• Nenhum resultado encontrado

Bounds on topological abelian string-vortex and string-cigar from information-entropic measure

N/A
N/A
Protected

Academic year: 2021

Share "Bounds on topological abelian string-vortex and string-cigar from information-entropic measure"

Copied!
5
0
0

Texto

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Bounds

on

topological

Abelian

string-vortex

and

string-cigar

from

information-entropic

measure

R.A.C. Correa

a

,

D.M. Dantas

b

,

C.A.S. Almeida

c

,

Roldão da Rocha

d

,

aCCNH,UniversidadeFederaldoABC(UFABC),09210-580,SantoAndré,SP,Brazil bUniversidadeFederaldoCeará(UFC),60455-760,Fortaleza,CE,Brazil

cUniversidadeFederaldoCeará(UFC),DepartamentodeFísica,60455-760,Fortaleza,CE,Brazil

dCentrodeMatemática,ComputaçãoeCognição,UniversidadeFederaldoABC(UFABC),09210-580,SantoAndré,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received30December2015

Receivedinrevisedform17February2016 Accepted17February2016

Availableonline23February2016 Editor:N.Lambert

Keywords:

TopologicalAbelianstring-vortex Six-dimensionalbraneworldmodels Configurationalentropy

In thiswork we obtain bounds on the topological Abelian string-vortex and onthe string-cigar, by usinganewmeasureofconfigurational complexity,knownasconfigurationalentropy.Inthisway,the information-theoreticalmeasureofsix-dimensionalbraneworldsscenariosis capabletoprobesituations where theparameters responsible for the brane thicknessare arbitrary.The so-called configurational entropy(CE)selectsthebestvalueoftheparameterinthemodel.Thisisaccomplishedbyminimizing theCE,namely,byselectingthemostappropriateparametersinthemodelthatcorrespondtothemost organizedsystem,basedupontheShannoninformationtheory.Thisinformation-theoreticalmeasureof complexity providesacomplementaryperspectivetosituationswherestrictlyenergy-basedarguments are inconclusive. We show that the higher the energythe higher the CE, what shows an important correlationbetweentheenergyofthealocalizedfieldconfigurationanditsassociatedentropicmeasure.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In1948, inaseminal work,Shannon [1]introducedthe infor-mationtheory,whosemaingoalwastointroducetheconceptsof entropyandmutualinformation,usingthecommunicationtheory. Therein,theentropywasdefinedtobeameasureof“randomness” ofarandomphenomenon.Thus,ifalittledealofinformation con-cerning a random variable isreceived, the uncertaintydecreases, whichmakes it possibletomeasure thedecrement inthe uncer-tainty,relatedtothequantityoftransmittedinformation.Inspired byShannon, GleiserandStamatopoulos(GS)latterlyintroduceda measureofcomplexityofalocalizedmathematicalfunction[2].GS proposed that the Fourier modes of square-integrable, bounded, mathematical functionscan be used to constructa measure, the so-calledconfigurationalentropy (CE).A single mode system has zeroCE,whereas thatonewhereallmodescontributewithequal weight hasmaximal CE. Inorder toapply such ideas to physical models,GS usedthe energydensityofa givenspatially-localized

*

Correspondingauthor.

E-mailaddresses:rafael.couceiro@ufabc.edu.br(R.A.C. Correa),davi@fisica.ufc.br (D.M. Dantas),carlos@fisica.ufc.br(C.A.S. Almeida),roldao.rocha@ufabc.edu.br (R. da Rocha).

field configuration,asa solutionoftherelatedpartial differential equation (PDE).Hence theCEcanbe usedtochoose thebest fit-tingtrialfunctionwithenergydegeneracy.

The CE has been already employed to acquire the stability bound forcompactobjects[3],toinvestigatethenon-equilibrium dynamics of spontaneous symmetry breaking [4], to study the emergence oflocalized objects during inflationary preheating[5]

andtodiscern configurationswithdegenerate-energyspatial pro-files [6].Moreover, solitons were studied in a Lorentz symmetry violating (LV) framework withthe aid of CE [7–10]. Inthis con-text,theCEassociatedtotravellingsolitonsinLVframeworksplays a prominentrole inprobing systemswhereinthe parameters are somehowarbitrary.Furthermore,theCEidentifiescriticalpointsin continuous phase transitions [11]. Moreover, the CE can be used to measuretheinformationalorganization inthestructure ofthe systemconfiguration forfive-dimensional(5D) thick scenarios. In particular, theCEplays an importantroleto decidethe most ap-propriate intrinsic parameters ofsine-Gordon braneworld models

[12],beingfurtherstudiedbothin f

(

R

)

[13]and f

(

R

,

T

)

[14] the-ories ofgravity.In whatfollows,we presentabriefdiscussion of 5DbraneworldmodelstotreattheCEinsix-dimensional(6D) sce-narios.

Randall–Sundrum (RS) models [15,16] proposed a warped braneworld scenario, wherein the gauge hierarchy problem is http://dx.doi.org/10.1016/j.physletb.2016.02.038

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

explained and the gravity zero mode is localized, reproducing four-dimensional (4D) gravity on the brane. The 5D bulk gravi-tonsprovideasmallcorrectionintheNewton law[16].However, thisthin model presents singularities and drawbacks concerning thenon-localizationofspingaugeandfermionfields[17].Tosolve theseproblems,somethickmodelswereproposed[18].

Soon after the worksof RS, an axially symmetric warped6D modelwasproposedbyGergheta–Shaposhnikov[19],called string-likedefect (SD).Thisscenariofurtherprovidedtheresolutionofthe masshierarchyanda smallercorrectionto theNewtonian poten-tial[19],besidesthenon-requirementoffinetuningbetweenthe bulkcosmologicalconstantandthebrane tension,forthe cancel-lationofthe4D cosmologicalconstant[19].Besides,the localiza-tionof gauge zero modesis spontaneouseven in thethin brane case[20,21].Fermionsfieldsare trapped througha minimal cou-plingwithanU

(

1

)

gaugebackgroundfield[22,23].Later,other 6D, sphericallysymmetric,modelswereemployedtoexplainthe gen-erations of fundamental fermions [24,25] and the resolution of themasshierarchyofneutrinosaswell [26].Nevertheless,theSD modelisathinmodelanditleadstosomeirregularities[27].Due toit,some6Dthickmodelswereproposedtosolvethese remain-ingissues[28–42].InRef. [28],atopologicalabelianHiggsvortex was used to constructa regular scenario in which thedominant energyconditions hold, howeversolely numerical solutions have beenfound.Similarly,Refs.[31,32],lookingforanexactvortex so-lution,show thattheenergydensityandtheangularpressureare similar.ThisconditionislikewiseverifiedfortheResolvedConifold scenario [37–39]. Finally, for the String-Cigar [33–36], the trans-versespaceisrepresentedbyacigarsoliton,whichisastationary solution forthe Ricci flow [43–45]. The dominant energy condi-tionsarealsosatisfiedinthismodel.

Therefore, in this paper we investigate the entropic measure both in theTorrealba topological Abelian string(TA) [31,32] and String-Cigar(HC)[33–36]in6Dscenariosdue to itsanalytic prop-erties.Themainaimsofourworkare tofindboundsfor6Dstring defectsbasedupontheCEconceptandtoestablishavalueforthe thicknessoftheconfigurationresponsibleforextremizingtheCE.

Thispaperis organized asfollows: in Sect.2 a briefly review of string-likedefectsispresent,whereasinSect.3theCEbounds theparametersofTAandHCscenarios.Weexposetheconclusions andperspectivesaccordinglyinSect.4.

2. String-likedefectinwarpedsixdimensions

Ametricansatz for6Dstring-likemodelsreads[19,20] ds26

=

σ

(

r

μνdxμdxν

dr2

γ

(

r

)

d

θ

2 (1) where

η

μν

=

diag

(

+

1

,

1

,

1

,

1

)

.The radial coordinate is lim-itedto r

[0

,

∞)

,whereasthe angularcoordinateisrestrictedto

θ

[0

,

2

π

)

.The

σ

(

r

)

representsthedimensionlesswarpfactorand

γ

(

r

)

haslengthsquareddimension.

The4D Planckmass (MP) andthebulk Planckmass(M6) are

relatedthroughthevolumeofthetransverseofspaceas[19,33,35, 36]: M2P

=

2

π

M46



0

σ

(

r

)



γ

(

r

)

dr

.

(2)

Inaddition, the energy-momentumtensor TMN

=

diag

(

t0

,

t0

,

t0

,

t0

,

tr,tθ

)

componentsaregivenby[19,33]

t0

(

r

)

= −

1

κ



3

σ

 2

σ

+

3

σ



γ

 4

σ γ

+

γ

 2

γ

γ

2 4

γ

2



− ,

(3a) tr

(

r

)

= −

1

κ



3

σ

2 2

σ

2

+

σ



γ



σ γ



− ,

(3b)

(

r

)

= −

1

κ



2

σ



σ

+

σ

2 2

σ

2



− ,

(3c) where the

κ

=

8π

M46 is the 6D gravitational constant,

is the 6D

(negative)cosmologicalconstantandtheprimedenotesthe deriva-tivewithrespecttotheradialcoordinater.

Toobtainaregulargeometry,theconditions[19,28,33,42]

σ

(

r

)





r=0

=

const

.,

σ



(

r

)





r=0

=

0

,

γ

(

r

)





r=0

=

0

,



γ

(

r

)









r=0

=

1

,

(4) musthold.

For the vacuum solution, the warp factor for the Gergheta– ShaposhnikovStringLikeDefect (SD)modelisproposedas[19–23]:

σ

SD

(

r

)

=

e−cr

,

γ

SD

(

r

)

=

R20

σ

SD

(

r

)

(5)

wheretheparametersc isaconstant,whichconnectsthe6D New-tonian constant andthe6D cosmologicalconstant,and R0 is the

radiusofcompactificationoftransversespace.Seethat,inthelimit wherer

0,onlythefirstconditionofEq.(4)holds.

Following the perspective pointed by Ref. [19], Giovannini in adopted a 6D action [28], wherein the matter Lagrangian is an Abelian–Higgs model and the transverse space obeys the Abrikosov–Nielsen–Olesenansatz[28,31,32]:

φ (

r

, θ )

=

v f

(

r

)

e−ilθ l

∈ Z ,

A

θ

(

r

)

=

1

q[l

P

(

r

)

]

,

A

μ

=

Ar

=

0

,

where

φ

and

AM

arescalarandgaugefields,respectively.The con-dition v

=

1 is a length dimension L−2 constant. The functions f

(

r

)

and P

(

r

)

aresuchthat f

(

r

0

)

=

0, f

(

r

→ ∞)

=

1,whereas P

(

r

0

)

=

l andP

(

r

→ ∞)

=

0.

From constraints by thisansatz and the regular conditions in theEq.(4),thesolutionsoffieldsandwarpfactorsarenumerically obtainedin Ref.[28].On theother hand,by imposing conditions onthefunction P

(

r

)

0,Torrealba[31,32]obtainedananalytical solution,namedTopologicalAbelianHiggsstring (TA):

σ

TA

(

r

)

=

cosh−2δ



β

r

δ



,

γ

TA

(

r

)

=

R20

σ

TA

(

r

) ,

(6)

where the parameter

β

is similar to the parameter c in the SD model,and

δ

isathicknessparameterwhich,forsmallvalues, re-producesthethinGergheta–ShaposhnikovmodelinEq.(5). More-over, Ref. [31] concludes that, forthe localizationof gauge fields zeromode,thethicknessofthemodelcannot exceedthevalue

δ <

5

β

4

π

q

2v2

.

(7)

Now,intheTA(6)string,twooftheconditions(4)areverified. Inanotherapproach,thetransversespacecanalsobebuiltfor acigarsolitonsolutionofRicciflow[33–36]

∂λ

gMN

(λ)

= −

2RMN

(λ) ,

with

λ

beingametricparameterRefs.[33–36]constructedthe ge-ometrynamed HamiltonStringCigar (HC),wherethewarp factors read

σ

HC

(

r

)

=

e−cr+tanh(cr)

,

γ

HC

(

r

)

=

tanh2cr

c2

σ

HC

(

r

).

(8)

(3)

Fig. 1.σ(r)warp-factorwith c=2β= δ =0.5.IntheTA(dashedlines)and HC model(thicklines)theregularityconditions(4)aresatisfiedforthisfactor.

Fig. 2.γ(r)angularfactorswithc=2β= δ =0.5 andR0=1.OnlyintheHCmodel (thicklines)theregularityconditions(4)holdstill.

Toobserve thecorrespondence betweenthe regular condition inEq.(4)andtheenergymomentumtensorweplotthe

σ

(

r

)

the warpfactors(5),(6)and(8)inFig. 1and

γ

(

r

)

inFig. 2,whereas the energy momentum tensor in Fig. 3for TA and HC in Fig. 4. ConcerningtheHCscenario,whereinallmetricconditions(4)hold, thedominantenergyconditiont0

≥ |

ti

|

,

(

i

=

r

,

θ )

[29,30,40]is

sat-isfied.

Inthenextsection, weshallanalyzethesestringmodels from theCEpointofview.

3. Configurationalentropyinthevortex-stringscenario

The configurational entropy (CE) [2] represents an original quantity,employedtoquantifytheexistenceofnon-trivialspatially localized solutions in field configuration space. The CE is useful tobound thestability ofvariousself-gravitatingastrophysical ob-jects[47],boundstatesinLVscenarios[7],incompactobjectslike Q-balls[3],andinmodifiedtheoriesofgravityaswell[13].TheCE islinkedtotheenergyofalocalizedfieldconfiguration,wherelow energysystemsarecorrelatedwithsmallentropicmeasures[2].

TheCEcanbeobtained[2]bytheFouriertransformofthe en-ergydensityt0

(

r

)

[12,13],yielding

F(

ω

)

= −

√12π

0 t0

(

r

)

eiωrdr.

It is worth to remarkthat we will consider structureswith spa-tially localized, square-integrable, bounded energy density func-tions t0

(

r

)

. The modal fraction reads [2–4,6] f

(

ω

)

= |

F(

ω

)

|

2

/

0 d

ω

|

F(

ω

)

|

2. Next, the normalized modal fraction is defined

asthe ratioof the normalized Fourier transformed function and its maximum value fmax, namely,

˜

f

(

ω

)

=

f

(

ω

)/

fmax. A localized

andcontinuous function

˜

f

(

ω

)

yields the following definition for the CE: S

( ˜

f

)

= −



0 d

ω

˜

f

(ω)

ln

˜

f

(ω)

.

(9)

Fig. 3. tM(r)energy-momentumtensorinTAmodelwithβ=0.25,κ=R0=1 and δ=0.5.Heret0=.

Fig. 4. tM(r)inHCmodelwithc=0.5 andκ=1.Thedominantenergycondition

issatisfied.

Therefore,weusethisconcepttoobtaintheCEintheAbelian string-vortex and the string-cigar contexts. By substituting the warpfactor(6)intheenergydensitygivenbyEq.(3a),ityields

t0

(

r

)

=

1

κ



5 2

+

1

β



2

β

sech



β

r

δ



2

.

(10)

It represents a localized density ofenergy, as can be verified in

Fig. 3.Now,theFouriertransformof(10)reads

F

(ω)

=

2

πδω(

5

δ

+

2

)

csch



π

δω

2

β



,

(11)

which is a localizedfunction having the normalizedmodal frac-tion:

˜

f

(ω)

=

π

δω

2

β

csch



π

δω

2

β



2

.

(12)

ForthenumericalevaluationofEq.(9),withtheinputofEq.(12), itisnecessarytoexplicitheretheexpressionoftheparameter

β

, asdefinedinRefs.[31,32]:

β

=



(

− )

κ

10

,

with 0

< β

1 2

,

(13)

Let us remember that

κ

is the 6D gravitational constant, being

<

0 the6Dcosmologicalconstant.Besides,thisimposition over therangeoftheparameter

β

isnecessarytopreventvalueslarger thanPlanckmass[34].

HencetheprofileofCEinEq.(9)forthefunctioninEq.(12)is presentedintheFig. 5,forS

(δ)

,andintheFig. 6,forS

(β)

.

It is verified in Fig. 5 that the maximum of CE occurs for

(4)

Fig. 5. S(δ)configurationalentropyasafunctionofthethicknessparameterδ,for differentvaluesoftheparameterβ.

Fig. 6. S(β)configurationalentropyasafunctionoftheparameterβ,fordifferent valuesoftheparameterδ.

regions:thefirstonefor

δ

0,whichendorsesthethinGergheta– Shaposhnikovmodel of Eq.(5), andthe second one for

δ > δcrit

. However, an upper bound thickness limit is provided in Eq.(7). Thus, for

δ

=

0, the constraint on the TA model thickness with q

=

1 intheEq.(7)yields

0

.

09

β < δ <

0

.

40

β.

(14)

Furthermore, another important physical information is pre-sentedinFig. 6,wheretheminimalCEoccurswhentheparameter

β

tendstozero.PerceivethatthemasshierarchyofEq.(2)forthe TAmodelisexposedinEq.(6)as

M2P

=

2

π

R0 3

π

β





3δ 2

+

1







3δ 2

+

1 2



M64

.

(15)

In thecase where MP

M6,the parameter

β

to tends to zero,

once

δ

isboundedbyEq.(7).Thus,theCEexhibitsthisstable be-haviour in Fig. 6 and to small values of

β

there corresponds to smallvaluesofCE.

Forthe HC model,where we haveonly the c parameter, the energydensityofEq.(3a)yields

t0

(

r

)

=

c2

κ

sech 2

(

cr

)

7

+

13 2 tanh

(

cr

)

5 2sech 2

(

cr

)

.

(16)

Again,theenergydensityislocalizedascan beverifiedinthe

Fig. 4.TheFouriertransformsofaboveequationreads

F

(ω)

=



π

2

ω

12c2



64c2

+

39ic

ω

5

ω

2



csch



π ω

2c



,

(17)

Fig. 7. S(δ)configurationalentropyoftheHCstringmodel,asafunctionofthe parameterc.

anditsnormalizedmodalfractionyields

˜

f

(ω)

=

π

2

ω

2



4096c4

+

881c2

ω

2

+

25

ω

4



16 384c6 csch 2



π ω

2c



.

(18) Settingtheexpressionandtherangeofthec parameterasdefined inRefs.[19,34,36]

c

=



2

κ

5

(

− ),

with 0

<

c

1 (19)

it is possible to plot the S

(

c

)

by integrating Eq. (18), using, (9).

Fig. 7 representstheresult. Byconsidering themass hierarchyof Eq.(2)inthemodelofEq.(8)providedby

M2P

4

π

R0 3 1 cM 4 6

,

(20)

theresultof MP

M6 isverifiedwhenc tends tozero.Thisalso

agreeswiththeprofileexhibitedforCEinFig. 7.

The intrinsicbraneworld model parametershave been further constrainedbyanalyzingtheexperimental,phenomenologicaland observational aspects in, e.g., [12,46].In particular, Ref. [12] pro-videsarefinedanalysiswhereintheCEfurtherrestrictstherange parameters ofa5D sine-Gordonthick braneworld model,namely, the AdS bulk curvature andthe braneworld thickness. Here this procedurewasappliedto6Dthickbraneworldmodelsandwe ver-ifiedfortheTAmodeltheconstraintsonthethicknessparameter

δ

intheEq.(14).Besides,inbothTAandHCmodels,theminimal CE reflectsthe expectedresultobtained fromthemass hierarchy inthesemodels.

4. Discussionandconclusions

In this work we have investigated the CE in the context of thetopologicalabelianstring-vortexandstring-cigarscenarios.We have shown that the information-theoretical measure of 6D di-mensionalbraneworldmodelsopensnewpossibilitiestophysically constrain, for example, parameters that are related to the brane thickness. TheCEprovides themostappropriate value ofthis pa-rameter that is consistent withthe best organizationalstructure. The informationmeasureofthe systemorganizationis relatedto modesinthebraneworld model.Hence theconstraintsofthe pa-rameters thatwe obtained, forthe TAandthe HCstring models, providetherangeofthe parametersassociatedtothe most orga-nizedbraneworldmodels,withrespecttotheinformationcontent ofthesemodels.TheCEdemonstratestheexpectedlimitof param-eters that agrees withthemass hierarchyof these6D models.It providesfurtherphysicalaspectstomodels,wherestrictly energy-basedargumentsdonotprovidefurtherconclusionsofthephysical parameters.

(5)

Acknowledgements

TheauthorsthanktheCoordenaçãodeAperfeiçoamentode Pes-soalde Nível Superior(CAPES), theConselho Nacional de Desen-volvimentoCientíficoeTecnológico(CNPq),andFundaçãoCearense de apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for financial support. DMD thanks to Projeto CNPq UFC-UFABC 304721/2014-0.RdRisgratefultoCNPqgrantsNo.473326/2013-2, No. 303293/2015-2andNo. 303027/2012-6,andto FAPESP Grant No. 2015/10270-0. RACC also acknowledges Universidade Federal do Ceará (UFC) for the hospitality. We would like to thank the anonymousrefereeforusefulsuggestionsinthisletter.

References

[1]C.E.Shannon,BellSyst.Tech.J.27(1948)379.

[2]M.Gleiser,N.Stamatopoulos,Phys.Lett.B713(2012)304. [3]M.Gleiser,D.Sowinski,Phys.Lett.B727(2013)272. [4]M.Gleiser,N.Stamatopoulos,Phys.Rev.D86(2012)045004. [5]M.Gleiser,N.Graham,Phys.Rev.D89(2014)083502.

[6]R.A.C.Correa,A.deSouzaDutra,M.Gleiser,Phys.Lett.B737(2014)388. [7]R.A.C.Correa,R.daRocha,A.deSouzaDutra,Ann.Phys.359(2015)198. [8]A.deSouzaDutra,R.A.C.Correa,Phys.Rev.D83(2011)105007.

[9]R.A.C.Correa,A.deSouzaDutra,Adv.HighEnergyPhys.2015(2015)673716. [10]R.A.C.Correa,R.daRocha,A.deSouzaDutra,Phys.Rev.D91(2015)125021. [11]N.Stamatopoulos,M.Gleiser,Phys.Lett.B747(2015)125.

[12]R.A.C.Correa,R.daRocha,Eur.Phys.J.C75(2015)522.

[13]R.A.C.Correa,P.H.R.S.Moraes,A.deSouzaDutra,R.daRocha,Phys.Rev.D92 (2015)126005.

[14]R.A.C.Correa,P.H.R.S.Moraes,Configurationalentropyinf(R, T)branemodels, arXiv:1509.00732.

[15]L.Randall,R.Sundrum,Phys.Rev.Lett.83(1999)3370. [16]L.Randall,R.Sundrum,Phys.Rev.Lett.83(1999)4690. [17]B.Bajc,G.Gabadadze,Phys.Lett.B474(2000)282.

[18]V.Dzhunushaliev,V.Folomeev, M.Minamitsuji,Rept.Prog. Phys.73(2010) 066901.

[19]T.Gherghetta,M.E.Shaposhnikov,Phys.Rev.Lett.85(2000)240. [20]I.Oda,Phys.Lett.B496(2000)113.

[21]I.Oda,Phys.Rev.D62(2000)126009.

[22]Y.-X.Liu,L.Zhao,Y.-S.Duan,J.HighEnergyPhys.0704(2007)097. [23]Y.X.Liu,L.Zhao,X.H.Zhang,Y.S.Duan,Nucl.Phys.B785(2007)234. [24]S.Aguilar,D.Singleton,Phys.Rev.D73(2006)085007.

[25]M. Gogberashvili, P.Midodashvili, D. Singleton, J. High Energy Phys. 0708 (2007)033.

[26]J.M.Frère,M.Libanov,S.Mollet,S.Troitsky,J.HighEnergyPhys.1308(2013) 078.

[27]P.Tinyakov,K.Zuleta,Phys.Rev.D64(2001)025022.

[28]M.Giovannini,H.Meyer,M.E.Shaposhnikov,Nucl.Phys.B619(2001)615. [29]R.Koley,S.Kar,Class.QuantumGravity24(2007)79.

[30]L.J.S.Sousa,W.T.Cruz,C.A.S.Almeida,Phys.Rev.D89(2014)064006. [31]R.S.Torrealba,Phys.Rev.D82(2010)024034.

[32]R.S.Torrealba,Gen.Relativ.Gravit.42(2010)1831.

[33]J.E.G.Silva,V.Santos,C.A.S.Almeida,Class.QuantumGravity30(2013)025005. [34]F.W.V.Costa,J.E.G.Silva,D.F.S.Veras,C.A.S.Almeida,Phys.Lett.B747(2015)

517.

[35]D.F.S.Veras, J.E.G.Silva, W.T.Cruz, C.A.S.Almeida, Phys. Rev. D91 (2015) 065031.

[36]D.M.Dantas,D.F.S.Veras,J.E.G.Silva,C.A.S.Almeida,Phys.Rev.D92(2015) 104007;

D.M.Dantas,R.daRocha,C.A.S.Almeida,arXiv:1512.07888[hep-th]. [37]J.E.G.Silva,C.A.S.Almeida,Phys.Rev.D84(2011)085027.

[38]F.W.V.Costa,J.E.G.Silva,C.A.S.Almeida,Phys.Rev.D87(2013)125010. [39]D.M.Dantas,J.E.G.Silva,C.A.S.Almeida,Phys.Lett.B725(2013)425. [40]J.C.B.Araújo,J.E.G.Silva,D.F.S.Veras,C.A.S.Almeida,Eur.Phys.J.C75(2015)

127.

[41]L.J.S.Sousa,C.A.S.Silva,D.M.Dantas,C.A.S.Almeida,Phys.Lett.B731(2014) 64.

[42]I.Navarro,J.Santiago,J.HighEnergyPhys.0502(2005)007.

[43]P.P. Orth, P.Chandra, P.Coleman, J.Schmalian, Phys. Rev.Lett. 109(2012) 237205.

[44]N.Lashkari,A.Maloney,Class.QuantumGravity28(2011)105007. [45]M.Headrick,T.Wiseman,Class.QuantumGravity23(2006)6683. [46]J.M.HoffdaSilva,R.daRocha,Europhys.Lett.100(2012)11001. [47]M.Gleiser,N.Jiang,Phys.Rev.D92(2015)044046.

Referências

Documentos relacionados

a) Confeccionar filmes de pectina simples e filmes compostos de pectina e alginato em diversas proporções e avaliar as propriedades em relação às diferentes

O capítulo anterior apresentou, no âmbito da Embrapa, a instrumentalização da gestão da pesquisa, a estrutura organizacional, a política de propriedade

The vibrating elements are modelled using the modal U-K formulation, using the unconstrained modal basis of the string and of the instrument body, while the

Porém, a legislação aplicada de forma isolada não será capaz de assegurar o uso sustentável desse recurso natural, muito menos garantir que toda a população tenha acesso

al.,(1998) relatou que dietas ricas em ácidos graxos saturados (banha de porco) reduzem a resposta das ilhotas de Langerhans à glicose, enquanto que dietas

Embora, como mostra a subseção 3.3.1 (p. 223), relevante parcela da doutrina defenda que, nas hipóteses em que chefes de Poder Executivo atuem como ordenado- res de despesas, as

String field theory, matrix models, and topological string theory sim- ply do not exist in Brazil but have great activity abroad.. String phenomenology, and mainly the study

The absence of exceptional points and the uniqueness of solutions of the corresponding integral equation was justified in the case of small enough potentials (see [6]), and for