• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número3"

Copied!
8
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Phytochemical

study

and

anti-inflammatory

and

antioxidant

potential

of

Spondias

mombin

leaves

Bárbara

Cabral

a

,

Emerson

M.S.

Siqueira

a

,

Mariana

A.O.

Bitencourt

b

,

Maíra

C.J.S.

Lima

b

,

Ana

K.

Lima

c

,

Caroline

F.

Ortmann

d

,

Vitor

C.

Chaves

d

,

Matheus

F.

Fernandes-Pedrosa

b

,

Hugo

A.O.

Rocha

c

,

Katia

C.

Scortecci

c

,

Flávio

H.

Reginatto

d

,

Raquel

B.

Giordani

a

,

Silvana

M.

Zucolotto

a,∗ aPharmacognosyLaboratory,DepartmentofPharmacy,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil

bTechnologyandPharmaceuticalBiotechnologyLaboratory,ProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil cNaturalPolymersBiotechnologyLaboratory,DepartmentofBiochemistry,CentrodeBiociências,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil

dPharmacognosyLaboratory,ProgramadePós-graduac¸ãoemFarmácia,CentrodeCiênciasdaSaúde,UniversidadeFederaldeSantaCatarina,CampusUniversitárioTrindade, Florianópolis,SC,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20October2015

Accepted12January2016

Availableonline15March2016

Keywords: Spondiasmombin

Chemicalmarker

Anti-inflammatoryandantioxidant

a

b

s

t

r

a

c

t

SpondiasmombinL.,Anacardiaceae,isaplantnativeofBrazil,whereitisknownas“cajá”.Inorderto

findapotentialapplicationforthisnativespecies,theanti-inflammatoryandantioxidanteffectswere

investigated.Theanti-inflammatoryactivitywasevaluatedusingtheinvivomodelcarrageenan-induced

peritonitisinmice.Theinvitroantioxidantpotentialaswellthecytotoxicityagainst3T3fibroblastcells

alsowereevaluated.ThroughHighPerformanceLiquidChromatography-diodearraydetectoranalysis,

ananalyticmethodwasdevelopedandvalidated.Itallowedtheidentificationandquantificationof

ellagicacidandchlorogenicacidinhydroethanolicextractofS.mombinleaves.Thisextractshowed

anti-inflammatoryeffectat100,200,300and500mg/kg,however,theethylacetatefraction,at200mg/kg,

showedthehighlightedresults.Ellagicacidandchlorogenicacid(2.5,5and10mg/kg)alsoinhibitedthe

leukocytemigrationtothesiteofinflammation.Theextract,fractionsandcompoundsshowedsignificant

antioxidantpotentialwhenevaluatedindifferentassays.Theresultsshowninthisworksuggestthe

anti-inflammatorypotentialoftheleafextractofS.mombimonperitonitismodelinducedbycarrageenan,

itwasalsoobservedantioxidantpropertiesassociatedwithanabsenceofcytotoxicityincellculture.

Furtherinvivostudiesarerequiredtoconfirmtheanti-inflammatoriesactionofS.mombinanditspossible

anti-inflammatorymechanismsofaction.

©2016PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeFarmacognosia.

Introduction

Theethnopharmacologyassociatedwiththechemicalstudyhas becomeanimportanttoolinbioprospecting.Studieshave associ-atedinformationonthetraditionaluseofmedicinalplantswith phytochemical and pharmacological studies, searching for new drugsandherbalmedicines(Medeirosetal.,2013).Brazilhasoneof theworld’shighestlevelsofbiodiversity,includingseveralplantsof economicinterest(Albuquerqueetal.,2007).TheNorthand North-eastregionsarethosewheremostoftheexistingbiodiversityis concentrated,whichallowsaccesstonumerouskindsofplantsand fruitspecie(Mattiettoetal.,2010).

Correspondingauthor.

E-mail:silvanazucolotto@ufrnet.br(S.M.Zucolotto).

SpondiasmombinL.isaplantbelongingtotheAnacardiaceae family.ThisspeciesisnativeofBrazilandtheirfruitsarecommonly knownas“cajá”.Itoccurswidespreadthroughtropicalregionsin America,AfricaandAsia.InBrazil,itismainlyfoundintheNorth andNortheast(Soares,2005).Thisnativefruithaspotentialuse forprocessingtomakejelly,juice,jamsandicecreammainlyin northeasternBrazilandtheirleavesareusedinfolkmedicinefor thetreatmentofseveraltopicandsystemicdiseaseslike inflam-mationofthemouth and throatand incases ofprostatitis and herpeslabialis(LorenziandMatos,2008).Despitethis therapeu-ticapproach,thechemicalstudiesarescarceandsomephenolic acids,flavonoids,tanninsandtriterpeneshavebeenisolatedfrom

S. mombinleaves so far(Corthout et al., 1991; Fred-Jaiyesimia etal.,2009).Asurveyoftherelevantliteraturerevealedthatthe leavesof S.mombinexhibit antimicrobial,leishmanicide, antivi-ral,antiedematogenic, hypoglycemicand antioxidantproperties

(Corthoutetal.,1994;Fred-Jaiyesimiaetal.,2009;Nworuetal.,

http://dx.doi.org/10.1016/j.bjp.2016.02.002

(2)

2011;Silvaetal.,2011,2012).Regardingtheanti-inflammatory effectonlyonereportsupportitspopularuse(Nworuetal.,2011). Thechemicalcharacterizationoftheleafextractfromthisspecies aswellastheidentificationofchemicalmarkersthatcouldbe use-fulinextractstandardizationforapplyingitinherbaldrugswasnot developed.Inaddition,itisimportanttohighlightthattheextract standardizationenableustoguaranteereliableresultsregarding biologicalactivities.

Takentogether,theaimsofthisstudywere:(i)todevelopan analyticmethodologybyHPLC-DADin ordertoquantify chemi-calmarkersinextractfromS.mombinleavesand(ii)toevaluate theiranti-inflammatorypotentialinvivomodel,(iii)toinvestigate theantioxidantpotentialsincetheoxidativestressisan impor-tantaspectassociatedtoinflammationand(iv)andtoevaluatethe cytotoxicityagainst3T3cells.

Materialsandmethods

Phytochemicalprocedures

Plantmaterialandextraction

LeavesofSpondiasmombinL.,Anacardiaceae,werecollectedin DomMarcolinoDantas,RioGrandedoNorte,Brazil(SS-RN◦2814′′

W35◦2737′′),onNovember2011.Theplantmaterialwasidentified

byAlandeAraújoRoqueandavoucherspecimenwasdeposited atHerbariumofFederalUniversityofRioGrandedoNorte,Brazil, underthereferencenumber12252.S.mombinleavesweredriedat roomtemperatureandtrituratedmechanically.Theextractfrom

S.mombinleaveswaspreparedbymacerationinethanol:water (70:30,v/v),forsevendays,filteredandlaterlyophilized.Itwas obtainedthehidroethanolicextractfromS.mombinleaves(HE).

InordertocharacterizetheactivecompoundsfromHE,aportion oftheextractwasresuspendedinwaterandsubjectedto liquid-liquidpartitionwithsolventsofincreasingpolarity:hexane(Hex) (3×300ml),dichloromethane(DCM) (3× 300ml),ethylacetate (EtOAc)(3×300ml)andbutanol(ButOH)(3×300ml).Five frac-tionswereobtained(Hex,DCM,EtOAc,ButOH)andanaqueous residualfraction(ARF).Allfractionsweredriedunderreduced pres-sureat45◦C.

Chromatographicprocedures

Theanalyticalstandardswerepurchasedfrom:chlorogenicacid hemihydrate(Sigma–Aldrich®,

≥98%),ellagicacid(Roth®,

≥98%) andisoquercitrin(HwiAnalytikGmbH®

,94.16%).Thesolventsused inextractpreparationwereAnalyticalGradeandinHPLCanalysis wereusedHPLCgradesolvents.Thewaterwaspurifiedwitha Milli-Qsystem(Millipore®,Bedford, USA).All solutionsprepared for

HPLCanalysiswerefilteredthrougha0.45mmmembranebefore use.

Quantitativehigh-performanceliquidchromatographyanalysis

Thequantificationofthephenoliccompoundswasperformedin ahighperformanceliquidchromatography(HPLC)usingaPerkin Elmer200seriesequippedwitha diodearraydetector(DAD),a quaternarypump,adegasseronlineandanautosampler.AllHPLC datawereprocessedusingtheTotalChrom®

Workstationsoftware. Chromatographicanalyzeswereperformedusingareversedphase column(Phenomenex®)C-18(4.6mm

×250mm,5␮m).An elu-tionsystemwithacetonitrile100%(solventA)andaceticacid1%, adjustedtopH3(solventB)atthefollowgradientflowwasused: 0–30min,alinearchangefromA:B(13:87,v/v)toA:B(15:85,v/v); 30–40min,anisocraticelutionwithA:B(15:85,v/v);40–45min, alinearvariationuptoA:B(20:80,v/v).Theflowratewaskept constantat1ml/min,andthechromatogramswererecordedat 340nm,whereastheUVspectraweremonitoredatwavelength of450–200nm.Thepeakswerecharacterizedbycomparisonof

theirretentiontimesandUVspectrawiththereferencestandards andbyaco-injection(extract+referencestandard).Thereference standardsolutions werepreparedinH2O:methanol(3:2,v/v)at

differentconcentrations: chlorogenicacid– 10, 20,30, 40, and 50␮g/ml;ellagicacid–20,30,40,50,and60␮g/ml.TheHEfromS. mombinleaveswasanalyzedat2.5mg/ml.Thereferencestandards wereanalyzedintriplicateandtheaveragepeakareasmeasured.

Validationofanalyticalprocedure

Thevalidationofanalyticalprocedureswasperformedin accor-dancewithICHguidelines(ICH,2005).Thevalidatedparameters werespecificity, linearity,accuracy,precision(repeatabilityand intermediateprecision),limitofquantification(LOQ)andlimitof detection(LOD).

Pharmacologicalassays

Anti-inflammatoryactivity

Animals. Experiments werecarriedout usingmale BALB/cmice (6–8weeksold).Allmicewerehoused, 5–6percageata room temperatureof22±2◦C,anda12h:12hlight/darkcycle,withad libitumaccesstowaterandfood.Groupsofsixanimalswereusedin eachtestgroupandcontrolanimalsreceivedsalineonly.Allinvivo

experimentswereapprovedbytheethicalcommitteeofthe Fed-eralUniversityofRio Grandedo Norte,Brazil(protocolnumber 013/2013)andwerecarriedoutaccordingtothecurrentguidelines forlaboratoryanimalcare.Eachanimalwasusedonlyonce.

Carrageenan-inducedperitonitis. Theinflammationwasinducedin micesbyadministrationof1%carrageenan,intraperitoneally(i.p.). The animals(N=5)werei.p.pretreated with(i)vehicle(saline, 0.1ml/10g)or(ii)dexamethasone(0.5mg/kg)or(iii)HEfromS. mombinleaves(100,200,300or500mg/kg)or(iv)fractionsDCM, EtOAc,ButOHand ARF (200mg/kg) or(v) chlorogenicacidand ellagicacid(2.5,5or10mg/kg).Thirtyminutesaftertreatmentwith thesamples,theanimalsreceivedaninjectionintotheperitoneal cavityof50␮lof1%carrageenan.After4h,theanimalswere sac-rificedwithanoverdoseofthiopentalat80mg/kg,i.p.,followedby cervicaldislocation.Peritonealexudateswerecollectedwith2ml ofice-coldPBSforabdominallaparoscopy.Theexudateswere cen-trifugedat250×gfor5minat4◦C.Thecellpelletwasdiluted1:10

inTürksolutionandthetotalleukocytenumberwasdetermined inaNeubauerchamber.ThesedosesofHEarebasedonprevious workpublishedinliterature(Nworuetal.,2011)andpilotstudiesin ourlaboratory(datanotshown).Chlorogenicacid(Sigma–Aldrich®,

≥98%)andellagicacid(Roth®,98%)usedinexperimentinvivoand invitromodelwerepurchasedcommercially.

Antioxidantactivity. Theantioxidantactivitywasperformedwith HEfromS.mombinleaves,DCM,AcOEt,ButOHandARFfractions andthecompoundsellagicacidandchlorogenicacid. TheDPPH radicalscavenging,Scavengerofsuperoxideion(O2−),Reducing

powerandSequestrationofthehydroxylradical(OH−)activitywas

evaluated.Theextractsandfractionsweretestedat60,125,250and 500␮g/mlandthecompoundsat5,15,30and60␮g/ml.

Viabilitycell. The3T3cellsweregrownin75cm2flaskswith9mlof

mediumDulbeccomodifiedEagleculturemedium(DMEM).Then, fortheassaycells,theyweretransferredto96wellplatesandit wasgrownat5×103cell/well.Thesecellsweregrownovernight

inordertoattachin200␮lmediumat37◦Cand5%CO

2.Afterthat,

(3)

20

15

10

5

0

0

HO2C

OH OH

OH

HO

HO

OH

OH HO

HO OH

OH OH

OH OH CH2OH

OH

1

2

3

HO

O O O

O

O

O O

O O

O 5

1

2

3

10 15 20

Time (min)

25 30 35 40

Absorbance (mA

U)

Fig.1. Chromatogramat340nmobtainedbyHPLC-DADofhydroethanolicextractfromSpondiasmombinleaves.Chlorogenicacid(1),ellagicacid(2)andisoquercetrin(3).

wereremovedand cells were washedwith200␮lPBS(twice), afterthatitwasadded100␮loffreshmedium.Then,itwasadded 100␮lofMTTreagent(5mg/ml)(Sigma,M5655)dissolvedinfresh DMEM.Thecellswerethenincubatedfor4hat37◦Cand5%CO

2.

Tosolubilizetheformazancrystalsitwasused100␮lofethanol whichwasaddedtoeachwellandafter20mintheabsorbancewas readat570nmusingtheELISAreader(Biotec␮Quant).Asa con-trol,untreatednormalcellswereculturedonlyinthepresenceof DMEM.Thecellproliferation(%)wasexpressedas:[(SampleAbs 570nm×100)/ControlAbs570nm].

Statisticalanalysis

Resultswereexpressedas means±standard device.Statistic analysiswasconductedbyStudent’s t-test or one-wayanalysis ofvariance(ANOVA)followedbytheTukeyposthoctest. Statis-ticalsignificancewasconsideredof95%(p<0.05).Thestatistical programINSTAT,Graph-Pad,SanDiego,CA,wasused.

Resultsanddiscussion

PhytochemicalanalysisofS.mombin

AnalysisbyHPLC-DADthoughUVanalysisofeachpeakshowed thattheHEofS.mombinleavespresentsalargeamountofphenolic andflavonoidderivatives.ThequalitativeanalysisofHEenabled ustoindicatetheoccurrenceofthreephenolicmajorcompounds: chlorogenicacid,ellagicacidandisoquercetinandonenoidentified peakatUV340nm,bytheretentiontime,theUVspectraandby co-injectionoftheHEandreferencestandard(Fig.1).

Intheliteraturethereisnoreportabouttheidentificationof chlorogenicacidandisoquercetininS.mombinspecies,however, ellagicacidhasalreadybeenidentifiedinmethanolextractfrom theleaves(Silvaetal.,2012).Duetothis,ananalyticalmethodology wasdevelopedandvalidatedforthequantificationofchlorogenic acidandellagicacidbyHPLCforHEfromS.mombinleaves.Since thepresenceofflavonoidsandphenolicacidsinspeciesofSpondias

Table1

PhenolicacidscontentinhydroethanolicextractfromSpondiasmombinleaves.a

Species Compound Content/gextract

Spondiasmombin

leaves(2.5mg/ml)

Chlorogenicacid (Rt=8.28min)

12.0mg/gextract

Ellagicacid (Rt=34.21min)

19.4mg/gextract

aExpressedasmg/gofextract±SD(n=3)/Rt=retentiontime.

genusisdescribedinliterature(Corthoutetal.,1992;Satpathyetal.,

2011;Silvaetal.,2012;Engelsetal.,2012),thesecompoundscould

behighlightedaschemicalmarkersforthisgenus.Theflavonoid isoquercetincannotbequantifiedin HEduetounavailabilityof suitableamountoftheirreferencestandard. Themethod devel-opedshowedachromatogramoftheHEfromS.mombinleaves withsymmetricalpeaks(tailingfactor:0.9and0.75,chlorogenic acidandellagicacid,respectively)andappropriatedresolution(2.0 tobothcompounds).

Standard solutionsof chlorogenicacidand ellagicacidwere prepared,ataconcentrationrangefrom10to60␮g/ml,andthe chromatographic method showeda suitable linear relationship (r2>0.995)forbothstandardsolutions.Thisenabledustomeasure

thecontentofthechlorogenicacidandellagicacidinHE(Table1). Thelimitofquantification(LOQ)andthelimitofdetection(LOD) weredefinedbyrelative standarddeviation(RSD>5%)andbya signal:noiseratioof3:1respectively(Table2).

(4)

Table2

Calibration,LODandLOQdataofphenolicacidstandards.

Compound Linearityrange(␮g/ml) Calibrationequationa Correlationfactor(r2) LODb(g/ml) LOQb(g/ml)

Chlorogenicacid 10–50 y=9727.8x−6129 0.9936 0.625 5.0

Ellagicacid 20–60 y=13976x−28,598 0.9901 1.25 5.0

aSixdatapoint(n=3).

bLOD=limitofdetection;LOQ=limitofquantification.

Table3

Repeatability,intermediateprecisionandaccuracydataofphenolicacidsstandards.

Compound Repeatability Intermediateprecision Recoverya

Concentration(␮g/ml) R.S.D.(%) Concentration(␮g/ml) R.S.D.(%) Mean% R.S.D.(%)

Chlorogenicacid 10 1.0 10 1.0 110 1.0

30 2.4 30 0.3

50 0.4 50 1.0

Ellagicacid 20 0.8 20 2.5 102 0.8

30 1.0 30 1.2

50 4.5 50 0.8

aRecoverywasdeterminedbyinjectionofspikedsamples,intriplicate,withreferencestandard.

theliterature(CassandDegani,2001;ICH,2005).Concerning accu-racy,animportantrecoverywasobservedforthestandardsinboth extracts,which wasdeterminedbyspikingsamples(2.5mg/ml) withthestandardsolutionsofellagicacid(50␮g/ml)and chloro-genicacid(10␮g/ml)(1:1,v/v)(Table3).

The quantification of individual compounds was performed using an analytical regression curve (r2>0.991). The standards

wereanalyzedintriplicateandtheaverageofthemeasuredpeak areas.Afterobtainingtheequationofthestraightthecompounds werequantifiedaccordingtotheareaunderthecurve.Itwasfound 19.4mg/gofellagicacidand12mg/gofchlorogenicacidintheHEof

S.mombinleaves(Table1).Apreviousreportaboutquantification ofellagicacidinS.mombinshowedacontentof41.56±0.01mg/g inthemethanol:water(80:20,v/v)leavesextract(Silvaetal.,2012) buttheenvironmentalconditionswerenotdescribed.This differ-encecanbeattributedtothesolventusedintheextractionprocess aswellastotheedafoclimaticfeaturesinBraziliannortheast,where phenolicderivativesareparticularlysusceptibleto environmen-talchangesinplantingthebehavior(Araújoetal.,2012).Another possibilityisthebiosynthesisofsecondarymetabolites,sincethe biogenesisofphenolicacids,flavonoidsandtanninsareverysimilar andhavethesameprecursors,whichcangenerateacompensation mechanismfortheproductionofaparticularsecondarymetabolite. Inthisworktheharvestofplantmaterialwascarriedoutin sum-merandinrainforest,thesolventusedforextractionwascomposed ofethanol:water(70:30,v/v).Therearenoreportsintheliterature aboutthequantificationofchlorogenicacidinthespeciesS. mom-binthusithighlightsourresultssinceitwasquantifiedas12mg metabolite/gextract.

Assessmentofanti-inflammatoryactivity

PreviousstudieswithspeciesofSpondiasgenusshowed anti-inflammatoryactivity.AccordingtoliteraturestudieswithSpondias mangiferausingbutanol andethyl acetate fractionsobtainedof ethanolicextractadministeredorallyatdoses75,150,300mg/kg b.w.showedasignificantreduction inpawvolumewhen com-paredwiththerespectivecontrolgroupchallengedbycarrageenan

(Sachanetal.,2011).Itwasalsonotedthestudyofethylacetate

extractofSpondiaspinnatahadanti-inflammatoryeffectsatdoses of 200, 400mg/kg, b.w. (p<0.001) in reducing rat paw edema inducedbycarrageenanassay(Raoetal.,2009).

Additionallywasreportedtheanti-inflammatoryactivityofS. mombinleavesinpawedemamodel(Nworuetal.,2011).Thestudy showedthattreatmentwiththemethanolextractfromS.mombin

leavesat 100, 200and 400mg/kg inhibitedby a dose depend-entwaythepawedemainducedbycarrageenanbesidescausing reductionoftheLPS-inducedbyTNF-␣andinproductionofnitric oxide(Nworuetal.,2011).Basedonthesestudiesandinpopular useofS.mombinininflammatoryprocesses,ourstudyevaluated theinvivoanti-inflammatoryextractpotentialbyacuteperitonitis modelusingcarrageenan-induceddexamethasone(5mg/kg,i.p.)as referencecompound.

Thisstudyaimedtotesttheextracttoanotherinflammation modelinordertoassessotherinflammatoryparameterssuchas leukocytemigration.Thecarrageenan-inducedperitonitisisawell characterizedexperimentalmodelofacuteinflammationwidely usedtotestnewanti-inflammatorytherapies,itenablethe quan-tificationandthecorrelationofcellularmigrationoninflammatory exudate(SedgwickandLees,1986;Paulinoetal.,2008;Bitencourt

etal.,2014;Limaetal.,2014).

Carrageenanisanindirectphlogisticagentthat inrats’ peri-toneum induces neutrophil migration which is dependent of residentmacrophageactivation(Souzaetal.,1988).Furthermore, studiesshowed thatcarrageenan injectioninto theperitoneum ofratsinducestheexpressionofnitricoxidesynthaseand COX-2resultingsoinliberationofalargeamountofnitricoxideand prostaglandins(Tomlinsonetal.,1994;Hatanakaetal.,1999).We havefoundthatintraperitonealinjectionofcarrageenanwasable toinduceaninflammatoryreactionwhichisrevealedbyhighcell migrationtotheperitonealcavity.

Ourresultsdemonstratedthattheanti-inflammatorypotential of HE of theS.mombin leavesat100, 200, 300 and 500mg/kg reduced thenumber ofleukocytesinfluxtoperitonealcavityof treated animals. In comparison with thecontrol group treated onlywithcarrageenan,theHEat300and500mg/kgshowedthe mostsignificanteffectwithaninhibitionofleukocytemigration of 51.75% and55.54%, respectively (Fig. 2A).Thesigns ofacute inflammationarevasodilatation,edemaandleukocyteinfiltration

(SherwoodandToliver-Kinsky,2004).Thisstudyshowedthatthe

extractofS.mombincouldactinoneoftheinflammation mech-anisminhibitingsignificantly theleukocytemigration tosite of inflammation.

(5)

500 300 200 100 Dexa Sal

0 10 20 30

*** ***

***

* *

Carrageenan 1% (1 mg/ml)

HE Spondias mombin (mg/kg)

A

Peritoneal leukocytes (x 10

6/ml)

Peritoneal leukocytes (x 10

6/ml)

Peritoneal leukocytes (x 10

6/ml)

ARF ButOH EtOAc DCM Dexa Sal

0 10 20 30

Carrageenan 1% (1 mg/ml)

***

*** *** ***

***

B

10 5 2.5 10 5 2.5 Dexa Sal

0 10 20 30

Carrageenan 1% (1 mg/ml) Elargic acid

(mg/kg)

Chlorogenic acid (mg/kg)

***

*** ***

C

Fig.2. EffectofhydroethanolicextractoftheSpondiasmombinleavesonleukocytemigrationinducedbycarrageenaninanacuteperitonitismodel.aHEtestedat

concen-trationsof100,200,300and500mg/kg,i.p.bFractions:DCM:dichloromethane,EtOAc:ethylacetate,ButOH:n-butanolandARF:aqueousresidualfractionat200mg/kg,

i.p.cellagicacid,chlorogenicacidtestedatconcentrationsof2.5,5and10mg/kg.Sal:saline.Dexa:dexamethasone(0.5mg/kg,i.p.).Dataareexpressedasmean±standard

deviation.*p<0.05,***p<0.001versusthepositivecontrolgroup(treatedwithcarrageenanonly).N=6.

withseveralpolaritysolventscouldbeconsideredusefulsinceone fraction(EtOAc)showedabetterpotentialincomparisontoHE.

HEand fractions wereanalyzedby HPLC-DAD(340nm)and showthepresenceofphenoliccompounds.Thisisanimportant finding,sincemanyphenolicarerelatedtotheanti-inflammatory activityofvarious plants(Rotelliet al.,2003; Santangeloet al., 2007).InEtOAcfractionwereidentifiedandquantifiedtwo phe-noliccompoundsellagicacidandchlorogenicacid,andthesewere evaluatedyourpotentialanti-inflammatory,inordertoverifythe contributionofthesecompoundsforthebioactivityoftheextract. These compounds were assayedat 2.5, 5 and 10mg/kg, i.p. Nostatisticaldifferencesbetweenthetreatmentgroups(Fig.2C) were observed. It is important to emphasize that the dose of 10mg/kgshowedthebestinhibitionprofiletotheellagicacidand chlorogenicacidthatwasdemonstratingbyinhibitionofleukocyte migrationof82and70%,respectively,tothesiteofinflammation.

Besidestheinhibitionofleukocytemigrationtheellagicacidand chlorogenicacidithasactivityinotherways,asreportedinother studies.

In the literature chlorogenic acid is able to inhibit nitric oxideproduction,inhibittheexpressionofbothCOX-2and pro-inflammatory cytokines (including IL-1␤ and TNF-␣) (Esposito etal.,2014),aswellasitcanalsoactbyinhibitingthenuclear translocationandactivationofNF-␬B,amasterregulatorof inflam-mation(Franciscoetal.,2013;Hwangetal.,2014).Also,invivo

studiesshowedthatchlorogenicacidat50and100mg/kg inhib-ited therat pawedema induced by carrageenan (Santoset al., 2006).Inaddition,importantanti-inflammatoryand antinocicep-tiveactivitiesbychlorogenicacidweredemonstratedsince this compoundhastakinggreateractionthansalicylicacid(Yonathan

etal.,2006).

Regardingellagicacid,thiscompoundwasabletoinhibitCOX-2

andNF-␬B(Marinetal.,2013)andpresentedanti-inflammatory

activity at 10 and 50mg/kg when tested in induced arthritis animalmodel and didnot showanyeffectondisease develop-mentinalowerdose,butinhibitedthepawvolume(p<0.05)with thehigherdose.Inouranalysis,ellagicacidandchlorogenicacid inhibitedaleukocytemigration inacuteperitonitismodel,thus providinganewandadditionalevidenceofitsanti-inflammatory potential.Takentogether,theseresultssuggestthatellagicacidand chlorogenicacidcouldbeinvolvedintheanti-inflammatoryaction observedforHEextract.

Theinhibitionofleukocytemigrationintotheperitoneal cav-itymaybebytwomechanisms:byinhibitingtheproductionof chemotacticsubstancesand/orexpressionofadhesionmolecules, thisbecausetheleukocytesrequirechemotacticsubstancesthat facilitate your migration to theplace of injury (Sherwood and

Toliver-Kinsky,2004).

Insummary,cansaidthattheHEofSmombinhastheabilityto inhibitleukocytemigrationtotheperitonealcavitybyacute peri-tonitismodelandthatthecompoundsellagicacidandchlorogenic acidmaybeinvolvedwiththisactivity.Howeverittakesmore stud-iestojustifytheuseoftheleafextractfromS.mombintotreat inflammatoryproblemsandtoelucidatethemechanismsinvolved inthisaction.

Assessmentofantioxidantactivity

(6)

100

A

B

C

D

80 c

a a a a a

d

a a

c b

b

d

b 100

80

60

20 40

0

100

80

60

20 40

0 c

b

60

40

20

0

1.0

a b

b b

b

c b

b 0.8

0.6

0.4

0.2

0.0

Control g

roup DCM

EtO

Ac

ButOH ARF

Ellagic acid

Chlorogenic acid

HE

Spondias mombin

Control g

roup DCM

EtO

Ac

ButOH ARF

Ellagic acid

Chlorogenic acid

HE

Spondias mombin

Control g

roup DCM

EtO

Ac

ButOH ARF

Ellagic acid

Chlorogenic acid

HE

Spondias mombin

Control g

roup DCM

EtO

Ac

ButOH ARF

Ellagic acid

Chlorogenic acid

HE

Spondias mombin

Sca

venging DPPH, %

Sca

venging supero

xide r

adical, %

Sca

venging h

ydro

xyl r

a

dicals

, %

Absorbance (nm)

Fig.3.AntioxidantactivityofhydroethanolicextractoftheSpondiasmombinleaves.XaxiscorrespondstohydroethanolicextractfromS.mombinleaves(HE);fractions:

DCM:dichloromethane,EtOAc:ethylacetate,ButOH:n-butanol,ARF:aqueousresidualfractionandellagicacidandchlorogenicacid.Thegraphsrepresentthedataobtained

forscavengingDPPHradical(controlgroup:gallicacid30mg/ml)a;superoxideradicals(controlgroup:gallicacid30mg/ml)b;reducingpower(controlgroup:ascorbic

acid0.2mg/ml)c;scavenginghydroxylradicals(controlgroup:gallicacid15mg/ml)d;expressedasmean±standarddeviationofpercentageofsequestrationDPPHata

concentrationof60␮g/mloftheHEandfractionsand30␮g/mlofchlorogenicacidandellagicacid.a,b,c.Differentlettersmeansignificantdifferencebetweenthecrude

extractfractionsandcompoundsidentified(p≤0.05).

capacity associated with an anti-inflammatory potential are desirablefeaturesforabioactivecompound.Consideringthe anti-inflammatorypotentialdemonstratedbyHE,DCM,EtOAc,ButOH, ARFfractions,andellagicacidandchlorogenicacidcompounds,it isimportanttoevaluatetheirantioxidantpotentials.This inves-tigationwasperformedinseveralapproaches:(i)scavengingfree radicalDPPHassay,(ii)superoxideradicalscavengingactivity,(iii) reducingpower,and(iv)hydroxylradicalscavengingactivity.

IntheDPPHassay(Fig.3)itwasobservedapotentialdonation ofelectronsorH+ionswithvaluesrangingfromscavenging66%

to76%forallsamplestested.TheHE,ButOHandchlorogenicacid wereabletosequester74.53,73.71and91.47%,ofthefree rad-ical,respectively.Intheassayofreducingpowertoevaluatethe reductivecapacityitwasobservedapositiveresultforallsamples analyzed(Fig.3).Furthermore,it wasobservedthat allsamples testedforthehydroxylradicalscavengingactivityshowed seques-trationpercentagehigherthan100%.Theantioxidantcapacityof theleavescanbeassociatedtotheirbioactivecompounds,mainly antioxidantpolyphenols,becauseoftheirabilitytoscavengefree radicals(Mandicetal.,2008).Onthisway,wesuggestthatthe phe-nolicacidspresentintheextractandfractionsofS.mombincould contributefortheextractantioxidantactivity.

Finally,apreliminaryevaluationofthepotentialcytotoxicityof HE,fractions(DCM,AcOEt,ButOH,ARF),andtheellagicacidand chlorogenicacidcompoundswascarriedout.Itwasobservedthat

Table4

Viabilitycelleffectsofthehidroethanolicextract,fractionsandchlorogenicacidand

ellagicacidfromSpondiasmombinleaves.HEandfractionswereassayedat60,125

and250␮g/mlandcompoundsat5,15and60␮g/mlon3T3fibroblasts.Resultsare

expressedaspercentageofproliferationmedia±standarddeviationfromtriplicate

assays.

Fibroblasts3T3(24h)

Extractandfractions 60␮g/ml 125␮g/ml 500␮g/ml HE 125±0.0205 129±0.0095 181±0.185 DCM 253±0 128±0.0005 142±0.0025 EtOAc 168±0.0205 204±0.034 128±0.0445 ButOH 141±0.0195 93±0.0005 158±0.048 ARF 100±0.01 108±0.0025 67±0.022

Compounds 5␮g/ml 15␮g/ml 60␮g/ml Chlorogenicacid 122±0.0355 106±0.002 105±0.0025 Ellagicacid 154±0.0535 127±0.0015 181±0.1205 HE=hidroethanolicextract ofSpondiasmombin leaves,DCM=dichloromethane fractionEtOAc=ethylacetatefraction.ButOH=n-butanolfraction.ARF=aqueous residualfraction.

(7)

AcOEtandButOH(Table4).Itwasobservedacytotoxiceffectonly atthemaximalconcentration500␮g/mlfortheresidualfraction (ARF).

Insummary,tothebestofourknowledge,thisisthefirsttime thatisreportedantioxidant/anti-inflammatoryproperty(invitro/in vivo)totheleafextractfromS.mombinalongwith characteriza-tionoftheirchemicalcomposition.Theevidencefoundedinthis work,makesitasuitablecandidateforfurtherconsiderationasan alternativetreatmenttoreduceoxidativestressandinflammation.

Conclusions

Theresultsshowninthisworksuggesttheanti-inflammatory potentialof theleafextract ofS. mombimon peritonitismodel inducedbycarrageenan,Itwasalsoobservedantioxidant prop-ertiesassociatedwithanabsenceofcytotoxicityincellculture. Furthermore,itwasfoundthatchlorogenicacidandellagicacid contributetoactionpharmacologicallyofS.mombin.

Therefore,theseresultsindicatethepotentialoftheleafofS. mombinasasourceofnewanti-inflammatoryherbaldrugand/or molecules,and seemtojustifypartof itsmainpopularuses in traditionalmedicine.Furtherstudiesarerequiredtoconfirmthe anti-inflammatories action of S. mombin and its possible anti-inflammatorymechanismsofaction.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

BECVFparticipatedofphytochemicalanalysis,interpretationof dataanddraftedthemanuscript.MMMparticipatedinthe evalua-tionofanti-inflammatoryactivity,acquisitionandinterpretationof data.AHKparticipatedinantioxidantanalysisandrevisedit criti-callythemanuscript.RSparticipatedinitsdesignandcoordination, andhelpedtodraftthemanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Theauthorsacknowledgeallparticipantsfortheirvaluabletime andcommitmenttothestudy.WealsothankCNPqforfinancial support(478661/2010-0).TheauthorsarealsogratefultoMScAlan deAraújoRoqueresponsibleforspeciesidentification.

References

Albuquerque,U.P.,Medeiros,P.M.,Almeida,A.L.S.,Monteiro,J.M.,Lins,E.M.F.N.,

Melo,J.G.,Santos,J.P.,2007.Medicinalplantsofthecaatinga(semi-arid)

veg-etationofNEBrazil:aquantitativeapproach.J.Ethnopharmacol.114,325–354.

Araújo,T.A.S.,Castro,V.T.N.A.E.,Amorim,E.L.C.,Albuquerque,U.P.,2012.Habitat

influenceonantioxidantactivityandtanninconcentrationsofCaatingaplants. Pharm.Biol.50,754–759.

Bitencourt,M.A.O.,Lima,M.C.J.S.,Torres-Rêgo,M.,Fernandes,J.M.,Silva-Júnior,

A.A.,Tambourgi,D.V.,Zucolotto,S.M.,Fernandes-Pedrosa,M.,2014.

Neutraliz-ingeffectsofMimosatenuifloraextractsagainstinflammationcausedbyTityus serrulatusscorpionvenom.Biomed.Res.Int.153,890–895.

Cass,Q.B.,Degani,A.L.G.,2001.DesenvolvimentodeMétodosporHPLC:

Fundamen-tos,EstratégiaseValidac¸ão,ed.UFSCar,SãoCarlos,Brasil.

Corthout,J.,Pieters,L.,Claeys,M.,Berghe,D.A.V.,Vlientinck,A.J.,1991.Antiviral

ellagitanninsfromSpondiasmombin.Phytochemistry30,1129–1130.

Corthout,J.,Pieters,L.,Claeys,M.,Berghe,D.A.V.,Vlientinck,A.J.,1992.Antiviral

caffeoylestersfromSpondiasmombin.Phytochemistry31,1979–1981.

Corthout,J.,Pieters,L.,Claeys,M.,Geerts,S.T.,Berghe,D.V.,Vlietinck,A.,1994.

AntibacterialandmolluscicidalphenolicacidsfromSpondiasmombin.Planta Med.5,460–463.

Engels,C.,Gräter,D.,Esquivel,P.,Jiménez,V.M.,Gänzle,M.G.,Schieber,A.,2012.

Characterizationofphenoliccompoundsinjocote(SpondiaspurpureaL.)peels byultrahighperformanceliquidchromatography/electrosprayionizationmass spectrometry.FoodRes.Int.46,557–562.

Esposito,D.,Chen,A.,Grace,M.H.,Komarnytsky,S.,Lila,M.A.,2014.Inhibitoryeffects

ofwildblueberryanthocyaninsandotherflavonoidsonbiomarkersofacuteand chronicinflammationinvitro.J.Agric.FoodChem.29,7022–7028.

Francisco,V.,Costa,G.,Figueirinha,A.C.M.,Pereira,P.,Miguel,N.B.,Celeste,L.M.,

Garcia-Rodriguez,C.,Teresa,C.M.,Teresa,B.M.,2013.Anti-inflammatoryactivity

ofCymbopogoncitratusleavesinfusionviaproteasomeandnuclearfactor-␬B pathwayinhibition:contributionofchlorogenicacid.J.Ethnopharmacol.148, 126–134.

Fred-Jaiyesimia,A.,Kio,A.,Richard,W.,2009.␣-Amylaseinhibitoryeffectof3

␤-olean-12-en-3-yl(9Z)-hexadec-9-enoateisolatedfromSpondiasmombinleaf. FoodChem.116,285–288.

Hatanaka,K.,Kawamura,M.,Ogino,K.,Matsuo,S.,Harada,Y.,1999.Expression

andfunctionofcyclooxygenase-2inmesothelialcellsduringlatephaseofrat carrageenaninducedpleurisy.LifeSci.65,161–166.

Hwang,S.J.,Kim,Y.W.,Park,Y.,Lee,H.J.,Kim,K.W.,2014.Anti-inflammatoryeffects

ofchlorogenicacidinlipopolysaccharide-stimulatedRAW264.7cells.Inflamm. Res.63,81–90.

ICH–InternationalConferenceonHarmonization,2005.ValidationofAnalytical

Procedures:TextandMethodology–Q2(R1),London.

Khansari,N.,Shakiba,Y.,Mahmoudi,M.,2009.Chronicinflammationandoxidative

stressasamajorcauseofage-relateddiseasesandcancer.RecentPat.Inflamm. AllergyDrugDiscov.3,73–80.

Lorenzi,H.,Matos,F.J.A.,2008.PlantasmedicinaisnoBrasilnativaseexóticas.Nova

Odessa,SãoPaulo.

Lima,M.C.J.S.,Bitencourt,M.A.O.,Furtado,A.A.,Oliveira-Rocha,H.A.,Oliveira,R.M.,

Silva-Júnior,A.A.,Tabosa,E.E.S.,Tambourgi,D.V.,Zucolotto,S.M.,

Fernandes-Pedrosa,M.F.,2014.Ipomoeaasarifolianeutralizesinflammationinducedby

Tityusserrulatusscorpionvenom.J.Ethnopharmacol.153,890–895.

Mandic,A.L.,Dilas,S.M.,Cetkovic,G.S.,Canadanovic-Brunet,J.M.,Vesna,T.T.,2008.

Polyphenoliccompositionandantioxidantactivitiesofgrapeseedextract.Int. J.FoodProp.11,713–726.

Marin,M.,Maria,G.R.,Rios,J.L.,Recio,M.C.,2013.Intestinalanti-inflammatory

activ-ityofellagicacidintheacuteandchronicdextranesulfatesodiummodelsof micecolitis.J.Ethnopharmacol.150,925–934.

Mattietto,R.A.,Lopes,A.S.,Menezes,H.C.,2010.Caracterizac¸ãofísicaefísico-química

dosfrutosdacajazeira(SpondiasmombinL.)edesuaspolpasobtidaspordois tiposdeextrator.Braz.J.Food.Technol.13,156–164.

Medeiros,P.M.,Ladio,A.H.,Santos,A.M.M., Albuquerque,U.P.,2013. Doesthe

selectionofmedicinalplantsbyBrazilianlocalpopulationssuffertaxonomic influence?J.Ethnopharmacol.146,842–852.

Nworu,C.S.,Akah,P.A.,Okoye,F.B.,Toukam,D.K.,Udeh,J.,Esimone,C.O.,2011.The

leafextractofSpondiasmombinL.displaysananti-inflammatoryeffectand sup-pressesinducibleformationoftumornecrosisfactor-␣andnitricoxide(NO).J. Immunotoxicol.8,10–16.

Paulino,N.,Abreu,S.R.L.,Uto,L.,2008.Anti-inflammatoryeffectsofabioavailable

compound,AstepillinC,inBrazilianprópolis.Eur.J.Pharmacol.587,1–3.

Rao,B.G.,Nath,M.S.,Raju,N.J.,2009.Investigationofanti-inflammatoryactivityof

stemheartwoodofSpondiaspinnata.Int.J.Chem.Sci.7,294–298.

Rotelli,A.E.,Guardia,T.,Juárez,A.O.,De,L.,Pelzer,L.E.,2003.Comparativestudy

offlavonoidsinexperimentalmodels ofinflammation.Pharmacol.Res.48, 601–606.

Sachan,N.K.,Arif,M.,Zaman,K.,Kumar,Y.,2011.Anti-inflammatory,analgesicand

antioxidantpotentialofthestembarkofSpondiasMangiferaWilld.Arch.Biol. Sci.Belgrade2,413–419.

Satpathy,G.,Tyagi,Y.K.,Gupta,R.K.,2011.Preliminaryevaluationofnutraceutical

andtherapeuticpotentialofrawSpondiaspinnataK.,anexoticfruitofIndia. FoodRes.Int.44,2076–2087.

Santangelo,C.,Varì,R.,Scazzocchio,B.,Di,B.R.,Filesi,C.,Masella,R.,2007.

Polyphe-nols, intracellularsignalling and inflammation.Ann. Ist.Super.Sanita 43, 394–405.

Santos,M.D.,Almeida,M.C.,Lopes,N.P.,Souza,G.E.,2006.Evaluationofthe

anti-inflammatory,analgesicandantipyreticactivitiesofthenaturalpolyphenol chlorogenicacid.Biol.Pharm.Bull.29,2236–2240.

Sedgwick,A.D.,Lees,P.,1986.Acomparisonofairpouch,spongeandpleurisymodels

ofacutecarrageenaninflammationintherat.AgentsActions18,439–446.

Sherwood,E.R.,Toliver-Kinsky,T.,2004.Mechanismsoftheinflammatoryresponse.

BestPract.Res.Clin.Anaesthesiol.18,385–405.

Silva,A.R.A.,Morais,S.M.,Marques,M.M.M.,Lima,D.M.,Santos,S.C.C.,Almeida,R.R.,

(8)

pheno-liccomponentsoftwoSpondiasspeciesagainstdenguevírus.J.Venom.Anim. ToxinsIncl.Trop.Dis.17,406–413.

Silva,F.V.G.,Silva,S.M.,Silva,G.C.,Mendonc¸a,R.M.N.,Alves,R.E.,Dantas,A.L.,2012.

Bioactivecompoundsandantioxidantactivityinfruitsofcloneandungrafted genotypesofyellowmombintree.FoodSci.Technol.32,685–691.

Soares,E.B.,(Dissertac¸ãodeMestrado)2005.Avaliac¸ãodegenótiposdecajazeira

(SpondiasmombinL.):Caracterizac¸ãofísico-químicadosfrutoserepetibilidade decaracteresmorfoagronômicos.CentrodeCiênciasAgrárias,Universidade Fed-eraldoPiauí.

Souza,G.E.,Cunha,F.Q.,Mello,R.,Ferreira,S.H.,1988.Neutrophilmigrationinduced

byinflammatorystimuliisreducedbymacrophagedepletion.AgentsActions 24,377–380.

Tomlinson,A.,Appleton,I.,Mooregilroy,A.R.,Wills,D.,Mitchell,J.A.,Willoughby,

A.,1994.Cyclo-oxigenaseandnitricoxideisoformsinratcarregeenam-induced

pleurisy.Br.J.Pharmacol.113,693–698.

Yonathan, M.,Asres, K.,Assefa, A., Bucar,F., 2006.In vivo anti-inflammatory

Imagem

Fig. 1. Chromatogram at 340 nm obtained by HPLC-DAD of hydroethanolic extract from Spondias mombin leaves
Fig. 2. Effect of hydroethanolic extract of the Spondias mombin leaves on leukocyte migration induced by carrageenan in an acute peritonitis model
Fig. 3. Antioxidant activity of hydroethanolic extract of the Spondias mombin leaves. X axis corresponds to hydroethanolic extract from S

Referências

Documentos relacionados

Ora este estudo tem como objetivo principal perceber se as práticas de avaliação no 1º ciclo do Ensino Básico estão ou não, ao serviço das aprendizagens dos alunos.. Para tal iremos

Por meio deles foi possível discutir, à luz de uma bibliografia referente ao NOF e à História Ambiental, o processo de ocupação e exploração regional de 1861 a

Para Voegelin (2009a), sophón parece designar uma sabedoria humana concernente à gnóme que governa o mundo e, desse modo, se forem aceitos ambos os fragmentos como estão, o termo

pas bougé de place, mais que seulement nous avions eu un sommeil un peu agité. Comme la prédiction de Nunzio s'était réalisée de point en point, nous nous approchâmes de lui avec

Os testes estatísticos aplicados evidenciam di- ferenças significativas entre variedades, isto é, já são cultivadas, no Brasil, variedades de soja que possuem geneticamente

Nesta pesquisa, pretendeu-se analisar a política de atenção ao tabagista sob a ótica da coordenação municipal, dos profissionais do Programa de Controle do Tabagismo e dos usuários

Os objetivos, neste trabalho, foram o desenvolvimento de fermentados alcoólicos e acéticos (vinagre) de físalis e pitaia, a determinação do potencial antioxidante

Tal situação motivou a realização deste trabalho, cujos objetivos consistiram em avaliar o comportamento da cultura da soja, obtendo parâmetros de crescimento, desenvolvimento