• Nenhum resultado encontrado

Analysis of microbial diversity in Shenqu with different fermentation times by PCR-DGGE

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of microbial diversity in Shenqu with different fermentation times by PCR-DGGE"

Copied!
5
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Analysis

of

microbial

diversity

in

Shenqu

with

different

fermentation

times

by

PCR-DGGE

Tengfei

Liu,

Tianzhu

Jia

,

Jiangning

Chen,

Xiaoyu

Liu,

Minjie

Zhao,

Pengpeng

Liu

LiaoningUniversityofTraditionalChineseMedicine,CollegeofPharmacy,KeyLaboratoryofProcessingTheoryAnalysisofState AdministrationofTraditionalChineseMedicine,Dalian,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16September2014 Accepted8December2015 Availableonline22January2017 AssociateEditor:WelingtonLuizde Araújo Keywords: Microbialdiversity PCR-DGGE Shenqu Molecularcloning

a

b

s

t

r

a

c

t

ShenquisafermentedproductthatiswidelyusedintraditionalChinesemedicine(TCM) totreatindigestion;however,themicrobialstrainsinthefermentationprocessarestill unknown.TheaimofthisstudywastoinvestigatemicrobialdiversityinShenquusing dif-ferentfermentationtimeperiods.DGGE(polymerasechainreaction-denaturinggradientgel electrophoresis)profilesindicatedthatastrainofPediococcusacidilactici(band9)isthe pre-dominantbacteriaduringfermentationandthatthepredominantfungiwereuncultured

Rhizopus,Aspergillusoryzae,andRhizopusoryzae.Inaddition,pathogenicbacteria,suchas

Enterobactercloacae,Klebsiellaoxytoca,Erwiniabillingiae,andPantoeavaganweredetectedin Shenqu.DGGEanalysisshowedthatbacterialandfungaldiversitydeclinedoverthecourse offermentation.Thisdeterminationofthepredominantbacterialandfungalstrains respon-sibleforfermentationmaycontributetofurtherShenquresearch,suchasoptimizationof thefermentationprocess.

©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Shenqu, also known as Liushenqu, is commonly used in Chinesemedicineclinicstoprotectthestomachandspleen and stimulates appetite and digestion. Current research effortshaverevealedthatsomedigestiveenzymes(amylase enzymes, protease enzymes, glucoamylase), vitamins and other substances play a main role in stimulating appetite anddigestion.1Resistancetheoryistheearliestworkto

men-tion Shenqu. Shenqu is traditionally processed as follows: wheatbran,flour,ricebeanpowder(Vignaumbellata[Thunb.] Ohwi and Ohashi), and bitter apricot seed powder (Prunus

Correspondingauthor.

mandshurica [Maxim.] Koehne) are blended in a particular ratio. VariousChinesemedicinedecoctionsarethen added, including Polygonum pubescens (Blume), Xanthium sibiricum

(Patr.),andArtemisiaannua(L.).Themixtureisthenkneaded anddividedintobricks,whichareputintoamold.Finally,the bricksarecoveredwithadhesive-bondedclothandplacedin aboxatconstanttemperatureandhumidity.Afterafewdays offermentation,theproductiscutintosmalllumpsanddried atalowtemperature.ThequalityoftheresultingShenqucan varyduetodifferencesintheamountofthemixedbacteria and fungithatarepresent duringfermentation. Itisworth notingthat thefungusAspergillusflavusproducesaflatoxin,

http://dx.doi.org/10.1016/j.bjm.2017.01.002

1517-8382/©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

acarcinogen,duringfermentation.Thisisoneofthereasons whyShenquisnot includedinthe ChinesePharmacopeia. However,the current theoretical support endorsesShenqu forstimulatingappetiteanddigestion.abetterunderstanding ofthemicrobesinvolvedinShenqufermentationmayleadto improvedmethodsoffermentation.

There are two main types of methods for assessing bacterial diversity, traditional culture-dependent methods andculture-independentmethods.Thusfar,studiesonthe microbial diversity of Shenqu have been mainly based on traditionalculture-dependentmethods,2–4suchasPCR-SSCP

(singlestrandconformationpolymorphism)5andDGGE.6 PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis)is aculture-independent method designed toanalyze the geneticdiversity ina sample. Itovercomes thedisadvantagesofculture-dependentmethods,7makingit

acommon toolfor molecularbiological investigations into microbialcommunities.PCR-DGGEhasbeenusedwidelyto analyzemicrobialcommunitystructureacrossdifferentfields, suchasfoodmicrobiology,oralmicrobiology,soil microorgan-isms,environmentalmicrobiology,andotherareas.8–11Inthis

study,weusedculture-independentPCR-DGGEandTAcloning todeterminethemicrobialdiversityofShenquacross differ-entfermentationperiods.Theaimofthisstudywasto inves-tigateeubacteriamicrobialdiversityduringfermentationand identifyseveraldominantfermentationbacteriaandfungus.

Materials

and

methods

Shenqusamplecollection

Shenqufermentationparameterswere based onour previ-ousstudyandresponsesurfacemethodology.12Rawmaterials

were crushed in a grinder. Fourteen grams of Polygonum pubescens (Blume), Xanthium sibiricum (Patr.) and Artemisia annua(L.)weremixedwithwateranddecoctedfor1hat32◦C and75%relativehumidityandthenmixedwith60gofflour, 140gofwheatbran,8gofbitterapricot,and5.2gofricebean. Eightsampleswereprocessedanddesignatedas1–8for fer-mentationforvaryinglengthsoftime,representingdays1–8, respectively.EachShenqusample,ofapproximately100g,was collectedduringdays1–8.Allsampleswerecollectedina ster-ileenvironment,transferredtosterilepolyethylenebagsand storedat−70◦Cuntiltheywereanalyzed.

DNAextraction

FivegramsofeachShenqusampleweresuspendedin50mL of phosphate buffered saline (PBS, 0.1mol/L, pH 8.0) and shakenfor10min.Themixedsuspensionwascentrifugedat 10,000×gfor10minandwashedthreetimesusingthesame PBS buffer.Totalgenomic DNAwasextractedfromthe pel-letsusingaONE-4-ALLGenomicDNAMini-PrepsKit(Sangon Biotech, Shanghai, China) according to the manufacturer’s instructions.Thesamplesweregroundusingliquidnitrogen andlysisbuffer,thenrapidlythawedinawater-bathat65◦C foranhour.Thesampleswereshakenevery10minduring lysis.ThecrudeDNAwaselectrophoreticallyanalyzedon1.2% (w/v)agarosegels;sampleswerethenkeptinaclean0.5-mL microcentrifugetubeandstoredat−20◦C.

PCRamplification

AllprimersusedinthisstudyarelistedinTable1. General bacterial16SrRNAgeneprimers338Fand518Rwereusedto assessbacterialdiversity.Atouch-downPCRtechniquewas employedinordertoincreasesensitivity.Thethermalcycling conditions were as follows:5min denaturation at 95◦C; 5 cyclesof30sat94◦C,30sat62◦C(witheachcyclereduced by2◦C),and90sat72◦C;25cyclesof30sat94◦C,30sat50◦C, and90sat72◦C;andfinalextensionfor10minat72◦C.AGC clamp(5-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCA CGGGGGG-3)wasattachedtothe5endofprimer338Ffor theDGGEanalysis.

AnestedPCRtechniquewasemployedinordertoincrease sensitivity. PCRamplificationofgeneralbacterial18S rRNA wasperformedusinguniversalgeneprimersNS1andFR1in thefirststep,followedbynestedPCRusingNS1andGC-Fung. Thethermalcyclingconditionswereasfollows:5min dena-turationat95◦C;30cyclesof30sat94◦C,30sat50◦C,and 90sat72◦C;andfinalextensionfor10minat72◦C.PCR prod-uctsfromthefirststepweredilutedwith10timestheamount ofddH2Oandservedasthetemplateforthesecondroundof nestedPCR.

DGGEanalysis

ThePCRproductsofbacteriaandfungiwereanalyzedusing DGGE and the D-code Universal Mutation Detection Sys-tem (Bio-rad, USA). For assessing bacterial diversity, 10%

Table1–Primersusedinthisstudy.

Targets Primers Sequence(5–3) References

Bacteria 338Fa CCTACGGGAGGCAGCAG MuyzerG13

518R ATTACCGCGGCTGCTGG MuyzerG13

Fungi

FirstPCRround NS1 GTAGTCATATGCTTGTCTC VainioEJ14

FR1 AICCATCAATCGGTAIT VainioEJ14

SecondPCRround NS1 GTAGTCATATGCTTGTCTC MayLA15

Fungb ATTCCCCGTTACCCGTTG MayLA15

F,forwardprimer;R,reverseprimer.

a Primerwitha41-bpGCclamp(CGCCCGGGGCGCGCCCCGGGGCGGGGCGGGGGCGCGGGGGG). b Primerwitha40-bpGCclamp(CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCC).

(3)

of the polyacrylamide gradient (acrylamide:bisacrylamide, 37.5:1)wasused.Theoptimalseparationwasachievedbya 40–70%denaturantgradient.Forassessingfungaldiversity,8% polyacrylamideand25–40%denaturantgradientwereused. Electrophoresiswasthenperformedfor1hat60Vand15h at100V(60◦C).Afterelectrophoresis,gelswerestainedwith SYBRGreenI(MolecularProbes,BBI,Candia)for30min.The gelswereobserved,andphotographsweretakenusingaKETA GseriesImageSystem(Wletch,USA).

SequencingofDGGEbands

Representativebands were excisedfromgels withasterile blade.Thegelpiecesweregroundusingtissue-grinding pes-tles(Sangon,Shanghai,China)andthenincubatedovernight at4◦CinTEbuffer(pH8.0).TheDNAsolutionwithTEwas thenamplifiedwithprimerswithnoGCclamp.PurifiedPCR productswereligatedintoapUCm-Tvectorandthen trans-formedinto Trans5␣ChemicallyCompetent Cells(Transgen Biotech,Beijing,China).Individualwhitecolonieswere ampli-fiedwithPCRusingtheprimersM13-4716andM13-48(Sangon,

Shanghai, China). Samples were then sent to a sequenc-ingcompanyforsequencing(Sangon,Shanghai,China).The resultinggenesequenceswere alignedwiththose inaGen Bank withtheBlastprogramtoidentifythe closestknown relatives.

Statisticalanalyses

QuantityOnesoftware(Bio-rad,USA)wasusedtoanalyzethe DGGEprofilesandperformclusteranalysis.Statistical anal-ysis ofthe data sets was performed using MATLAB 2013a software(Mathworks,USA).TheShannon–Wienerindexwas determinedbytherelativeintensityofbands.

Results

Bacterialandfungalcommunitydiversity

TheDGGEprofileforthebacterialcommunityoffermenting ShenquisshowninFig.1.Notably,thebacterialcommunity differed over the courseof fermentation, whilethe fungal community did notdiffer. Diversity indicesof microbesin ShenquwerecalculatedbasedontheDGGEprofile.The bac-terialdiversityindicesover8daysoffermentationwereas follows:day1,21bands,Shannon–Wienerindex2.38;day2,23 bands,index2.56;day3,13bands,index2.07;day4,13bands, index2.05;day5,18bands,index2.19;day6,18bands,index 2.15;day7,19bands,index2.35;andday8,7bands,index1.52. Thefungaldiversityindicesoverthe8dayswereasfollows: day1,8bands,Shannon–Wienerindex1.69;day2,10bands, Shannon–Wienerindex1.92;day3,4bands,Shannon–Wiener index1.36;day4,8bands,Shannon–Wienerindex1.77;day 5, 7 bands, Shannon–Wiener index 1.77; day 6, 7 bands, Shannon–Wienerindex1.35;day7,7bands,Shannon–Wiener index1.59;andday8,7bands,Shannon–Wienerindex1.71. Thespeciesrichnessvariedovertheeightsamples,andmost bandswereobservedinthesamplefromday2(Fig.1AandB). Thesamplefromday2alsohadthehighestShannon–Wiener indices(2.56and1.92)ofthePCR-DGGEprofiles.

Bacterialandfungaldiversityaftervaryingdurationsof fermentation

ThesequencingofbacterialDGGEbandshighlightedthe pres-enceofvariousbacterialstrains,includingEnterobactercloacae

(band 1, 100%identity to NCBI accession KM408606), Kleb-siellaoxytoca(bands2and10,100%identitytoKM408607and KM408615), Erwiniabillingiae(bands3and11,100%identity

1d 2d 3d 4d 5d 6d 7d 8d 1d 2d 3d 4d 5d 6d 7d 8d 8 7 1 10 9 2 3 4 5 6 1 2 3 12 11

A

B

Fig.1–TouchdownPCR-DGGEandnestedPCR-DGGEprofileofbacterialcommunitydiversityofShenqufromthe16srDNA

and18srDNAobtainedfromShenquaftervaryingdurationsoffermentation.Lanes1–8drefertosamplesderivedfromthe

1sttothe8thdayoffermentation,respectively.(A)A40–70%denaturinggradientwasused.(B)A25–40%denaturing

(4)

toKM408608 and KM408615), Escherichia hermannii(band 4, 99%identitytoKM408609),Paenibacilluspolymyxa(band5,99% identitytoKM408610),Pantoeavagans(band6,100%identity to KM408611), Acinetobacter baumannii (band 7, 100% iden-titytoKM408612),Desulfotomaculumthermocisternum(band8, 100%identitytoKM408613),P.acidilactici(band9,99%identity toKM408614),and Citrobacterkoseri(band 12,100% identity toKM408617) (Fig. 1A).Notably, P. acidilactici (band 9,100% identityto KM408614))was detectedthroughout the entire fermentationprocess.

The sequencing of fungal DGGE bands highlighted the presenceofthreestrains:unculturedRhizopus(band1,100% identitytoNCBIaccessionKM408618),Aspergillusoryzae(band 2,100%identitytoKM408619), andRhizopusoryzae(band3, 100%identitytoKM408620)(Fig.1B).Again,onespecies,the unculturedRhizopus(band 1),was detectedthroughoutthe entirefermentationprocess,followedbyband2,3(A.oryzae, R.oryzae).

Discussion

Inthisstudy,PCR-DGGEwas appliedtoanalyzethe micro-bial communitystructure oftheTCM supplement Shenqu. Shenquisanaturalculturemediumcontainingvarious nutri-ents.Conventionalculturemethodsareunabletoreflectits fullnutritional contents. Therefore, our study adopted the culture-independentmethodofPCR-DGGEtoinvestigatethe bacterialandfungalcommunitystructureofShenqu.The bac-terialDGGEfingerprintsshowedthatthePediococcusacidilactici

strain(band9,Fig.1A)wasthepredominantbacterialspecies presentduringfermentation.Likewise,thepredominant fun-gusduringfermentationwas unculturedRhizopus,followed byA.oryzae,andR.oryzae.FromBerger’sbacterial identifica-tionmanualandrelatedliterature,17–19 weknowthatthese

bacteriacanproduceamylase,proteaseenzymessuchas glu-coamylase,anddigestiveenzymes.Theseproductsarelikely tobeassociatedwiththeappetitestimulatinganddigestive functionsofShenqu.

Thesequencingresultsshowedthatthebacterial commu-nityincluded10typesofpathogenicbacteria,includingseven

E.cloacaestrains,K.oxytoca,20E.billingiae,andP.vagan.21This

studyconfirmedthatpathogenicbacteriaexistinthe tradi-tionalChinesemedicineShenqu.Theexistenceofpathogenic bacteria is likely to affect the quality of various batches of Shenqu compared with batches of Shenqu that have undergonepurebred fermentation22,6 alsoinvestigatedthe

microbialcommunityofShenqubyPCR-DGGEandfoundthat thedominantmicrobesbelongedtothegeneraEnterobacter, Pediococcus,Pseudomonas,Mucor,andSaccharomyces,whichare resultsthataresomewhatdifferentfromours.Thisoutcome isprobablyduetothedifferentproportionsofingredientsand fermentationparametersusedinthetwostudies.

In conclusion, the aim ofthis study was toinvestigate themicrobesofShenquovervaryingdurationsof fermenta-tionbyPCR-DGGE.TheresultsrevealedthatP.acidilactici,A. oryzae,andR.oryzaewerethepredominantmicrobespresent. TheseresultsmaycontributetofurtherstudyofShenqu,such asstudiesfocusingonoptimizingthefermentationprocess orpurebredfermentationofShenqu.Onlybypurifyingthe

predominantmicrobesofShenquwillwebeabletoexamine themicrobialbiologicaltransformationsthatoccurinShenqu. Thus,inthisstudy,wesuggestthatPCR-DGGEshouldbe con-sideredasapreliminarytoolforinvestigatingthemicrobial community structureofShenqu.Becauseoftechnical defi-cienciesofthePCR-DGGEmethod,however,someelementsof themicrobialcommunitymayinevitablygoundetected.Other newtechnologies,suchasT-RLFP,MLSTandhigh-throughput sequencing,couldthereforebeadoptedforfurtherstudies.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisworkwasfinanciallysupportedbytheNationalScience andTechnologyMajorProjectsConstructionoftheIncubator (Benxi)BaseofNationalInnovationDrugsinLiaoningProvince (20102X09401-304-105A).

r

e

f

e

r

e

n

c

e

s

1.ZhangLY,JiangGY,WangF.Comparisonofdigestiveenzyme

activitiesandtheeffectongastrointestinalmotilityofmice

betweenunprocessedandprocessedLiushenqu.ChinJClin

Pharm.2008;20(3):3.

2.ChengYX,ZhangJ,QiCC,ZhouL,ShiXY.Optimizationof

submergedfermentationtechnologyforMassaMedicata

FermentatabyAspergillussydowii.ChinJExpTradMedForm.

2013;19(19):42–45.

3.WangQH,SuY,WangLH,etal.Studyonisolationand

identificationoffungiinmedicatedleaven.ChinJExpTrad

MedForm.2014;20(7):122–126.

4.WuJY,LiY,WangDX,ShiXY.Investigationpure

fermentationandstrainsseparationofLiushenqu.ChinJExp

TradMedForm.2013;19(16):12–14.

5.ChenJ,JiaoX,YangC.FungalcompositioninMassa

MedicataFermentatabasedonculturedependentmethod

anindependentPCR-SSCPtechnique.ChinJChinMaterMed.

2014;39(21):4169–4173.

6.XuY,XieYB,ZhangX-R.Monitoringofthebacterialand

fungalbiodiversityanddynamicsduringMassaMedicata

Fermentatafermentation.ApplMicrobiolBiotechnol.

2013;97:9647–9655.

7.MuyzerG,SmallaK.Applicationofdenaturinggradientgel

electrophoresis(DGGE)andtemperaturegradientgel

electrophoresis(TGGE)inmicrobialecology.AntonieVan

Leeuwenhoek.1998;73(1):127–141.

8.MarianthiS,AthanasiosK,AlexG,MariaK,YiannisK.

EffectivesurvivalofimmobilizedLactobacilluscaseiduring

ripeningandheattreatmentofprobioticdry-fermented

sausagesandinvestigationofthemicrobialdynamics.Meat

Sci.2014;96:948–955.

9.DePaulaVA,DeCarvalhoFD,CavalcanteFS,etal.Clinical

signsandbacterialcommunitiesofdeciduousnecroticroot

canalsdetectedbyPCR-DGGEanalysis:researchassociation.

ArchOralBiol.2014;59(8):848–854.

10.JonathanL,RichardV,LouiseD.Anewframeworkto

accuratelyquantifysoilbacterialcommunitydiversityfrom

(5)

11.ZhongX,RimetF,JacquetS.Seasonalvariationsin

PCR-DGGEfingerprintedvirusesinfectingphytoplanktonin

largeanddeepperi-alpinelakes.EcolRes.2014;29:271–287.

12.LiuT,GaoH,LiuX.Optimizationoffermentationtechniques

ofMassaMedicataFermentatabyresponsesurface

methodology.JChinMedMater.2014;37(10):1757–1761.

13.MuyzerG,DewaalEC,UitterlindenAG.Profilingofcomplex

microbial-populationsbydenaturinggradient

gel-electrophoresisanalysisofpolymerasechain

reaction-amplifiedgenes-codingfor16sribosomal-RNA.

ApplEnvironMicrob.1993;59:695–700.

14.VainioEJ,HantulaJ.Directanalysisofwood-inhabitingfungi

usingdenaturinggradientgelelectrophoresisofamplified

ribosomalDNA.MycolRes.2000;104:927–936.

15.MayLA,SmileyB,SchmidtMG.Comparativedenaturing

gradientgelelectrophoresisanalysisoffungalcommunities

associatedwithwholeplantcornsilage.CanJMicrobiol.

2001;47:829–841.

16.BonitoG,IsikhuemhenOS,VilgalysR.Identificationoffungi

associatedwithmunicipalcompostusingDNA-based

techniques.BioresourTechnol.2010;101:1021–1027.

17.BanwoK,SanniA,TanH.Functionalpropertiesof

Pediococcusspeciesisolatedfromtraditionalfermented

cerealgruelandmilkinNigeria.FoodBiotechnol.

2013;27(1):14–38.

18.HunterAJ.Independentduplicationsof␣-amylasein

differentstrainsofAspergillusoryzae.FungalGeneticsBiol.

2011;48(4):438–444.

19.DengYF,LiS,XuQ,GaoM,HuangH.Productionoffumaric

acidbysimultaneoussaccharificationandfermentationof

starchymaterialswith2-deoxyglucose-resistantmutant

strainsofRhizopusoryzae.BioresourceTechnol.

2012;107:363–367.

20.AntonioB,MariannaC,RiangelaG,MilenaS,MariaRC.

CharacterizationandimplicationsofEnterobactercloacae

strains,isolatedfromItaliantableolivesBellaDiCerignola.J

FoodSci.2010;75(1):M53–M60.

21.TimK,TheresaAL,VirginiaOS,CarolAI,TheoHMS,BrionD.

Characterizationofthebiosyntheticoperonforthe

antibacterialpeptideherbicolininPantoeavagansbiocontrol

strainC9-1andincidenceinPantoeaspecies.ApplEnviron

Microbiol.2012;78(12):4412–4419.

22.GaoH,JiaTZ.Comparativeresearchonqualityofvarious

Shenqufermentatedwithdifferentpureinoculation.ChinJ

Referências

Documentos relacionados

Levando em consideração a importância biotecnológica das enzimas preoteolíticas, o objetivo desse estudo foi verificar o potencial de produção de proteases, obtida por

Experiments were also carried out to study the effect of addition of different carbon sources in the fermentation medium on the growth and activity of the bacterial

A partir da presente pesquisa buscou-se conceituar e analisar as novas formas de economia colaborativa que estão se consolidando na sociedade globalizada, bem como a real necessidade

Uma vez que para além do extrato ser rico em hidroxitirosol, apresenta quantidades significativas de compostos não desejados, entre eles alguns compostos voláteis,

Soaking, cooking, and fermentation times change the content, profile, and distribution of the different forms of isoflavones in tempeh.. The highest bioconversion of

Thus, the objective of this study was to evaluate the influence of solid state fungal fermentation in obtaining polyphenols, to determine the total phenols content, to identify

Enquanto não havia um profissional responsável apenas pela administração do setor de manutenção na empresa Águia Química LTDA, grande parte dos processos acontecia de

Após 27 meses do início da pesquisa, inauguramos a segunda etapa do estudo, que teve como objetivo a realização de mais uma entrevista com cada um dos gestores