦ ❞❡ ✐♥t❡r❡ss❡ N✳

✷✳✷✳✶ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ P❡r✜❧❛❞❛

❆ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ♣❡r✜❧❛❞❛ ❞❡N é ♦❜t✐❞❛ ❛ ♣❛rt✐r ❞❛ ❡①♣r❡ssã♦ ❞❛ ❢✉♥çã♦ ❞❡

✈❡r♦ss✐❧❤❛♥ç❛ ✭✷✳✸✮ s✉❜st✐t✉✐♥❞♦✲s❡ ♦ ✈❡t♦r ❞❡ ♣❛râ♠❡tr♦sp♣♦r s✉❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛

✈❡r♦ss✐♠✐❧❤❛♥ç❛ ♣❛r❛ ❝❛❞❛N ✜①❛❞♦✳ ❊♥tã♦✱ ❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ♣❡r✜❧❛❞❛ é ♦❜t✐❞❛

❝♦♠♦

LP(N) = sup

p∈[0,1]k

L(N,p)

=L N,pb(N)

∝K N,pb(N),

♦♥❞❡pb(N) é ♦ ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❞❡ L(N,p)♣❛r❛ ❝❛❞❛ N ≥r✱ N ✜①❛❞♦✳

❆ ♣❛rt✐r ❞❡ ✭✷✳✺✮ s❡❣✉❡ q✉❡

∂log K(N, p) pi

= ni pi

−N −ni

1−pi

= 0, i= 1, . . . , k,

♦ q✉❡ ✐♠♣❧✐❝❛

b

p(N) =

n1

N,· · · , nk

N

, N ≥r. ✭✷✳✻✮

(13)

✶✶

é ❞❛❞♦ ♣♦r

KP(N) = N!

(N −r)!

k

Y

i=1

(N −ni)N−ni

NN , N ≥r. ✭✷✳✼✮

✷✳✷✳✷ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ❈♦♥❞✐❝✐♦♥❛❧

❆ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❝♦♥❞✐❝✐♦♥❛❧ é ♦❜t✐❞❛ ❛ ♣❛rt✐r ❞❛ ❢❛t♦r❛çã♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✭✷✳✸✮ ❝♦♠♦

L(N,p) =LC(N)×L′(N, p),

♦♥❞❡LC(N)é ❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❝♦rr❡s♣♦♥❞❡♥t❡ à ❞✐str✐❜✉✐çã♦ ❞❡ ♣r♦❜❛❜✐❧✐❞❛❞❡s

❝♦♥❞✐❝✐♦♥❛❧ ❞❡ m = (m1, m2, . . . , mk)✱ ❞❛❞♦ n = (n1, n2, . . . , nk)✱ ❡ L′(N,p) ❛ ❢✉♥çã♦ ❞❡

✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❝♦rr❡s♣♦♥❞❡♥t❡ à ❞✐str✐❜✉✐çã♦ ❞❡ ♣r♦❜❛❜✐❧✐❞❛❞❡s ❞❡(n1, n2, . . . , nk)❞❛❞♦s

N ❡ p✳

❊♥tã♦✱ s❡❣✉❡ q✉❡ L′(N,p) é ❞❛❞❛ ♣♦r

L′(N,p) = Pθ{n1, . . . , nk}

=

k

Y

i=1

N ni

pni

i (1−pi)N−ni,

N ≥max{n1, n2, . . . , nk}✱0< pi <1✱ i= 1, . . . , k ❡ s❡❣✉❡ ❞❡ ✭✷✳✸✮ q✉❡ L′(N) é ❞❛❞❛ ♣♦r

L′(N) =P

θ{m1, . . . , mk|n1, . . . , nk}

= Pθ{m1, n1;. . .;mk, nk} Pθ{n1, . . . , nk}

=

k

Q

i=1

Mi!

mi!(Mi−mi)!(ni−mi)!

× N!

(N−r)!

k

Q

i=1

pni

i (1−pi)N−ni

k

Q

i=1

N ni

pni

i (1−pi)N−ni

=

Yk

i=1

Mi!ni!

mi!(Mi−mi)!(ni−mi)!

× N!

(N −r)!

k

Y

i=1

(N −ni)!

N! , ✭✷✳✽✮

N ≥r✳

P♦rt❛♥t♦✱ s❡❣✉❡ ❞❡ ✭✷✳✽✮ q✉❡ ♦ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❝♦♥❞✐❝✐♦♥❛❧ é ❞❛❞♦ ♣♦r

KC(N) = N!

(N −r)!

k

Y

i=1

(N −ni)!

(14)

✶✷

✷✳✷✳✸ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ■♥t❡❣r❛❞❛ ❯♥✐❢♦r♠❡

❈♦♠ ♦ ♦❜❥❡t✐✈♦ ❞❡ ❡❧✐♠✐♥❛r ♦ ♣❛râ♠❡tr♦ ♥✉✐s❛♥❝❡ p✱ s✉♣♦♥❤❛♠♦s q✉❡✱ ❞❛❞♦ N✱ p1, . . . , pk s❡❥❛♠ ✈❛r✐á✈❡✐s ❛❧❡❛tór✐❛s ✐♥❞❡♣❡♥❞❡♥t❡s ❝♦♠ ♠❡s♠❛ ❞✐str✐❜✉✐çã♦ ❯♥✐❢♦r♠❡

(0,1)✳ ❆ss✐♠✱ ❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✐♥t❡❣r❛❞❛ ✉♥✐❢♦r♠❡ é ♦❜t✐❞❛ ❛ ♣❛rt✐r ❞❛ ✐♥✲

t❡❣r❛çã♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✭✷✳✸✮✱ ✐st♦ é✱

LU(N) = Z

(0,1)k

L(N,p)dp

∝ N!

(N −r)!

k

Y

i=1 1

Z

0

pni

i (1−pi)N−nidpi

= N!

(N −r)!

k

Y

i=1

Γ(ni+ 1)Γ(N −ni+ 1)

Γ(N + 2)

∝ N!

(N −r)!

k

Y

i=1

(N −ni)!

(N + 1)!, N ≥r.

P♦rt❛♥t♦✱ ♦ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✐♥t❡❣r❛❞❛ ✉♥✐❢♦r♠❡ é ❞❛❞♦ ♣♦r

KU(N) = N!

(N −r)!

k

Y

i=1

(N −ni)!

(N + 1)!, N ≥r. ✭✷✳✶✵✮

✷✳✷✳✹ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ■♥t❡❣r❛❞❛ ❞❡ ❏❡✛r❡②s

◆♦✈❛♠❡♥t❡✱ ✈❛♠♦s ❝♦♥s✐❞❡r❛r ❛ ❡❧✐♠✐♥❛çã♦ ❞♦ ♣❛râ♠❡tr♦ ♥✉✐s❛♥❝❡ p ✈✐❛ ✐♥t❡❣r❛çã♦✳

❙✉♣♦♥❤❛♠♦s q✉❡✱ ❞❛❞♦N✱ps❡❥❛ ✉♠ ✈❡t♦r ❛❧❡❛tór✐♦ ❝♦♠ ❞✐str✐❜✉✐çã♦ ❞❡ ❏❡✛r❡②sπJ(p|N)

❆ ❢✉♥çã♦ ❞❡♥s✐❞❛❞❡ ❞❡ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❡ ❏❡✛r❡②s é ❞❡✜♥✐❞❛ ❝♦♠♦ s❡♥❞♦ ♣r♦♣♦r❝✐♦♥❛❧ ❛ r❛✐③ q✉❛❞r❛❞❛ ❞♦ ❞❡t❡r♠✐♥❛♥t❡ ❞❛ ♠❛tr✐③ ❞❡ ✐♥❢♦r♠❛çã♦ ❡s♣❡r❛❞❛ ❞❡ ❋✐s❤❡r IN(p) ✭s✉♣♦♥❞♦

N ❝♦♥❤❡❝✐❞♦✮✱ ✐st♦ é✱

IN(p) = ❊

−∂logL(N,p)

∂pi∂pj

!

k×k

∝ ❊

− ∂logK(N,p)

∂pi∂pj

!

k×k

(15)

✶✸

❆ ♣❛rt✐r ❞❡ ✭✷✳✺✮✱ t❡♠♦s q✉❡

∂logK(N,p) ∂pi∂pj

=     

0, s❡ i6=j,

−nj+ 2njpj−N p2j

p2

j(1−pj)2

, s❡ ✐ ❂ ❥, 1≤i, j ≤k,

♦ q✉❡ ✐♠♣❧✐❝❛

−∂logL(N,p)

∂pi∂pj

=

  

0, s❡i6=j,

N pi(1−pi)

, s❡ ✐ ❂ ❥, 1≤i, j ≤k.

P♦rt❛♥t♦✱ ❛ ❢✉♥çã♦ ❞❡♥s✐❞❛❞❡ ❞❡ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❡ ❏❡✛r❡②s é ❞❛❞❛ ♣♦r

πJ(p|N)

detIN(p)

1

2

k

Y

i=1

1 p1i/2(1−pi)1/2

. ✭✷✳✶✶✮

P♦rt❛♥t♦✱ ❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✐♥t❡❣r❛❞❛ ❞❡ ❏❡✛r❡②s é ❞❛❞❛ ♣♦r

LJ(N) = Z

(0,1)k

L(N,p)πJ(p|N)dp

∝ N!

(N −r)!

k

Y

i=1 1

Z

0

pni−1/2

i (1−pi)N−ni−1/2dpi

= N!

(N −r)!

k

Y

i=1

Γ(ni + 1/2)Γ(N −ni + 1/2)

Γ(N + 1) ,

N ≥r✳

▲♦❣♦✱ ♦ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✐♥t❡❣r❛❞❛ ❞❡ ❏❡✛r❡②s é ❞❛❞♦ ♣♦r

KJ(N) = N!

(N −r)!

k

Y

i=1

Γ(N −ni+ 1/2)

(16)

✶✹

✸ ❊st✐♠❛çã♦ ❞❡ ▼á①✐♠❛

❱❡r♦ss✐♠✐❧❤❛♥ç❛ ❡ ■♥t❡r✈❛❧❛r

◆❡st❡ ❝❛♣ít✉❧♦ ❛♣r❡s❡♥t❛♠♦s ♠ét♦❞♦s ♣❛r❛ ♦❜t❡♥çã♦ ❞❛s ❡st✐♠❛t✐✈❛s ❞❡ ♠á①✐♠❛ ✈❡✲ r♦ss✐♠✐❧❤❛♥ç❛ ❡ ♣❛r❛ ❛ ❝♦♥str✉çã♦ ❞❡ ✐♥t❡r✈❛❧♦s ❞❡ ❝♦♥✜❛♥ç❛ ♣❛r❛ ♦ t❛♠❛♥❤♦ ♣♦♣✉❧❛✲ ❝✐♦♥❛❧✱ ❜❛s❡❛❞♦s ♥❛s ❢✉♥çõ❡s ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❛♣r❡s❡♥t❛❞❛s ♥♦ ❈❛♣ít✉❧♦ ✷✳ ◆♦ q✉❡ s❡❣✉❡ ✈❛♠♦s s✉♣♦r q✉❡ ♦ ♣r♦❝❡ss♦ ❝♦♥s✐st❛ ❡♠ ♣❡❧♦ ♠❡♥♦s ❞✉❛s ♦❝❛s✐õ❡s ❞❡ ❝❛♣t✉r❛ ✭k ≥ 2✮ ❡ q✉❡✱ ❡♠ ❝❛❞❛ ♦❝❛s✐ã♦✱ ❤❛❥❛ ♣❡❧♦ ♠❡♥♦s ✉♠ ✐♥❞✐✈í❞✉♦ ❝❛♣t✉r❛❞♦✳ ❉❡♥♦t❡♠♦s

♣♦r m = max{n1, . . . , nk} ♦ ♥ú♠❡r♦ ♠á①✐♠♦ ❞❡ ✐♥❞✐✈í❞✉♦s ❝❛♣t✉r❛❞♦s ❡♠ ✉♠❛ ♠❡s♠❛

♦❝❛s✐ã♦ ❡ n = n1 +· · ·+nk ♦ ♥ú♠❡r♦ t♦t❛❧ ❞❡ ❝❛♣t✉r❛s r❡❛❧✐③❛❞❛s✳ ❖❜s❡r✈❡♠♦s q✉❡ ♦

♥ú♠❡r♦ ❞❡ ✐♥❞✐✈í❞✉♦s ❞✐st✐♥t♦s ❝❛♣t✉r❛❞♦sr é t❛❧ q✉❡ m≤r ≤n✳

✸✳✶ ❊st✐♠❛çã♦ ❞❡ ▼á①✐♠❛ ❱❡r♦ss✐♠✐❧❤❛♥ç❛

◆❡st❛ s❡çã♦✱ ❛♣r❡s❡♥t❛♠♦s r❡s✉❧t❛❞♦s q✉❡ ❝❛r❛❝t❡r✐③❛♠ ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❛s ❢✉♥✲ çõ❡s ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❞♦ ❈❛♣ít✉❧♦ ✷✱ ❛❧é♠ ❞❡ r❡s✉❧t❛❞♦s ❛ r❡s♣❡✐t♦ ❞❛ ♦❜t❡♥çã♦ ❞❛s ❡st✐♠❛t✐✈❛s ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐♠✐❧❤❛♥ç❛✳

✸✳✶✳✶ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ P❡r✜❧❛❞❛

❉❡✈✐❞♦ ❛♦ ❝❛rát❡r ❞✐s❝r❡t♦ ❞♦ ♣❛râ♠❡tr♦ ❞❡ ✐♥t❡r❡ss❡ N✱ s❡ ❡①✐st✐r ✉♠ ♣♦♥t♦ ❞❡ ♠á✲

①✐♠♦✱ (N ,b pb)✱ ❞♦ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✭✷✳✹✮✱ ❡♥tã♦ Nb ♠❛①✐♠✐③❛ ♦ ♥ú❝❧❡♦

❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ♣❡r✜❧❛❞❛ ✭✷✳✼✮✳

❉❡ ❢❛t♦✱ s✉♣♦♥❤❛♠♦s q✉❡ (N ,b bp) ♠❛①✐♠✐③❡ ♦ ♥ú❝❧❡♦ ✭✷✳✹✮ ❡ q✉❡✱ ♣❛r❛ ❝❛❞❛ N ✜①❛❞♦✱ N ≥ r✱ ❡①✐st❛ ✉♠ ú♥✐❝♦ ♣♦♥t♦✱ bp(N)✱ q✉❡ ♠❛①✐♠✐③❡ ❛ ❢✉♥çã♦ hN(p) = K(N,p)✱ p ∈

[0,1]k✳ ❊♥tã♦✱ ♦s ♣♦ssí✈❡✐s ❝❛♥❞✐❞❛t♦s ❛ ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❞❡ K(N,p) sã♦ ♦s ♣♦♥t♦s ❞♦

❝♦♥❥✉♥t♦{(N,pb(N)) :N ≥r}✱ ♦ q✉❡ ✐♠♣❧✐❝❛ q✉❡Nb é ✉♠ ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❞♦ ♥ú❝❧❡♦ ❞❛

(17)

✶✺

P♦rt❛♥t♦✱ ❛ ❡st✐♠❛çã♦ ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❞♦ ♣❛râ♠❡tr♦ ❞❡ ✐♥t❡r❡ss❡ N ❛

♣❛rt✐r ❞♦ ♥ú❝❧❡♦ ✭✷✳✹✮ é ❡q✉✐✈❛❧❡♥t❡ à ♦❜t✐❞❛ ❛ ♣❛rt✐r ❞♦ ♥ú❝❧❡♦ ✭✷✳✼✮✳

Pr♦♣♦s✐çã♦ ✸✳✶✳ ❖ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ♣❡r✜❧❛❞❛✱KP(N)✱ ❝♦♥✈❡r❣❡ ♣❛r❛

0 s❡ m≤r < n ❡ ❝♦♥✈❡r❣❡ ♣❛r❛ exp{−n} s❡ r =n✱ q✉❛♥❞♦ N −→ ∞✳

Pr♦✈❛✿

❆ ♣❛rt✐r ❞❡ ✭✷✳✼✮ s❡❣✉❡ q✉❡

KP(N) = N!

(N −r)!

k

Y

i=1

(N −ni)N−ni

NN

=N(N −1)· · ·(N −r+ 1)

k

Y

i=1

(N −ni)N−ni

NN−niNni

= N

r

Nn

1− 1

N

· · ·

1− r−1

N

Yk

i=1

1− ni

N

N

1− ni

N

−ni

.

❈♦♠♦

lim

N→∞

1− x

N

= 1, ♣❛r❛ t♦❞♦ x r❡❛❧ ✭✸✳✶✮

lim

N→∞

1− x

N

N

= exp{−x}, ♣❛r❛ t♦❞♦x >0, ✭✸✳✷✮

❡♥tã♦

lim

N→∞K P

(N) = (

0, s❡ r < n, exp{−n}, s❡ r=n.

P❛r❛ ♣r♦✈❛r ♦s ♣ró①✐♠♦s r❡s✉❧t❛❞♦s✱ ✈❛♠♦s ✉t✐❧✐③❛r ♦ ▲❡♠❛ ❛ s❡❣✉✐r✳ ▲❡♠❛ ✸✳✶✳ P❛r❛ q✉❛❧q✉❡r y >0 ❡ t∈1,2, . . . ✱ t❡♠♦s

✭❆✮

log(y+t)−log(y)>

t−1

X

i=0

(18)

✶✻

✭❇✮

log(y+t)−log(y)< 1 2(y+t) +

t

X

i=1

1 y+t−i −

1 2y

= 1

2(y+t) +

t−1

X

i=1

1 y+t−i +

1 2y.

Pr♦✈❛✿

❈♦♥s✐❞❡r❡♠♦s y >0✱ ✜①❛❞♦✳

✭❆✮

P❛r❛ ♣r♦✈❛r ❡st❛ ❛✜r♠❛çã♦ ❜❛st❛ ♥♦t❛r q✉❡

log(y+t)−log(y) =

y+t

Z

y

1 xdx

=

y+1

Z

y

1

xdx+. . .+

y+t

Z

y+t−1

1 xdx

> 1

y+ 1 +· · ·+ 1 y+t.

✭❇✮

Pr✐♠❡✐r❛♠❡♥t❡✱ ✈❛♠♦s ♠♦str❛r ❛ ❛✜r♠❛çã♦ ♣❛r❛ t = 1✱ ✐st♦ é✱

log(y+ 1)−log(y)< 1 2

1 y+ 1 +

1 y

.

◆❡st❡ s❡♥t✐❞♦✱ ❝♦♥s✐❞❡r❡♠♦s ❛ ❢✉♥çã♦ f(x) = 1/x ❞❡✜♥✐❞❛ ♣❛r❛ x > 0✳ ❈♦♠♦ f é

❝♦♥✈❡①❛✱ ♦ s❡❣♠❡♥t♦ ❞❡ r❡t❛ q✉❡ ✉♥❡ ♦s ♣♦♥t♦s y,1/y❡ y+ 1,1/(y+ 1) ✜❝❛ ❛❝✐♠❛ ❞♦

❣rá✜❝♦ ❞❡ f ♥♦ ✐♥t❡r✈❛❧♦ (y, y+ 1)✱ ✐st♦ é✱ 1

y+ξ < 1 y +

1 y+ 1 −

1 y

(19)

✶✼

❊♥tã♦✱

log(y+ 1)−log(y) =

1

Z

0

1 y+ξdξ

<

Z 1

0

1 y +

1 y+ 1 −

1 y

ξ

= 1 2

1 y+ 1 +

1 y

✭✸✳✸✮ ❡ ♣❛r❛ ♦ ❝❛s♦ ❡♠ q✉❡t≥2✱ ♦❜s❡r✈❡♠♦s q✉❡

log(y+t)−log(y) =

t

X

i=1

log(y+t+ 1−i)−log(y+t−i)

.

▲♦❣♦✱ s❡❣✉❡ ❞❡ ✭✸✳✸✮ q✉❡

log(y+t)−log(y)<

t

X

i=1

1 2

1

y+t−i+ 1 + 1 y+t−i

= 1

2(y+t)+

t−1

X

i=1

1 y+t−i+

1 2y

= 1

2(y+t)+

t

X

i=1

1 y+t−i−

1 2y.

P❛r❛ ♣r♦✈❛r ♦s r❡s✉❧t❛❞♦s q✉❡ s❡❣✉❡♠✱ ❝♦♥s✐❞❡r❛♠♦s ♦ ❧♦❣❛r✐t♠♦ ❞♦ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ♣❡r✜❧❛❞❛ ✭✷✳✼✮✱ q✉❡ é ❞❛❞♦ ♣♦r

log(KP(N)) =

r−1

X

i=0

log(N −i) +

k

X

i=1

(N−ni) log(N −ni)−Nlog(N)

, N ≥r.

❆ ❡①t❡♥sã♦ ❞❡st❛ ❢✉♥çã♦ ♣❛r❛ ✈❛❧♦r❡s r❡❛✐s é ❞❛❞❛ ♣♦r

f(x) =

r−1

X

i=0

log(x−i) +

k

X

i=1

(x−ni) log(x−ni)−xlog(x)

, x≥r, ✭✸✳✹✮

♦♥❞❡ s✉♣♦♠♦s0 log(0) = 0✳

❖❜s❡r✈❡♠♦s q✉❡ ❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ❡♠ ✭✸✳✹✮ é ❝♦♥tí♥✉❛ ❡ ❞❡r✐✈á✈❡❧ ♥♦ ✐♥t❡r✈❛❧♦(r,∞)✱

s❡♥❞♦lim

x↓rf(x) =f(r)✱ ✐st♦ é✱f é ❝♦♥tí♥✉❛ à ❞✐r❡✐t❛ ❡♠ r✳ P♦rt❛♥t♦✱ ♦ ❡st✉❞♦ ❞♦ ❝♦♠♣♦r✲

(20)

✶✽

❞♦ ❡st✉❞♦ ❞♦ s✐♥❛❧ ❞❛ ❞❡r✐✈❛❞❛ ♣r✐♠❡✐r❛ ❞❡f✱ ❝✉❥❛ ❡①♣r❡ssã♦ é ❞❛❞❛ ♣♦r

f′(x) =

r−1

X

i=0

1 x−i +

k

X

i=1

log(x−ni)−log(x)

, x > r. ✭✸✳✺✮

Pr♦♣♦s✐çã♦ ✸✳✷✳ ❙❡ r = m✱ ❡♥tã♦ ❛ ❢✉♥çã♦ KP é ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡✱ ✐st♦ é✱

KP(N + 1) < KP(N)✱ ♣❛r❛ t♦❞♦ N r✳ P♦rt❛♥t♦✱ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐♠✐✲

❧❤❛♥ç❛ ♣❡r✜❧❛❞❛ é NbP =m

Pr♦✈❛✿

❙✉♣♦♥❤❛♠♦s✱ s❡♠ ♣❡r❞❛ ❞❡ ❣❡♥❡r❛❧✐❞❛❞❡✱ q✉❡ m = n1✳ P❛r❛ ♠♦str❛r q✉❡ KP é

❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡ é s✉✜❝✐❡♥t❡ ♠♦str❛r✱ ✉s❛♥❞♦ ❛ ❡①♣r❡ssã♦ ✭✸✳✺✮ ❝♦♠r =n1✱ q✉❡ f′(x)<0♣❛r❛ t♦❞♦ x > n1✱ ♦✉ s❡❥❛✱

f′(x) =

nX1−1

i=0

1 x−i +

k

X

i=1

log(x−ni)−log(x)

<0, ♣❛r❛ x > n1. ✭✸✳✻✮

❉♦ ▲❡♠❛ ✸✳✶ ✭❆✮✱ s❡❣✉❡ q✉❡

nX1−1

i=0

1

x−i <log(x)−log(x−n1),

♦ q✉❡ ♣r♦✈❛ ♦ r❡s✉❧t❛❞♦✳

Pr♦♣♦s✐çã♦ ✸✳✸✳ ❙❡ r = n✱ ❡♥tã♦ ❛ ❢✉♥çã♦ KP é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡✱ ✐st♦ é✱

KP(N + 1) > KP(N) ♣❛r❛ t♦❞♦ N r✳ P♦rt❛♥t♦✱ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐✲

♠✐❧❤❛♥ç❛ ♣❡r✜❧❛❞❛ é NbP = +

Pr♦✈❛✿

P❛r❛ ♠♦str❛r q✉❡KP é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ❜❛st❛ ♠♦str❛r q✉❡✱ ✉s❛♥❞♦ ❛ ❡①♣r❡ssã♦

✭✸✳✺✮ ❝♦♠ r=n✱ f′(x)>0♣❛r❛ t♦❞♦ x > n✱ ♦✉ s❡❥❛✱

f′(x) =

n−1

X

i=0

1 x−i+

k

X

i=1

log(x−ni)−log(x)

>0, x > n,

♦✉ ❡q✉✐✈❛❧❡♥t❡♠❡♥t❡✱ ❜❛st❛ ♠♦str❛r q✉❡✱ ♣❛r❛k ≥2✱ ✈❛❧❡

k

X

i=1

log(x)−log(x−ni)

<

n1+n2X+···+nk−1

i=0

1

(21)

✶✾

♣❛r❛ q✉❛✐sq✉❡r n1, n2, . . . , nk ∈N∗ ={1,2, . . .} ❡ q✉❛❧q✉❡r r❡❛❧ x > n1+n2+· · ·+nk✳ ❆

r❡❧❛çã♦ ✭✸✳✼✮ s❡rá ♣r♦✈❛❞❛ ♣♦r ✐♥❞✉çã♦ ✜♥✐t❛ s♦❜r❡k✳

Pr✐♠❡✐r❛♠❡♥t❡✱ ♦❜s❡r✈❡♠♦s ♣❡❧♦ ▲❡♠❛ ✸✳✶ ✭❇✮ q✉❡

log(x)−log(x−ni)<

1 2x +

ni

X

j=1

1 x−j −

1

2(x−ni) ✭✸✳✽✮

= 1

2x +

nXi−1

j=1

1 x−j +

1 2(x−ni)

, ✭✸✳✾✮

♣❛r❛ x > ni✱i= 1,2, . . . , k✳

❙✉♣♦♥❞♦ k = 2 ❡✱ s❡♠ ♣❡r❞❛ ❞❡ ❣❡♥❡r❛❧✐❞❛❞❡✱ q✉❡n1 ≥n2✱ s❡❣✉❡ ❞❡ ✭3.8✮ ❡ ✭3.9✮ q✉❡ 2

X

i=1

log(x)−log(x−ni)

< 1

2x +

n1

X

j=1

1 x−j −

1 2(x−n1)

+ 1

2x +

nX2−1

j=1

1 x−j +

1 2(x−n2)

= 1

x +

n1

X

j=1

1 x−j +

nX2−1

j=1

1 x−j +

1 2

1 x−n2

− 1

x−n1

< 1 x +

n1

X

j=1

1 x−j +

nX2−1

j=1

1 x−n1−j

=

n1+Xn2−1

j=0

1 x−j,

x > n1+n2✱ ♦ q✉❡ r❡s✉❧t❛ ✭3.7✮ ❝♦♠ k= 2✳

❆❣♦r❛✱ s✉♣♦♥❤❛♠♦s ♣♦r ✐♥❞✉çã♦ q✉❡ ❛ ❛✜r♠❛çã♦ ✭✸✳✼✮ ✈❛❧❤❛ ♣❛r❛ k =k′k2✳ ❙♦❜

❡st❛ ❤✐♣ót❡s❡✱ ♣r♦✈❛♠♦s q✉❡ ❛ ❛✜r♠❛çã♦ ✭✸✳✼✮ ✈❛❧❡ ♣❛r❛k =k′ + 1

❙❡❥❛♠ n1, . . . , nk′, nk+1 ♣❡rt❡♥❝❡♥t❡s ❛ N∗ ={1,2, . . . ,} ❡ x > n1+· · ·+nk′ +nk′+1✳ ❈♦♠♦x > n1+· · ·+nk′✱ s❡❣✉❡ ❞❛ ❤✐♣ót❡s❡ ❞❡ ✐♥❞✉çã♦✱ q✉❡

k′ X

i=1

log(x)−log(x−ni)

<

n1+n2+X···+nk′−1

j=0

(22)

✷✵

❡ ♣❡❧♦ ▲❡♠❛ ✸✳✶ ✭❇✮ s❡❣✉❡ q✉❡

k′+1 X

i=1

log(x)−log(x−ni)

=

k′ X

i=1

log(x)−log(x−ni)

+ log x−log x−nk′+1

<

n1+n2+X···+nk′−1

j=0

1 x−j +

nXk′+1

j=1

1 x−j +

1 2

1 x −

1 x−nk′+1

<

n1+n2+X···+nk′−1

j=0

1 x−j +

nXk′+1

j=1

1

x−n1− · · · −nk′ + 1

−j

=

n1+n2+X···+nk′+1−1

j=0

1 x−j,

♦ q✉❡ ✐♠♣❧✐❝❛ ✭✸✳✼✮ ♣❛r❛k =k′+ 1

Pr♦♣♦s✐çã♦ ✸✳✹✳ P❛r❛ m < r < n✱ ❞❡✜♥❛♠♦s

x0 = sup

x∈(0,1/r] :

r−1

X

j=1

j

1/x−j < n−r

.

✭❛✮ ❙❡x0 = 1/r✱ ❡♥tã♦ NbP =r❀

✭❜✮ ❙❡ 0 < x0 < 1/r✱ ❡♥tã♦ NbP é ♦ ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❞❡ KP(N) r❡str✐t♦ ❛♦ ❝♦♥❥✉♥t♦ {r, r+ 1, . . . ,[1/x0] + 1}✳

Pr♦✈❛✿

❖❜s❡r✈❡♠♦s q✉❡ KP(N)✱ ❞❛❞❛ ❡♠ ✭✷✳✼✮✱ ♣♦❞❡ s❡r ❡s❝r✐t❛ ❝♦♠♦

KP(N) = 1

Nn−r r−1

Y

i=1

1− i

N

Yk

i=1

1− ni

N

N−ni

, N ≥r.

❈♦♥s✐❞❡r❡♠♦s ❛ ❢✉♥çã♦ f ❞❡✜♥✐❞❛ ♣♦r

(23)

✷✶

♦♥❞❡ ❛s ❢✉♥çõ❡s gr ❡h sã♦ ❞❡✜♥✐❞❛s ♣♦r

gr(x) = xn−r r−1

Y

i=1

(1−ix), 0< x≤1/r,

h(x) =

k

Y

i=1

(1−nix)1/x−ni, 0< x≤1/r,

♦ q✉❡ ✐♠♣❧✐❝❛

f

1 N

=gr

1 N

h

1 N

=KP(N), N ≥r.

❆ ❢✉♥çã♦ gr é ❝♦♥tí♥✉❛✱ ❡str✐t❛♠❡♥t❡ ♣♦s✐t✐✈❛ ♥♦ ✐♥t❡r✈❛❧♦(0,1/r)✱limx↓0gr(x) = 0 ❡

❡①✐st❡ ✉♠ ♣♦♥t♦x0✱ 0< x0 ≤1/r✱ t❛❧ q✉❡ gr′(x)>0 s❡0< x < x0✳ ❈♦♠ ❡❢❡✐t♦✱

g′

r(x) = (n−r)xn−r−1 r−1

Y

i=1

(1−ix) +xn−r r−1

X

j=1

(−j)Y

i6=j

(1−ix)

=xn−r−1

(n−r)

r−1

Y

i=1

(1−ix) +x

r−1

X

j=1

(−j)Y

i6=j

(1−ix)

, 0< x <1/r,

♦ q✉❡ ✐♠♣❧✐❝❛

g′

r(x)>0⇐⇒x r−1

X

j=1

jY

i6=j

(1−ix)<(n−r)

r−1

Y

i=1

(1−ix)⇐⇒

r−1

X

j=1

j

1/x−j < n−r.

❖❜s❡r✈❡♠♦s q✉❡ ❛ ❢✉♥çã♦ q(x) =

rP−1

j=1

j

1/x−j é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ❡♠ (0,1/r] ❡ limx↓0q(x) = 0✳ ❊♥tã♦✱ gr′(x)>0✱ s❡ ❡ s♦♠❡♥t❡✱ 0< x < x0✱ ♦♥❞❡

x0 = sup

x∈(0,1/r] :

r−1

X

j=1

j

1/x−j < n−r

.

◆♦t❡♠♦s q✉❡x0 = 1/r s❡ ❡ s♦♠❡♥t❡ s❡ q(1/r)≤n−r✳

P♦r ♦✉tr♦ ❧❛❞♦✱ ❛ ❢✉♥çã♦ h é ❝♦♥tí♥✉❛✱ ♣♦s✐t✐✈❛ ❡ ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ (0,1/r]❡limx↓0h(x) =e−n✳ P❛r❛ ♠♦str❛r q✉❡h(x)é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ❜❛st❛ ♠♦str❛r q✉❡log(h(x))é ❝r❡s❝❡♥t❡ ❡♠ (0,1/r]✳ ◆❡st❡ s❡♥t✐❞♦✱ ♣❛r❛ 0< x <1/r

log(h(x)) =

k

X

i=1

1/x−ni

(24)

✷✷

♦ q✉❡ ✐♠♣❧✐❝❛

log(h(x))

=

k

X

i=1

− 1

x2 log(1−nix)−

1 x −ni

ni

1−nix

=− 1

x2

Xk

i=1

log(1−nix) +nx

>− 1

x2

Xk

i=1

(−nix) + k

X

i=1

nix

= 0,

♦♥❞❡ ❛ ú❧t✐♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ s❡❣✉❡ ❞❡ e−y >1y ♣❛r❛ y r❡❛❧✳

P❡❧❛s ❝♦♥s✐❞❡r❛çõ❡s ❢❡✐t❛s ❛❝✐♠❛✱ ❝♦♥❝❧✉í♠♦s q✉❡ f(x) é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ♥♦

✐♥t❡r✈❛❧♦ (0, x0)✱ ♣♦✐s f′(x) = gr′(x)h(x) +gr(x)h′(x)>0✱ ♣❛r❛ 0< x < x0✱ ♦ q✉❡ ✐♠♣❧✐❝❛

KP(N + 1) =f

1 N + 1

< f

1 N

=KP(N), ♣❛r❛ N ≥1/x0.

▲♦❣♦✱ s❡ x0 = 1/r✱ ❡♥tã♦ NbP = r✱ ♦ q✉❡ ♣r♦✈❛ ♦ ✐t❡♠ ✭❛✮✳ ❙❡ 0 < x0 < 1/r✱ ❡♥tã♦

b

NP é ♦ ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❞❡KP(N)r❡str✐t♦ ❛♦ ❝♦♥❥✉♥t♦ {r, r+ 1, . . . ,[1/x

0] + 1}✱ ♦ q✉❡

♣r♦✈❛ ♦ ✐t❡♠ ✭❜✮✳

✸✳✶✳✷ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ❈♦♥❞✐❝✐♦♥❛❧

Pr♦♣♦s✐çã♦ ✸✳✺✳ ❖ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❝♦♥❞✐❝✐♦♥❛❧✱ KC(N)✱ ❝♦♥✈❡r❣❡

♣❛r❛0 s❡ r < n ❡ ❝♦♥✈❡r❣❡ ♣❛r❛ 1 s❡ r =n✱ q✉❛♥❞♦ N −→ ∞✳

Pr♦✈❛✿

❆ ♣❛rt✐r ❞❡ ✭✷✳✾✮ s❡❣✉❡ q✉❡

KC(N) = N(N −1)· · ·(N −r+ 1)

k

Y

j=1

1

N(N−1)· · ·(N −nj + 1)

= N

r

Nn

1− 1

N

1− 2

N

· · ·

1−r−1

N

Yk

i=1

1 1− 1

N

1− 2

N

· · · 1− ni−1

N

,

♣❛r❛ N ≥r✳

▲♦❣♦✱ ❞♦ ❢❛t♦

lim

N→∞

Nr

Nn =

(

0, s❡ r < n, 1, s❡ r=n,

(25)

✷✸

◆♦ q✉❡ s❡❣✉❡✱ ✈❛♠♦s ❝♦♥s✐❞❡r❛r ❛ r❛③ã♦

KC(N + 1)

KC(N) =

(N + 1) (N + 1−r)

k

Y

i=1

N + 1−ni

N+ 1

=

1− r

N + 1

−1 Yk

i=1

1− ni

N + 1

, N ≥r. ✭✸✳✶✵✮

Pr♦♣♦s✐çã♦ ✸✳✻✳ ❙❡ r = m✱ ❡♥tã♦ ❛ ❢✉♥çã♦ KC é ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡✱ ✐st♦ é✱

KC(N + 1) < KC(N)✱ ♣❛r❛ t♦❞♦ N r✳ P♦rt❛♥t♦✱ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐✲

♠✐❧❤❛♥ç❛ ❝♦♥❞✐❝✐♦♥❛❧ é NbC =m

Pr♦✈❛✿

❙✉♣♦♥❤❛♠♦s✱ s❡♠ ♣❡r❞❛ ❞❡ ❣❡♥❡r❛❧✐❞❛❞❡✱ q✉❡ m = n1✳ ❊♥tã♦✱ s✉❜st✐t✉✐♥❞♦ r ♣♦r n1 ❡♠ ✭✸✳✶✵✮✱ s❡❣✉❡ q✉❡

KC(N+ 1)

KC(N) =

k

Y

i=2

1− ni

N + 1

<1, ♣❛r❛ t♦❞♦ N ≥r,

♦ q✉❡ ✐♠♣❧✐❝❛ r❡s✉❧t❛❞♦✳

P❛r❛ ♣r♦✈❛r ♦ ♣ró①✐♠♦ r❡s✉❧t❛❞♦ ✉t✐❧✐③❛♠♦s ♦ s❡❣✉✐♥t❡ ❧❡♠❛✳

▲❡♠❛ ✸✳✷✳ P❛r❛ t♦❞♦ ✐♥t❡✐r♦ k ≥ 2 ❡ q✉❛✐sq✉❡r r❡❛✐s x1, . . . , xk t❛✐s q✉❡ 0 < xi < 1✱

1≤i≤k✱ t❡♠♦s

k

Q

i=1

(1−xi)>1− k

P

i=1

xi

Pr♦✈❛✿

P❛r❛ ♣r♦✈❛r ❡st❡ r❡s✉❧t❛❞♦ ✉t✐❧✐③❛♠♦s ✐♥❞✉çã♦ ✜♥✐t❛ s♦❜r❡ k ≥2✳

P❛r❛ k = 2✱ t❡♠♦s q✉❡

(1−x1)(1−x2) = 1−x1−x2+x1x2

>1−x1−x2,

(26)

✷✹

❙✉♣♦♥❤❛♠♦s ❛❣♦r❛ q✉❡ ❛ t❡s❡ ✈❛❧❤❛ ♣❛r❛ k >2✱ ✐st♦ é✱

k

Y

i=1

(1−xi)>1− k

X

i=1

xi.

❊♥tã♦✱

k+1

Y

i=1

(1−xi) = (1−xk+1)

k

Y

i=1

(1−xi)

>(1−xk+1)

1−

k

X

i=1

xi

= 1−

k

X

i=1

xi−xk+1+xk+1

k

X

i=1

xi

>1−

k+1

X

i=1

xi,

♦ q✉❡ ♣r♦✈❛ ♦ r❡s✉❧t❛❞♦✳

Pr♦♣♦s✐çã♦ ✸✳✼✳ ❙❡ r = n✱ ❡♥tã♦ ❛ ❢✉♥çã♦ KC é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡✱ ✐st♦ é✱

KC(N + 1) > KC(N) ♣❛r❛ t♦❞♦ N r✳ P♦rt❛♥t♦✱ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐♠✐✲

❧❤❛♥ç❛ ❝♦♥❞✐❝✐♦♥❛❧ é NbC =

Pr♦✈❛✿

❆ ♣❛rt✐r ❞♦ ▲❡♠❛ ✸✳✷ t❡♠♦s q✉❡

k

Y

i=1

1− ni

N + 1

>1− n

N + 1, N ≥r,

♦ q✉❡ ♣❡r♠✐t❡ ❝♦♥❝❧✉✐r

KC(N + 1)

KC(N) >1, N ≥r.

P❛r❛ ❞❡♠♦♥str❛r ♦ ♣ró①✐♠♦ r❡s✉❧t❛❞♦✱ ✈❛♠♦s ❞❡✜♥✐r ❛ ❢✉♥çã♦

fr(x) = (1−rx)−1 k

Y

i=1

(27)

✷✺

❖❜s❡r✈❡♠♦s q✉❡✱ ❞❡ ❛❝♦r❞♦ ❝♦♠ ✭✸✳✶✵✮✱ fr s❛t✐s❢❛③ ❛ s❡❣✉✐♥t❡ r❡❧❛çã♦

fr

1 N + 1

= K

C(N + 1)

KC(N) , N ≥r. ✭✸✳✶✷✮

P❛r❛ ❡st✉❞❛r ♦ ❝r❡s❝✐♠❡♥t♦ ✭❞❡❝r❡s❝✐♠❡♥t♦✮ ❞❡KC ♥❡❝❡ss✐t❛♠♦s ❞❡t❡r♠✐♥❛r ♦s ✈❛❧♦r❡s

❞❡N ♣❛r❛ ♦s q✉❛✐s ♦❝♦rr❡ KC(N + 1) > KC(N) KC(N + 1) =KC(N) ♦✉ KC(N + 1) <

KC(N)✳ ❆ ♣❛rt✐r ❞❡ ✭✸✳✶✷✮✱ s❡❣✉❡ q✉❡ ♣❛r❛ r❡❛❧✐③❛r ❡st❡ ❡st✉❞♦ é s✉✜❝✐❡♥t❡ ❞❡t❡r♠✐♥❛r

♣❛r❛ q✉❛✐s ✈❛❧♦r❡s ❞❡ x ♥♦ ✐♥t❡r✈❛❧♦ (0,1/r) ♦❝♦rr❡ fr(x) < 1✱ fr(x) = 1 ♦✉ fr(x) > 1✳

◆♦ ❡♥t❛♥t♦✱ ❛♥t❡s ❞❡ ❛♥❛❧✐s❛r fr✱ s❡rá út✐❧ ❝♦♥s✐❞❡r❛r ♦ s❡❣✉✐♥t❡ r❡s✉❧t❛❞♦ ❛ r❡s♣❡✐t♦ ❞❡

❢✉♥çõ❡s ❝ô♥❝❛✈❛s✳

▲❡♠❛ ✸✳✸✳ ❙❡❥❛ f :R −→R ✭R é ♦ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s✮ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛✳ ❙❡f ❢♦r ❝ô♥❝❛✈❛ ♥♦ ✐♥t❡r✈❛❧♦[a, b]✱ f(a)>0 ❡ f(b)<0✱ ❡♥tã♦ ❡①✐st❡ ✉♠ ú♥✐❝♦ ♣♦♥t♦x0✱ a < x0 < b t❛❧ q✉❡ f(x0) = 0✱ f(x) > 0 s❡ a ≤ x < x0 ❡ f(x) < 0 s❡ x0 < x ≤ b✳ ❙♦❜ ❡st❛s ❝♦♥❞✐çõ❡s✱x0 é ú♥✐❝♦✳

Pr♦✈❛✿

P❡❧❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❢✉♥çã♦ f✱ s❡❣✉❡ q✉❡ ❡①✐st❡ x0✱ a < x0 < b✱ t❛❧ q✉❡

f(x0) = 0.

P❡❧❛ ❝♦♥❝❛✈✐❞❛❞❡ ❞❡ f ♥♦ ✐♥t❡r✈❛❧♦ [a, b]✱ t❡♠♦s q✉❡ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ f ❡♥tr❡

q✉❛✐sq✉❡ry1 ❡y2✱ a≤y1 < y2 ≤b✱ ♥ã♦ t❡♠ ♥❡♥❤✉♠ ♣♦♥t♦ ❧♦❝❛❧✐③❛❞♦ ❛❜❛✐①♦ ❞♦ s❡❣♠❡♥t♦ ❞❡ r❡t❛ q✉❡ ✉♥❡ ♦s ♣♦♥t♦s y1, f(y1)

❡ y2, f(y2)

✱ ♦✉ s❡❥❛✱

f y1+α(y2−y1)

≥f(y1) +α

f(y2)−f(y1)

, ✭✸✳✶✸✮

♣❛r❛ t♦❞♦0< α <1✳

▲♦❣♦✱ t♦♠❛♥❞♦ y1 =a ❡y2 =x0 ❡♠ ✭✸✳✶✸✮✱ t❡♠♦s q✉❡

f a+α(x0−a)

≥f(a)−αf(a)

= (1−α)f(a)

>0, ♣❛r❛ t♦❞♦ 0< α <1,

♦ q✉❡ ✐♠♣❧✐❝❛

(28)

✷✻

P❛r❛ x0 < x < b ❞❡✈❡♠♦s t❡r f(x) < 0✳ ❉❡ ❢❛t♦✱ s✉♣♦♥❤❛♠♦s q✉❡ f(x) ≥ 0 ♣❛r❛ ❛❧❣✉♠x0 < x < b✳ ❊♥tã♦✱ s❡❣✉❡ ❞❡ ✭✸✳✶✸✮ ❝♦♠ y1 =a ❡ y2 =x q✉❡

f a+α(x−a)≥f(a) +α[f(x)−f(a)]

= (1−α)f(a) +αf(x)

>0,

♣❛r❛ t♦❞♦0< α <1 ❡ ♣❛r❛ α= x0−a

/ x−a t❡♠♦s f x0

>0✱ ♦ q✉❡ é ❛❜s✉r❞♦✳

▲❡♠❛ ✸✳✹✳ P❛r❛ m < r < n✱ ❡①✐st❡ x0✱ 0 < x0 < 1/r✱ t❛❧ q✉❡ fr(x0) = 1✱ fr(x) < 1 s❡

0< x < x0 ❡ fr(x)>1 s❡ x0 < x <1/r✳

Pr♦✈❛✿

❖❜s❡r✈❡♠♦s q✉❡✱ ❞❡✜♥✐♥❞♦

g(x) =

k

Q

i=1

(1−nix), x∈R ❡

hr(x) = 1−rx, x∈R,

t❡♠♦s

fr(x) =

g(x) hr(x)

, 0≤x <1/r.

❆s ❞❡r✐✈❛❞❛s ❞❡ ♣r✐♠❡✐r❛ ❡ s❡❣✉♥❞❛ ♦r❞❡♠ ❞❡ g sã♦ ❞❛❞❛s ♣♦r

g′(x) =

k

X

i=1

(−ni) k

Y

j=1

j6=i

(1−njx),

g′′(x) =

k

X

i=1

(−ni) k

X

j=1

j6=i

(−nj) k

Y

s=1

s6=i,j

(1−nsx)

=

k

X

i=1

k

X

j=1

j6=i

ninj k

Y

s=1

s6=i,j

(1−nsx)

❡ ❝♦♠♦1−nix >0 ♣❛r❛ 0≤x≤1/r✱ i= 1, . . . , n✱ t❡♠♦s

g′(x)<0, ♣❛r❛ t♦❞♦ 0x1/r,

(29)

✷✼

P♦rt❛♥t♦✱ ❛s ❢✉♥çõ❡s g✱ g′ g′′ sã♦ ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ❡ g t❛♠❜é♠ é ❡str✐t❛♠❡♥t❡

❞❡❝r❡s❝❡♥t❡ ❡ ❝♦♥✈❡①❛ ♥♦ ✐♥t❡r✈❛❧♦ [0,1/r]✱ ❝♦♠ g(0) = 1 ❡ g(1/r) > 0✳ P♦r ♦✉tr♦ ❧❛❞♦✱

❛ ❢✉♥çã♦ hr é ❧✐♥❡❛r ❡ ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ [0,1/r] ❝♦♠ hr(0) = 1 ❡

hr(1/r) = 0✳ ❆ ❋✐❣✉r❛ ✶ ✐❧✉str❛ ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❛s ❢✉♥çõ❡sg ❡hr ♥♦ ✐♥t❡r✈❛❧♦ [0,1/r]

❡✱ ❛ ♣❛rt✐r ❞❛ ♦❜s❡r✈❛çã♦ ❞❡st❡ ❣rá✜❝♦✱ ♣♦❞❡♠♦s ❝♦♥❝❧✉✐r q✉❡ ❞❡✈❡ ❡①✐st✐r ✉♠ ú♥✐❝♦ ♣♦♥t♦

x0✱ 0 < x0 < 1/r t❛❧ q✉❡ g(x0) = hr(x0)✱ g(x) < hr(x) s❡ 0 < x < x0 ❡ g(x) > hr(x) s❡

x0 < x <1/r✱ ♦ q✉❡ ✐♠♣❧✐❝❛ ❛ t❡s❡✳ ❯♠❛ ❥✉st✐✜❝❛t✐✈❛ ❢♦r♠❛❧ ♣❛r❛ ❡st❛s ❝♦♥❝❧✉sõ❡s é ❞❛❞❛ ❛ s❡❣✉✐r✳

❋✐❣✉r❛ ✶✳ ●rá✜❝♦s ❞❛s ❢✉♥çõ❡s g ❡hr ♥♦ ✐♥t❡r✈❛❧♦ [0,1/r]✳

❉❡✜♥❛♠♦s ❛ ❞✐❢❡r❡♥ç❛ dr(x) = hr(x)−g(x)✱ x ∈ R✳ ❊♥tã♦✱ ❛s ❢✉♥çõ❡s dr✱ d′r ❡ d′′r

sã♦ ❝♦♥tí♥✉❛s ♥❛ r❡t❛ R✳ ❆❧é♠ ❞✐ss♦✱ dr é ✉♠❛ ❢✉♥çã♦ ❝ô♥❝❛✈❛ ♥♦ ✐♥t❡r✈❛❧♦ [0,1/r]✱ ♣♦✐s

d′′

r(x) = h′′r(x)−gr′′(x) = −gr′′(x)<0♣❛r❛ t♦❞♦ 0≤x≤1/r✳

◆♦t❡♠♦s t❛♠❜é♠ q✉❡

d′r(0) =h′r(0)−g′(0) =−r+

k

X

i=1

ni >0,

♦ q✉❡ ✐♠♣❧✐❝❛✱ ♣❡❧❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❡ d′

(30)

✷✽

t♦❞♦0≤x≤δ✳ ❈♦♠♦dr(0) = 0✱ s❡❣✉❡ ♣❡❧♦ ❚❡♦r❡♠❛ ❞♦ ❱❛❧♦r ▼é❞✐♦ q✉❡

dr(x)>0, ♣❛r❛ t♦❞♦0< x≤δ. ✭✸✳✶✹✮

❖❜s❡r✈❡♠♦s t❛♠❜é♠ q✉❡ dr(δ) > 0 ❡ dr(1/r) = hr(1/r)−g(1/r) = −g(1/r) < 0✳

▲♦❣♦✱ ♣❡❧♦ ▲❡♠❛ ✸✳✸ ❛♣❧✐❝❛❞♦ à ❢✉♥çã♦ dr ♥♦ ✐♥t❡r✈❛❧♦ [δ,1/r] ❡ ♣♦r ✭✸✳✶✹✮✱ s❡❣✉❡ q✉❡

❡①✐st❡ 0< x0 <1/r t❛❧ q✉❡

      

dr(x) >0, s❡0< x < x0,

dr(x) = 0, s❡x=x0,

dr(x) <0, s❡x0 < x≤1/r,

♦ q✉❡ ✐♠♣❧✐❝❛

     

g(x)< hr(x), s❡0< x < x0,

g(x) =hr(x), s❡x=x0,

g(x)> hr(x), s❡x0 < x < 1/r,

❡ ♦ r❡s✉❧t❛❞♦ s❡❣✉❡✳

P♦rt❛♥t♦✱ s❡❣✉❡ ❞♦ ▲❡♠❛ ✸✳✹ q✉❡✱ ♣❛r❛ m < r < n✱ ♣♦❞❡♠♦s ❞❡✜♥✐r δr ❝♦♠♦ s❡♥❞♦ ♦

♠❡♥♦r ♥ú♠❡r♦ ✐♥t❡✐r♦ ♣♦s✐t✐✈♦t t❛❧ q✉❡

fr

1 r+t

≤1, ✭✸✳✶✺✮

♦✉ s❡❥❛✱

δr = min

t∈N∗ :

k

Y

i=1

(r+t−ni)≤t(r+t)k−1

.

❆ ♣r♦♣♦s✐çã♦ ❛ s❡❣✉✐r ❝❛r❛❝t❡r✐③❛ ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❛ ❢✉♥çã♦ KC q✉❛♥t♦ ❛♦ ❝r❡s❝✐✲

♠❡♥t♦ ✭❞❡❝r❡s❝✐♠❡♥t♦✮ ❡ ❢♦r♥❡❝❡ ✉♠❛ ❡①♣r❡ssã♦ ♣❛r❛ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐♠✐✲ ❧❤❛♥ç❛✱ ♥♦ ❝❛s♦ ❡♠ q✉❡m < r < n✳

Pr♦♣♦s✐çã♦ ✸✳✽✳ P❛r❛ m < r < n✱ t❡♠♦s q✉❡

✭❛✮ s❡ Qk

i=1

(r+δr−ni)< δr(r+δr)k−1✱ ❡♥tã♦ KC(N + 1) < KC(N) ♣❛r❛ N ≥r+δr−1

❡ KC(N + 1) > KC(N) ♣❛r❛ r N < r+δ

r−1✳ P♦rt❛♥t♦✱ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛

✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❝♦♥❞✐❝✐♦♥❛❧ é ú♥✐❝❛ ❡ ❞❛❞❛ ♣♦rNbC =r+δ

r−1❀

✭❜✮ s❡ Qk

i=1

(r +δr −ni) = δr(r +δr)k−1✱ ❡♥tã♦ KC(N + 1) < KC(N) ♣❛r❛ N ≥ r +δr✱

KC(N + 1)> KC(N)♣❛r❛ r N < r+δ

(31)

✷✾

❝❛s♦✱ ❤á ❞✉❛s ❡st✐♠❛t✐✈❛s ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ❝♦♥❞✐❝✐♦♥❛❧ NbC

1 =r+δr−1 ❡

b NC

2 =Nb1C+ 1✳ Pr♦✈❛✿

✭❛✮

❙❡ Qk

i=1

(r+δr−ni) < δr(r+δr)k−1 t❡♠♦s✱ ♣❡❧❛ ❞❡✜♥✐çã♦ ❞❡ fr✱ ❞❛❞❛ ❡♠ ✭✸✳✶✶✮ q✉❡

fr 1/(r+δr)

<1✳ P♦rt❛♥t♦✱ s❡❣✉❡ ❞♦ ▲❡♠❛ ✸✳✹ ❡ ❞❛ ❞❡✜♥✐çã♦ ❞❡ δr ❞❛❞❛ ❡♠ ✭✸✳✶✺✮ q✉❡

fr

1 r+t

<1, s❡t ≥δr,

fr

1 r+t

>1, s❡1≤t < δr,

♦ q✉❡ ✐♠♣❧✐❝❛✱ ♣❡❧❛ r❡❧❛çã♦ ✭✸✳✶✷✮ q✉❡

KC(N + 1)

KC(N) <1, s❡N ≥r+δr−1,

KC(N + 1)

KC(N) >1, s❡r ≤N < r+δr−1,

♦ q✉❡ ♣r♦✈❛ ♦ r❡s✉❧t❛❞♦✳

✭❜✮

❙❡ Qk

i=1

(r+δr−ni) = δr(r+δr)k−1 t❡♠♦s✱ ♣❡❧❛ ❞❡✜♥✐çã♦ ❞❡ fr ❞❛❞❛ ❡♠ ✭✸✳✶✶✮✱ q✉❡

fr(1/(r+δr)) = 1✳ ▲♦❣♦✱ ♣❡❧❛ r❡❧❛çã♦ ✭✸✳✶✷✮ s❡❣✉❡

KC(r+δ

r−1) =KC(r+δr).

❡ ♣❡❧♦ ▲❡♠❛ ✭✸✳✹✮ ❡ ❞❛ ❞❡✜♥✐çã♦ ❞❡δr✱ ❞❛❞❛ ❡♠ ✭✸✳✶✺✮✱ s❡❣✉❡

fr

1 r+t

<1, s❡ t≥δr+ 1,

fr

1 r+t

>1, s❡ 1≤t < δr,

♦ q✉❡ ✐♠♣❧✐❝❛✱ ♣❡❧❛ r❡❧❛çã♦ ✭✸✳✶✷✮✱ q✉❡

KC(N + 1)

KC(N) <1, s❡ N ≥r+δr,

KC(N + 1)

(32)

✸✵

♦✉ s❡❥❛✱ r+δr−1 ❡r+δr ♠❛①✐♠✐③❛♠ KC✳

✸✳✶✳✸ ❋✉♥çã♦ ❞❡ ❱❡r♦ss✐♠✐❧❤❛♥ç❛ ■♥t❡❣r❛❞❛ ❯♥✐❢♦r♠❡

Pr♦♣♦s✐çã♦ ✸✳✾✳ ❖ ♥ú❝❧❡♦ ❞❛ ❢✉♥çã♦ ❞❡ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✐♥t❡❣r❛❞❛ ✉♥✐❢♦r♠❡✱ KU(N)

❝♦♥✈❡r❣❡ ♣❛r❛0 q✉❛♥❞♦ N −→ ∞✳

Pr♦✈❛✿

❆ ♣❛rt✐r ❞❡ ✭✷✳✶✵✮ t❡♠♦s

KU(N) = N! (N −r)!

k

Y

i=1

(N −ni)!

(N + 1)!

=N(N −1)· · ·(N −r+ 1)

k

Y

i=1

1

(N + 1)N(N −1)· · ·(N −ni+ 1)

= N

r

(N + 1)k

1− 1

N

· · ·

1− r−1

N

Yk

i=1

1 Nni 1− 1

N

· · · 1− ni−1

N

= N

r

Nn(N+ 1)k

1− 1

N

· · ·

1−r−1

N

Yk

i=1

1 1− 1

N

· · · 1− ni−1

N

.

▲♦❣♦✱ ❞❡ ✭✸✳✶✮ ❡ ❞♦ ❢❛t♦

lim

N→∞

Nr

Nn(N+ 1)k = 0

s❡❣✉❡ ♦ r❡s✉❧t❛❞♦✳

◆♦ q✉❡ s❡❣✉❡ ❝♦♥s✐❞❡r❡♠♦s ❛ r❛③ã♦

KU(N + 1)

KU(N) =

(N + 1) (N + 1−r)(N + 2)k

k

Y

i=1

(N + 1−ni)

=

N + 1 N + 1−r

N + 1 N + 2

k Yk

i=1

N + 1−ni

N + 1

=

1− r

N + 1

−1

1 + 1

N + 1

−k Yk

i=1

1− ni

N + 1

, N ≥r. ✭✸✳✶✻✮

Pr♦♣♦s✐çã♦ ✸✳✶✵✳ ❙❡ r=m✱ ❡♥tã♦ KU é ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡✱ ✐st♦ é✱ KU(N+ 1)<

KU(N) ♣❛r❛ t♦❞♦ N r✳ P♦rt❛♥t♦✱ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ♠á①✐♠❛ ✈❡r♦ss✐♠✐❧❤❛♥ç❛ ✐♥t❡❣r❛❞❛

Referências

Documentos relacionados

Consiste num tema ou um conjunto de questões propostos pela docente e que deverão ser desenvolvidos individualmente por cada um dos alunos, num texto com

Relações jurídicas relativas ao direito coletivo de trabalho. Princípios do direito processual do trabalho no

Depois de extrair as características de um grupo de fluxos de tráfego com o processo de cascata inversa, utilizam-se, essas características como entradas de um

2 xícaras de farinha de trigo 1 xícara de fubá 2 xícaras de açúcar 4 ovos 2 colheres de manteiga 1 xícara de leite 4 colheres de chá de fermento em pó Erva doce a gosto.. Bolo

Como as estacas herbáceas com dois nós são o material vegetativo mais usado pelos produtores para propa- gação de pimenteira-do-reino, o presente trabalho teve como objetivo

Serão incluídos neste protocolo de tratamento os pacientes com níveis de FAL igual ou maior do que 10 mg/dl (600 micromol/l) em dieta normal1,16 e todos os que apresentarem níveis

O comportamento horário dos fluxos de energia tanto para estação seca quanto para estação chuvosa em dia de ocorrência de chuva apresentou uma diminuição do saldo de radiação

- Senhores pais e/ou responsáveis, a aquisição de materiais de boa qualidade permite maior durabilidade dos mesmos e qualidade nos trabalhos desenvolvidos pelos alunos.. - Os