• Nenhum resultado encontrado

J. Braz. Soc. Mech. Sci. & Eng. vol.29 número3

N/A
N/A
Protected

Academic year: 2018

Share "J. Braz. Soc. Mech. Sci. & Eng. vol.29 número3"

Copied!
8
0
0

Texto

(1)

! "

#$ ! % && '()* " +

!

"

#

$

In this paper, we report on numerical simulations of incompressible

MagnetoHydroDdynamic flows by a two dimensional finite difference scheme associated to an appropriate projection method performed to characterize velocity pressure formulations along the specified MHD duct by solving the set of differential equations of magnetohydrodynamics. In the present calculation, a working electrolytic solution is considered in order to bring up the application of the magnetohydrodynamic micropump. Numerical results show the characteristics of flow velocity, pressure distribution and their convergence tests. The computations aim to optimize the flow rate of a given MHD micropump regarding to its geometrical dimensions and the external electromagnetic excitation.

: magneto hydrodynamics equations, Lorentz force, finite difference scheme, projection method, velocity pressure formulation.

!"#$ %

% & % ' (

)

*

' ( %

+

' ( ,

-.

' (

% % ' ( $

' % / 0112$ *

%

'

&

, &

' (

,

, 0110$ * 0113$

+ ' (

' ( ! " ) * + , - ." / * "

/ !!"$ 4 & !!!$

5 0111$ ,

6 0111$

0113$

' (

5 0111$

-&

% ( %

.

. , +

= magnetic flux density, T d = grid size of cell, m

= electric field, N/C =frequency, Hz = Lorentz force, N

F+=Lorentz force carried by positive ions, N F =Lorentz force carried by negative ions, N

= height of the electrode, m

Ha = Hartmann number, dimensionless I = electric current, A

5 = electric current density, A/m2 k = constant

= distance between electrodes, m Le = total length of the MHD channel, m

L = Characteristic length of the fluid flow, m = normal direction

(2)

. * /*

α

N = number of ions of speciesα in the duct p = pressure, N/m2

p = average pressure over the width of the outlet duct, N/m2 q = unit charge, 1.6 1019C

) = hydrodynamic Reynolds number, dimensionless S =cross sectional area of channel, m2

s = threshold of convergence t = time, s

t =time step, s 7 = velocity, m/s

u = average velocity over the width of the outlet duct, m/s

n

u = normal velocity, m/s

t

u = tangential velocity, m/s

u = component of dimensional velocity in the x axis direction, m/s

v = component of dimensional velocity in the y axis direction, m/s

7 =Characteristic velocity of the fluid flow, m/s 8 = total volume device, m3

= axis in Cartesian coordinates y = axis in Cartesian coordinates z = axis in Cartesian coordinates

α

z = valence of ions of speciesα in the duct

ν 9 , 0:

σ 9 : $

ϕ 9

j 9 0: 8 $

9 / : $

ρ 9 / : #

ϑ 9 :

Φ 9

; ;

.

' ( ' (

'<'& ' < ' &

= >

'

6

-<

+

α

+ !?2$

) B E

.( z . q

Fα= α +ϑα∧ $

+ $

! " # $ %& $ # ' ' ( ) #

( ' *( (

* α α

' ( ,

0 N . z E .

q

=

α α α

0$

+ % $ 6

-B . z . N .

q

α

α α α

ϑ #$

& 6

-y

x α

α α ϑ ϑ

ϑ = + 2$

x

α

ϑ ϑαy

6

-0

/

Re) . N (

Ha= N =σ.L.B0/ρ.U

ν / UL Re= )

9L.B.(σ/ ) /0 ρν

+ ' ! , ( ( - . / ! $01 # 2 . 01 2

'' . 30

ρ ( 9 103 / : #

( 9 1! 1#/ : $

ν / 9 1?#2 1? 0:

1 ' 92π. 1−"H/m

σ < 9 2 /( m)

η ( 9 !@ 13( .m0)/H

0/"1 2

3

4

$

*

5

4

(3)

) )

η

σ UL/

UL

Rem= 1= 3$

1

% η

- σ

α

ϑ * %

E

x α

α

ϑ = α %

6 -B . z . N .

q

αx

α α α

ϑ ?$ B ) E .( z . N .

q

α

α α α

"$

α α α α

. z . N B E .

q ∧

@$

A α

α α α . z . N . q

6 -) B I .( ) B J ( V ) B E .( V .

F=σ ∧ = ∧ = ∧ !$

* 6

-0111$ 4

' < ' & '<'&$

6 - 0111$ 5

6 ' (

(

& *

!!!$ ' 6 6 0111$ ' (

* *

%

% $ ϕ

6 -B dt ) f cos( ). ft cos( . B . I . f . F f ϕ π π +

=

0 0

1 1$ < ) cos B . I . ( /

F = 0 ϕ $

<% $ 6

0 ,

C

' (

%

D & , % . ' E

% ' ( - ) % ϑ ∧ ∇ =

w % ,

!"#$ F

j σ

p .U/L %

%

1 =

∇ϑ 0$

E

R B E

j= + ϑ∧ $ #$

$ 0 B j N R p R

t + ∇ + e∇ = e∇ + ∧

∂ ∂ ϑ ϑ ϑ ϑ 2$ UB / E

RE = E

U E R j ϑ j B) (

j=σ −∇Φ+ϑ∧ Φ

ϑ ∧ ∇ = w 4 F

!!1$ 6 - ,

B E 4 $ 4 4

.∧ =σ ϑ∧ ∧ =σ 3$

* ' ( % 0 (

(4)

. * /*

-1 = ∂ ∂ + ∂ ∂

y v x u

?$

x

F y

u x

u x p Dt

Du +

∂ ∂ + ∂ ∂ + ∂ ∂ −

= $

0 0 0 0

ρ "$

y

F y

v x

v y p Dt Dv

+ ∂ ∂ + ∂ ∂ + ∂ ∂ −

= $

0 0 0 0

ρ @$

Dt / D

x

F Fy 6

-+ ' & # $ ( $ ) $

69!11 ( C

91 @ * *

491 13 *

t91

-!"

% ' ( % !$

& ' (

6 - % % ? " @$ ' (

*

21 21

+

-%

t

d0≥0ν

-+ ' '' # ( $

-& !3?$ !?3$ !" $ ,

!!@$

1 =

n

u !$

n u k

ut = ∂ t:∂ 01$

D

1 = ∂

∂P n 0 $

+

1 = =v

u *

G91 ' ( + #

' ( %

-0 #

6 $ # (

+

-*

791$9

( )

c λ

( )

c0

λ = λ=uv

2 ?

" 67!8 " !867

" !8 " 7!8

" !8 7 9: &; 7

(5)

-:" $ ,. !0====,. 07. !0==== "

<" +3 ,. !0====!8 .,. 0++++,. 9007. !0∞∞∞∞7. 0

3 ) ' (( '# ,. !0==== ,. 0−−−−,. 0

' ( % !" * % v u = λ d x n j i n j i j i n 0 − + − = ∂

∂λ λ λ

H d y n j i n j i j i n 0 − + − = ∂

∂λ λ λ

00$ 0 0 0 0 d x n j i n j i n j i j i n − + − + = ∂

∂ λ λ λ λ

H 0 0 0 0 d y n j i n j i n j i j i n − + − + = ∂

∂ λ λ λ λ

0#$

d p p

x

p in j in j

j i n 0 − + − = ∂ ∂ 02$ + dt u u t

un = inj − inj

∂ ∂ + 03$ % & , * -s n

n$−λ − 1$ <

λ > 1 9 12

# D % % 4 & .

, !""$ !@?$ A !!"$

A 011#$ . dt dt dt t n n n n n

n 7 7 7 7 7

7 7 − + − = − = ∂

∂ + + + :0 + :0

0?$ % 0 : + n

7 7n

(

)

dt ρ

F 7n / 7n

7 7

7+ − ∇ = −

∇0 + 0

ν 0"$

F ; t$

%

7 7

dt p n+ − n+:0

= ∇ −

ρ 0@$

& ; $

) dt ( ) ρ p ( / n n

n+ + + 0

∇ = ∇ −

∇ 7 7 0!$

; $

1 =

∇ + #1$

; $ G %

dt p= ∇7n+:0

ρ # $

G % dt j i d j i p j i p j i p j i p j i p n n n n n 2 $ 2 $ $ $ $ $

0∇7

− − + + + − + + = + + + + + #0$ d j i v j i v d j i u j i u j i n n n n 0 $ $ 0 $ $ $ 0 : 0 : 0 : 0 : − − + + − − + = ∇ + + + + 7 ##$

F % D

%

: 7

7 %

(6)

. * /*

1 = ∂ ∂

#2$

%

dt p

n

n :0

ρ ∇ −

= +

+ 7

7 #3$

d

j i p j i p dt j i u j i u

n n

n n

ρ 0

$ $

$

$= :0 − + − −

+ +

+

+ #?$

d j i p j i p dt j i v j i v

n n

n n

ρ 0

$ $

$

$= :0 − + − −

+ +

+

+ #"$

$

F

' (

' ( 21I21 *

91 @* 491 13

9!11 m 3@1

" !

F + @

)

*

0

0+ !

E &

,

6

-" ' 6 )5#

: " ' 6 5#

" ' $

+ 1

%

+ + 1

%

(7)

!! " ' '# # ( ' (

*

0 # &

! 6 (( # (

! 6 6 ' '#

-6

-' ( 2

9@11 * 491 13

! 12

6 ' # (( . $ )= $ )=;: 0

%

' ( +

+

D

' (

, ,

+ 6

-&

' (

&

, ,

$ '

* ' D , & 0113 JG

, K

< , Energy Conversion Managem 8 2 0?13 0? # 4 & D !!! J* + < ' +

' K ( '

< 7 ' L

* 5 !@? JD D & ,

% K Math. Comp. 8 00 "23 "?0

/ ) M G & !"# J' ( +

* G K ' A 4 /

+ ) G 6 ) 4 & ' !?2 J +

6 G K * F ) 7&* #

A 5 + M 6 4 !!" J<

% K Advances in Differential Equations 8 0 D # 20" 230

A 5 6 M & 5 011# J8 .

K SIAM J. Numer. Anal.8 2 D 0 #2

D , 5 , N 0110 J4

(8)

. * /*

/ 6 F F ' ' !!!

J( :

--' ($ K SPIE 8 #@"" ?? "# 5 G !!1 J K " $ 0 &

' A G D N ,

* / & < ., 5 8 4 * 6 , +

8 < ) . D + 0113 J* (

' ($ K The Royal Society of

Chemistry, Lab Chip 8 3 2?? 2"

5 ) !?3 J' + ) ( K

J. Fluid Mechanics8 0 D 2 3"" 3!1 5 5 6 & & 0111 J

' ( $ K Sensors and Actuators 8

@1 @2 @!

/ + O * ) ( & 0112 J&

' ( K

Journal of Electrical Engineering 8 33 D 0 #1 #13 / & 5 6 ' 6 & 5 !!" J<

+ ' ($ ( +

& & K KSME International Journal 8 D 3 32" 333

6 ( & M 011 J'

) K J. Fluid Mech 8 2#!

#?"

6 * 8 M 6 * G 0111 J* * K Sensors and Actuators B 8 ?# "@ @3

6 P / , ' 011? J&

' ( K Cryogenics 8 2? #?0 #??

& 5 * !3? J + + G

7 ' + K J. Fluid Mechanics 8 ?22

) !"" JD & , <% K & ' * 0

D *

( 5 M 6 !" J

K Proc. Cambridge Philosophical Society 8 ?! ##" #3

, ' & M ' D 4 !!@ J' ( K

Referências

Documentos relacionados

[r]

The secondary flow (convective flow induced due to rotation) increases correspondingly and the temperature profiles become distinctly different from those of pure forced

Once the pressure and velocities fields are obtained, the drag and lift coefficients and the Strouhal number are calculated using the Lagrangian force field,

[r]

In this work an optimization procedure is proposed to improve the prebuckling response of crooked beams and plates with arbitrary initial geometric imperfections.. Firstly,

The external solid concrete interconnecting Panels with a core of Polyethylene and cellular concrete presents a lower performance acoustically than the conventional masonry,

[r]

The estimation algorithm considers a Kalman filter with a rather simple orbit dynamic model and random walk modeling of the receiver clock bias