• Nenhum resultado encontrado

Black hole entropy associated with the supersymmetric sigma model

N/A
N/A
Protected

Academic year: 2017

Share "Black hole entropy associated with the supersymmetric sigma model"

Copied!
4
0
0

Texto

(1)

Black hole entropy associated with the supersymmetric sigma model

M. C. B. Abdalla

Instituto de Fı´sica Teo´rica/UNESP, Sa˜o Paulo, SP, Brazil

A. A. Bytsenko

Departamento de Fı´sica, Univ. Estadual de Londrina, Londrina, PR, Brazil

M. E. X. Guimara˜es

Instituto de Fı´sica Teo´rica/UNESP, Sa˜o Paulo, SP, Brazil and Departamento de Matema´tica, UnB, Brası´lia, DF, Brazil

~Received 5 June 2003; published 14 November 2003!

By means of an identity that equates the elliptic genus partition function of a supersymmetric sigma model on theN-fold symmetric productSNXofX(SNX5XN/SN, whereSNis the symmetric group ofNelements!to the partition function of a second-quantized string theory, we derive the asymptotic expansion of the partition function as well as the asymptotic for the degeneracy of spectrum in string theory. The asymptotic expansion for the state counting reproduces the logarithmic correction to the black hole entropy.

DOI: 10.1103/PhysRevD.68.104011 PACS number~s!: 04.70.Dy, 11.25.Mj

I. INTRODUCTION

In the correspondence between a black hole and a highly excited string the black hole horizon is governed by some conformal operator algebra on a two-dimensional surface. This provides a string representation of black hole quantum states. Conversely, it may be possible to give a black hole interpretation of strings@1#. Obtaining the black hole entropy by counting the number of excited strings states ~statistical interpretation of the black hole entropy! has been subse-quently presented in several papers@2–12#. A comparison of the asymptotic state density of~twisted!p-branes and mass level state density of black holes has also been established in Refs. @2,13–16#. In this work, we calculate the black hole entropy for a supersymmetric sigma model. In the remainder of this section, we set the relevant mathematical method used in this paper. Then, in Secs. II and III, we derive the asymptotic state density and black hole entropy, respectively. We end up with some concluding remarks in Sec. IV.

Mathematical notation

We start by considering a supersymmetric sigma model on the N-fold symmetric productSNX of a Ka¨hler manifold X, which is the orbifold spaceSNX5XN/SN. HereSN is the symmetric group of N elements. The Hilbert space of an orbifold field theory can be decomposed into twisted sectors

Hg, which are labeled by the conjugacy classes$g% of the orbifold group SN @17–19#. For a given twisted sector one can keep the states invariant under the centralizer subgroup

Gg related to the element g. LetHgGg be an invariant

sub-space associated with Gg; the total orbifold Hilbert space

takes the formH(SN

X)5%$g%H

g Gg

. Taking into account the group SN one can compute the conjugacy classes $g% by using a set of partitions $Nn% of N: namely, (nnNn5N, whereNn is the multiplicity of the cyclic permutation~n!of n elements in the decomposition of g:$g%5(js51

(j)Nj. For this conjugacy class the centralizer subgroup of a

permuta-tion g isGg5SN1^j52

s

(SNjZj Nj

) @19#, where each subfac-tor SNn andZn permutes the Nn cycles ~n! and acts within one cycle ~n! correspondingly. Following the lines of Ref.

@19# we may decompose each twisted sector H

g Gg

into a product over the subfactors ~n!of Nn-fold symmetric tensor products, H

g Gg

5^n

.0SNnH(n)

Zn

, where SNH[(^NH)SN. Letx(;q,y) be the partition function for every~sub! Hil-bert space of a supersymmetric sigma model. It has been shown@20–25#that the partition function coincides with the elliptic genus. If x(H

(n)

Zn

;q,y) admits the extension

x(H;q,y)5(m>0,,C(nm,,)qmy ,

, the following result holds ~see Refs.@19,26#!:

(

N>0

pNx~SNH

(n)

Zn ;q,y!

5

)

m>0,,~

12pqmy,

!2C(nm,,), ~1!

W~p;q,y!5

(

N>0 p

Nx~

SNX;q,y!

5

)

n.0,m>0,, ~

12pnqmy,!2C(nm,,), ~2!

where p5e@r#, q5e@t#, y5e@z#, and e@x#[exp@2pix#. Here r and t determine the complexified Ka¨hler form and complex structure modulos ofT2, respectively, andz param-etrizes the U(1) bundle on T2. The Narain duality group SO(3,2,Z) is isomorphic to the Siegel modular group S p(4,Z) and it is convenient to combine the parametersr,t

and a Wilson line modulezinto a 232 matrix belonging to the Siegel upper half-plane of genus 2,

J5

S

r z

z t

D

,

PHYSICAL REVIEW D68, 104011 ~2003!

(2)

with Ir.0,It.0, detIJ.0. The group S p(4,Z)

>SO(3,2,Z) acts on the matrixJ by fractional linear trans-formations: namelyJ→(AJ1B)(CJ1D)21.

Finally we go into some facts related to the orbifoldized elliptic genus ofN52 superconformal field theory. The con-tribution of the untwisted sector to the orbifoldized elliptic genus is the function

x~X;t,z![f~t,z![0n 0

~t,z!,

whereas

f

S

at1b

ct1d, z

ct1d

D

50n0 ~t,z!e

F

rcz2 ct1d

G

,

S

a b

c d

D

PSL~2,Z!, ~3!

r5d/2. The contribution of the twistedmsector projected by

n is@25#

nn

m

~t,z!5f~t,z1mt1n!e

F

d

2~mn1m

2t

12mz!

G

,

m,nPZ. ~4!

The orbifoldized elliptic genus can be defined by

f~t,z!orb5

de f1 h m

(

,n50

h21

~21!P(m1n1mn)nn

m

~t,z!, ~5!

whereP,h are some integers.

II. ASYMPTOTIC DENSITY OF STATES

If y5e@z#51, then the elliptic genus degenerates to the Euler number or Witten index @27,28#. For the symmetric product this gives the identity

W~p!5

(

N>0 p

Nx~

SNX!5

)

n.0 ~

12pn!2x(X). ~6!

Thus this character is almost a modular form of weight 2x(X)/2. Equation ~6! is similar to the denominator for-mula of a ~generalized! Kac-Moody algebra @29,30#. A de-nominator formula can be written as follows:

(

sPW

@sgn~s!#es(v)

5ev

)

r.0 ~12e

r!mult(r), ~7!

wherevis the Weyl vector, the sum on the left hand side is

over all elements of the Weyl group W, the product on the right side runs over all positive roots~one has the usual no-tation of root spaces, positive roots, simple roots, and Weyl group, associated with Kac-Moody algebra!, and each term is weighted by the root multiplicity mult(r). For the su(2) level, for example, an affine Lie algebra~7!is just the Jacobi

triple-product identity. For generalized Kac-Moody algebras there is the following denominator formula:

(

sPW

@sgn~s!#s

S

ev

(

r «~r!er

D

5ev

)

r.0~

12er!mult(r), ~8!

where the correction factor on the left hand side involves

«(r) which is (21)n if

r is the sum of n distinct pairwise orthogonal imaginary roots and zero otherwise.

The logarithm of the partition function W(p;q,y) is the one-loop free energyF(p;q,y) for a string onT23X:

F~p;q,y!5logW~p;q,y!

52

(

n.0,m,, C~

nm,,!log~12pn

qmy,! ~9!

5

(

n.0,m,,,k.0

1

kC~nm,,!p kn

qkmyk, 5

(

N.0 p

N

(

kn5N

1

k

(

m,, C~nm

,,!qkmyk,. ~10!

The free energy can be written as a sum of Hecke operators TN @31# acting on the elliptic genus of X @19,29,32#: F(p;q,y)5(N.0pNTNx(X;q,y).

The goal now is to calculate an asymptotic expansion of the elliptic genus x(SNX;q,y). The degeneracies for the sigma model are given by the Laurent inversion formula

x~SNX;q,y!521pi

R

W~p,q,y!

pN11 d p, ~11!

where the contour integral is taken on a small circle around the origin. Let the Dirichlet series

D~s;t,z!5

(

(n,m,,).0 k

(

51

`

e@tmk1z,k#C~nm,,!

nsks11 ~12!

converge for 0,Rs,a. We assume that series ~12!can be analytically continued in the region Rs>2C0 (0,C0,1)

where it is analytic excepting a pole of order 1 ats50 and s5a, with residue Res@D(0;t,z)# and Res@D(a;t,z)#, re-spectively. Besides, let D(s;t,z)5O(uIsuC1) uniformly in

Rs>2C0 as uIsu→`, where C1 is a fixed positive real

number. The Mellin-Barnes representation of the function F(t;t,z) has the form

M@F#~t;t,z!521p

i

E

Rs511at

2sG~

s!D~s;t,z!ds. ~13!

The integrand in Eq.~13!has a first-order pole ats5aand a second-order pole ats50. Shifting the vertical contour from Rs511a toRs52C0 ~this procedure is permissible!and making use of the residues theorem one obtains

ABDALLA, BYTSENKO, AND GUIMARA˜ ES PHYSICAL REVIEW D68, 104011 ~2003!

(3)

F~t;t,z!5t2aG~a!Res@D~a;t,z!#

1lim s→0

d

ds@sD~s;t,z!#

2~g1logt!Res@D~0;t,z!#

121pi

E

Rs52C0

t2sG~

s!D~s;t,z!ds, ~14!

wheret[2p(Ir2iRr). The absolute value of the integral in Eq.~14!can be estimated to behave asO„(2pIr)C0. We are ready now to state the main result.

In the half-planeRt.0 there exists an asymptotic expan-sion for W(t;t,z) uniformly in uRru for uIru →0,uarg(2pir)u<p/4,uRru<1/2 and given by

W~t;t,z!5e

F

1

2pi

H

Res@D~a;t,z!#G~a!t

2a

2Res@D~0;t,z!#logt2gRes@D~0;t,z!#

1lim s→0

d

ds@sD~s;t,z!#1O~u2pItu C0!

JG

.

~15!

The asymptotic expansion atN→` for the elliptic genus

~see also Refs. @7,33#is given by the formula

x~SNX;t,z!N→`5C~a;t,z!N$2 Res[D(0;t,z)]222a%/[2(11a)]

3e

F

11a

2pia$Res@D~a;t,z!#

3G~11a!%1/(11a)Na/(11a)

G

3@11O~N2k!#, ~16!

C~a;t,z!5$Res@D~a;t,z!#

3G~11a!%$122 Res[D(0;q,y)]%/(212a)

3e

F

1

2pi

S

s→lim0 d

ds@sD~0;t,z!#

2gRes@D~0;t,z!#

DG

@2p~11a!#1/2,

~17!

wherek,a/(11a) is a positive constant. In the above for-mulas the complete form of the prefactorC(a;t,z) appears. The results~16!,~17!have a universal character for all ellip-tic genera associated with Calabi-Yau manifolds.

III. BLACK HOLE ENTROPY

In the context of string dynamics the asymptotic state density gives a precise computation of the free energy and entropy of a black hole. The corresponding black hole en-tropyS(N) takes the form

S~N!5logx~SNX;t,z!.S01A~a!log~S0!1~const!,

~18!

A~a!5~2a!21$2 Res@D~0;t,z!#

222a%. ~19!

The leading term in Eq.~18!isS05B(a)Nd(a), where

B~a!5 1

d~a!$Res@D~a;t,z!#G~11a!%

d(a)/a,

d~a!5 a

11a, ~20!

whileA(a) is the coefficient of the logarithmic correction to the entropy.

The asymptotic state density at levelN(N@1) for funda-mental p-branes compactified on manifold with topology

Tp3Rd2p can be calculate within the semiclassical quanti-zation scheme ~see for details Refs. @2,33#!. The coefficient

A(p) in this case takes the form

A~p!5~2p!21@Z

p~0!222p#, ~21! where Zp(s) is the p-dimensional Epstein zeta function. Since Zp(s50)521, we have A(p)52(d11)/(2p). In string theory, in the case of zero modes, the dependence on embedding spacetime can be eliminate@12#. In fact, the co-efficient logarithmic correctionA(p) becomes23/2, which agrees with the results obtained in the spin network formal-ism. The coefficient of the logarithmic correction to the su-persymmetric string entropy,A(a), depends on the complex dimension dof a Ka¨hler manifoldX.

Using the transformation properties~4!in Eqs.~16!,~17!

one can obtain the asymptotic expansion for the orbifoldized state density. Thus starting with the expansion of the state density of the untwisted sector we can compute the asymp-totics of the state density of the twisted sector.

IV. CONCLUDING REMARKS

Our results can be used in the context of the brane meth-od’s calculation of the ground-state degeneracy of systems with quantum numbers of certain Bogomol’nyi-Prasad-Sommerfield~BPS!extreme black holes@34 –36,4#. We note here the BPS black hole in toroidally compactified (M5T5

3X5) type II string theory. One can construct a brane con-figuration such that the corresponding supergravity solutions describe five-dimensional black holes. Five-branes and one-brane are wrapped on T5 and the system is given by the Kaluza-Klein momentum N in one of the directions. Thus black holes in these theories can carry both an electric charge QF and an axion charge QH. The brane picture gives the entropy in terms of partition function W(t) for a gas of QFQH species of massless quanta: W(t)5)nPZm/$0%$1

2exp@2tvn(a,g)#%2(dimM2m21), where t5y12pix, Rt .0, vn(a,g)5@ (jaj(nj1gj)2#1/2, and gj andaj are some real numbers. For unitary conformal theories of fixed central charge c, Eq. ~16! represents the degeneracy of the state

x(N) with momentumNand forN→` one has@14#

BLACK HOLE ENTROPY ASSOCIATED WITH THE . . . PHYSICAL REVIEW D68, 104011 ~2003!

(4)

logx~N!.2

ALz

R~2!cN2

Lc13

4 log~N!, ~22!

whereL5(dimM2m21)/4 andzR(s) is the Riemann zeta function. The entropy takes the form

S~N!5logx~N!.S01Alog~S0!, ~23!

where forL51 we have

S052pAcN/6, A52c13

2 . ~24!

Following Ref. @36#, we can put c53QF216, N5QH, and get the growth of the elliptic genus ~or the degeneracy of BPS solitons!for N5QH@1. However, this result is incor-rect when the black hole becomes massive enough for its Schwarzschild radius to exceed any microscopic scale such as the compactification radii@4,35#. Such models, stemming

from string theory, would therefore be incompatible; in view of the present result, this might be presented as a useful constraint for the underlying microscopic field theory.

Finally, note that for a Calabi-Yau space thexygenus@37# is a weak Jacobi form of weight 0 and index d/2 and it transforms as xy(TX)5(21)r2dyrxy21(TX). This relation

can also be derived from the Serre duality Hj(X;`sT X)

>Hd2j(X;`r2s

TX). Forq50 the elliptic genus reduces to a weighted sum over the Hodge numbers: namely,

x(X;0,y)5(j,k(21)j1kyj2d/2hj,k(X). For the trivial line bundle the symmetric product~6!can be associated with the simple partition function of a second-quantized string theory.

ACKNOWLEDGMENTS

A.A.B. and M.E.X.G. would like to thank CAPES for partial financial support in the context of the PROCAD pro-gram. M.E.X.G. would like to thank FAPESP for partial fi-nancial support.

@1#G. t’Hooft, Nucl. Phys.B335, 138~1990!.

@2#A.A. Bytsenko, K. Kirsten, and S. Zerbini, Phys. Lett. B304, 235~1993!.

@3#A.A. Bytsenko, S.D. Odintsov, and S. Zerbini, J. Math. Phys.

35, 2057~1994!.

@4#E. Halyo, A. Rajaraman, and L. Susskind, Phys. Lett. B392, 319~1997!.

@5#E. Halyo, B. Kol, A. Rajaraman, and L. Susskind, Phys. Lett. B401, 15~1997!.

@6#G.T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 ~1997!.

@7#A.A. Bytsenko, A.E. Gonc¸alves, and S.D. Odintsov, Phys. Lett. B440, 28~1998!.

@8#T. Damour and G. Veneziano, Nucl. Phys.B568, 93~2000!. @9#I. Brevik, A.A. Bytsenko, and B.M. Pimentel, Int. J. Theor.

Phys.8, 269~2002!.

@10#I. Brevik, A.A. Bytsenko, and R. Sollie, J. Math. Phys. 44, 1044~2003!.

@11#R.K. Kaul, Phys. Rev. D68, 024026~2003!. @12#S.K. Rama, Phys. Lett. B566, 152~2003!.

@13#A.A. Bytsenko, K. Kirsten, and S. Zerbini, Mod. Phys. Lett. A

9, 1569~1994!.

@14#A.A. Bytsenko and S.D. Odintsov, Prog. Theor. Phys.98, 987 ~1997!.

@15#A.A. Bytsenko, A.E. Gonc¸alves, and S.D. Odintsov, JETP Lett.

66, 11~1997!.

@16#M.C.B. Abdalla, A.A. Bytsenko, and B.M. Pimentel, Mod. Phys. Lett. A16, 2249~2001!.

@17#L. Dixon, J. Harvey, C. Vafa, and E. Witten, Nucl. Phys.B261, 620~1985!.

@18#L. Dixon, J. Harvey, C. Vafa, and E. Witten, Nucl. Phys.B274, 285~1986!.

@19#R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde, Com-mun. Math. Phys.185, 197~1997!.

@20#A. Schellekens and N. Warner, Phys. Lett. B177, 317~1986!. @21#A. Schellekens and N. Warner, Nucl. Phys.B287, 317~1987!. @22#E. Witten, Commun. Math. Phys.109, 525~1987!.

@23#Elliptic Curves and Modular Forms in Algebraic Topology, edited by P. S. Landweber~Springer-Verlag, Berlin, 1988!. @24#T. Eguchi, H. Ooguri, A. Taormina, and S.-K. Yang, Nucl.

Phys.B315, 193~1989!.

@25#T. Kawai, Y. Yamada, and S.-K. Yang, Nucl. Phys.B414, 191 ~1994!.

@26#R. Dijkgraaf, E. Verlinde, and H. Verlinde, Nucl. Phys.B484, 543~1997!.

@27#F. Hirzebruch and T. Ho¨fer, Math. Ann.286, 255~1990!. @28#C. Vafa and E. Witten, Nucl. Phys.B431, 3~1994!. @29#R.E. Borcherds, Invent. Math.120, 161~1995!.

@30#J.A. Harvey and G. Moore, Nucl. Phys.B463, 315~1996!. @31#S. Lang, Introduction to Modular Forms ~Springer-Verlag,

Berlin, 1976!.

@32#V.A. Gritsenko and V.V. Nikulin, ‘‘Siegel Automorphic Form Corrections of Some Lorentzian Kac-Moody Algebras,’’ alg-geom/9504006.

@33#A.A. Bytsenko, G. Cognola, L. Vanzo, and S. Zerbini, Phys. Rep.266, 1~1996!.

@34#C. Callan and J. Maldacena, Nucl. Phys.B475, 645~1996!. @35#J. Maldacena and L. Susskind, Nucl. Phys.B475, 679~1996!. @36#A. Strominger and C. Vafa, Phys. Lett. B379, 99~1996!. @37#F. Hirzebruch, Topological Methods in Algebraic Geometry,

3rd ed.~Springer-Verlag, Berlin, 1978!.

ABDALLA, BYTSENKO, AND GUIMARA˜ ES PHYSICAL REVIEW D68, 104011 ~2003!

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Ainda assim, sempre que possível, faça você mesmo sua granola, mistu- rando aveia, linhaça, chia, amêndoas, castanhas, nozes e frutas secas.. Cuidado ao comprar

Os controlos à importação de géneros alimentícios de origem não animal abrangem vários aspetos da legislação em matéria de géneros alimentícios, nomeadamente

Outrossim, o fato das pontes miocárdicas serem mais diagnosticadas em pacientes com hipertrofia ventricular é controverso, pois alguns estudos demonstram correlação

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados