• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número3"

Copied!
8
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Antibacterial

activity

of

(

)-cubebin

isolated

from

Piper

cubeba

and

its

semisynthetic

derivatives

against

microorganisms

that

cause

endodontic

infections

Karen

C.S.

Rezende

a

,

Rodrigo

Lucarini

a

,

Guilherme

V.

Símaro

a

,

Patricia

M.

Pauletti

a

,

Ana

H.

Januário

a

,

Viviane

R.

Esperandim

a

,

Carlos

H.G.

Martins

a

,

Mislaine

A.

Silva

a

,

Wilson

R.

Cunha

a

,

Jairo

K.

Bastos

b

,

Márcio

L.A.E.

Silva

b,∗

aNúcleodeCiênciasExataseTecnológicas,UniversidadedeFranca,Franca,SP,Brazil

bDepartmentofPharmaceuticalSciences,FaculdadedeCiênciasFarmacêuticasdeRibeirãoPreto,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2October2015 Accepted15December2015 Availableonline22February2016

Keywords:

Lignans

Pipercubeba

(−)-cubebin

Semisyntheticderivatives Antibacterialactivity

a

b

s

t

r

a

c

t

Recentpublicationshavehighlightedthenumerousbiologicalactivitiesattributedtothelignan(−

)-cubebin(1),PipercubebaL.f.,Piperaceae,andongoingstudieshavefocusedonitsstructuraloptimization, inordertoobtainderivativeswithgreaterpharmacologicalpotential.Theaimofthisstudywasthe obtain-mentof(1),itssemisyntheticderivativesandevaluationofantibacterialactivity.Theextractoftheseeds ofP.cubebawaschromatographed,subjectedtorecrystallizationandwasanalyzedbyHPLCand spectro-metrictechniques.Itwasusedforthesynthesisof:(−)-O-methylcubebin(2),(−)-O-benzylcubebin(3), (−)-O-acetylcubebin(4),(−)-O-(N,N-dimethylamino-ethyl)-cubebin(5),(−)-hinokinin(6)and(−)-6.6′

-dinitrohinokinin(7).Theevaluationoftheantibacterialactivityhasbeendonebybrothmicrodilution techniquefordeterminationoftheminimuminhibitoryconcentrationandtheminimumbactericidal concentrationagainstPorphyromonasgingivalis,Prevotellanigrescens,Actinomycesnaeslundii,Bacteroides fragilisandFusobacteriumnucleatum.Itwaspossibletomakeananalysisregardingtherelationship betweenstructureandantimicrobialactivityofderivativesagainstmicroorganismsthatcause endodon-ticinfections.Themostpromisingwereminimuminhibitoryconcentration=50␮g/mlagainstP.gingivalis

by(2)and(3),andminimuminhibitoryconcentration=100␮g/mlagainstB.fragilisby(6).Cytotoxicity

assaysdemonstratedthat(1)anditsderivativesdonotdisplaytoxicity.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Inthelastdecade,therehasbeenintensificationinthesearch ofanti-bactericidalcompoundsfromnaturalsources,mainlyfrom plants,whichcontinuetobeamajorsourceofbiologicallyactive metabolitesthatmayprovideleadstructuresforthedevelopment ofnewdrugs(AyresandLoike,1990).

Thebiological propertiesoflignans areclosely relatedtothe stereochemistryofthevariousstereogeniccenterspresentintheir chemical structure, which makes these compounds interesting synthetictargets(Silva etal., 2009).In this context, many bio-logical activities have been reported in the literature (Saleem etal.,2005),suchasantitumor(AyresandLoike,1990;Lietal., 2006),antiviral(Rimandoetal.,1994),anti-PAF(Shenetal.,1985;

∗ Correspondingauthor.

E-mail:mlasilva@unifran.br(M.L.A.E.Silva).

BraquetandGodfroid,1986),antidepressant(Deyamaetal.,2001), anti-inflammatory(Souzaetal.,2004;Kassuyaetal.,2006)and car-diovascular(Rimandoetal.,1994),andantiviral(Charlton,1998; Piccinellietal.,2005),trypanocidal(DeSouzaetal.,2005),analgesic (DaSilvaetal.,2005).

Theliteraturereportstheaccumulationoflignoidsandother metabolitesthat possess significant pharmacologicalactivity in speciesofthegenusPiper,Piperaceaefamily,andespeciallyinP.

cubebaL.f.(Parmaretal.,1997;Arrudaetal.,2005).

Anexampleofthesesubstancesis(−)-cubebin(1),a dibenzyl-butyrolactoliclignanfoundinhighconcentrationsinseedsofPiper

cubeba(Elfahmi, 2006).Duetoitswell-knownbiological

activi-ties,1hasbecometheobjectofstudyofmanyresearchgroups overthelastdecade.Theseworkshaveculminatedinthe discov-eryofnewandimportantbiologicalactionsfor1(DeSouzaetal., 2005;Da Silva etal., 2005;Silva et al.,2007,2009; Usiaetal., 2005;Hirataetal.,2007a,b,2008;Saraivaetal.,2007;Yametal., 2008).

http://dx.doi.org/10.1016/j.bjp.2015.12.006

(2)

3 2

1 7

8

6

5 4

H

H O

O

OH

O

1 O

O

9'

1'

2'

3'

4' 5' 6'

8' 7'

Theestablishmentofainflammatoryprocessleadsthemajor forms of endodontic disease, gingivitis and periodontitis. The intensityoftheinflammatory responsevarieswiththestageof evolutionarydevelopmentofinfection,asithasinthebeginnings ofapathologicalprocessaminorreactionthattendstoincrease inproportiontothespreadofmicrobialinvasion,andmaylead totalnecrosisofthepulptissueprovidinganopportunityforthe developmentofsevereapicalperiodontitis(LuisiandFachin,1990). Theoralmicro-organismsarefoundinsalivawithinacomplex matrixcomposedofmicrobialextracellularproductsandsalivary compoundsonthesurfacesofgrowingenamel,knownasbiofilms (Marsh,2005).Thepathogenesisofpulpalinjuryisduetobacterial invasioninthistissue(BergenholtzandCrawford,1989).

Theharmfuleffectofmicroorganismsinthepulpandperiapical tissuesanditsinstallationhasbeenthesubjectofongoing stud-iestoshowtheirpresence,tocorrelatetheassociationbetween thesemicro-organismsandoralinfections(Kakehashietal.,1965; Wittgowand Sabiston,1975;Tani-Ishiiet al.,1994;Fine,2000; Socranskyand Haffajee,2002;De Lilloetal.,2004)anddevelop methodsthatleadtoitsdestructionwiththedevelopmentofnew antimicrobials.

Ideally, in addition to having antimicrobial activity, the endodontic formulation should not harm the host’s tissues (Baumgartner,1997).Inthisregard,theuseofanorabase formu-lationcontaining0.1%fluocinoloneacetonideandtheactivelignin derivativewouldenhancetheeffectivenessagainstoralinfections. However,thereis yetnodrugor substancecapableofbringing togetherthesetworequirements,whichjustifiestheresearchand developmentofnewantimicrobialagents.Additionally,he litera-turereportsthepossibilityofisolationoflignansfromP.cubeba

andotherspeciessuchasChamaecyparisobtusa(Marcotullioetal.,

2014),Linum(Schmidtetal.,2010).However,althoughthese

com-poundscanbeisolatedfromplants,theyareobtainedinlowyields inextractions,alsoresultingindifficultpurificationprocesswith severalsteps.Therefore,partialsynthesisfrom(−)-cubebinisthe mostviableway,withreactionsthatallowyieldsabove98%(Da Silvaetal.,2005)andsimplerpurificationsteps.

Takingaccountthevariousbiologicalpropertiesattributedto lignans, the previous studies obtained by our research group describingsatisfactoryresultsconcerningthesecompounds,this workaimstoexpandknowledgeoftherelationshipbetweenthe chemicalstructuresoflignansandtheirbiologicalactivitiesand thusthesearchforbioactivemolecules.

Materialsandmethods

Solventsandreagents

Anhydroussodiumsulfate (MerckCo.),dry dichloromethane (AcrosCo.),magnesiumsulfate(MerckCo.),pyridinium chlorochro-mate (Acros Co.), hexane (Mallinckrodt Co.), ethyl acetate (MallinckrodtCo.),ethanol (MerckCo.),aceticanhydride(Merck Co.),drytetrahydrofuran(THF)(MerckCo.),sodiumbicarbonate (MerckCo.),sodiumchloride(MerckCo.),drypyridine(AcrosCo.), toluene(MallinckrodtCo.),chloroform(MerckCo.),hexane(Merck

0 10 20 30 40 min

0 100 200

mAU

254nm,4nm (1.00)

21.783

23.426

Fig.1. Chromatogramof theepimersof 1obtainedusing a.Shim-pack ODS, 250×4.20mm,5␮mColumn,volumeofinjection:20␮l,flow:1ml/min,detection at254nmandlineargradient:MeOH-H2O(50%)/MeOH(100%),in48min.

Co.), sodium hydride (NaH) (Acros Co.), methyl iodide (Merck Co.), dimethylethylaminechloride (MerckCo.), metallic sodium bars(MerckCo.),fumingnitricacid(MerckCo.)andethylacetate (MallinckrodtCo.).

Plantmaterialcollectionandisolationof1

TheseedsofPipercubebaL.f.,Piperaceae,usedinthis study wereimportedfromFloralSeedCompany,Dehradun,India(Proc. FAPESP05/01550-8).TheprocessofseedsofP.cubebaextraction wascarriedoutaccordingtoliterature(Souzaetal.,2004).Itwas used1kgofseeds,whichyieldedthecrudeethanolicextract.The partitionsoriginatedahydroalcoholicextract,285g.A chromato-graphiccolumnchromatographywasundertakenandthefractions werecollectedandcombinedaccordingtotheirchromatographic profiles.

HPLCanalysisoffraction10,obtainedfromthefiltrationcolumn chromatography,showedthepresenceof1.Thefractionwas sub-jectedtothecrystallizationprocess,solubilizingitwithacetone, andaddinghexaneuntilturbidityofthemedium.After crystalliza-tion,thesupernatantwasremoved,thusfurnishingcrystalsof1.

The recrystallization process was repeated five consecutive times, which made it possibleto obtain 13.9g 1. This method allowed excellent purification, which was confirmed by analy-sis using a binary system chromatograph Shimadzu CBM-20A, -ProminenceLC-6ADequippedwithamanualinjectorwith20ml loop,a“degasser”DGU-20A5coupledtoaUV–visdetectormodel SPD-20Aanddataacquisitionbyamicrocomputerandan analyti-calcolumnofShimadzu,Shim-packODS,250mm×4.20mm,5␮m, equippedwithpre-column.Thesolventsystemconsistedofa mix-tureofmethanolandwaterinalineargradient50–100%in48min. ThechromatographicconditionsdefinedforcompoundHPLC anal-ysiswere:254nm,injectionvolumeof20␮landflow rateof 1ml/min.

Thesecrystalswereanalyzedusingnuclearmagneticresonance techniquesofhydrogen(1H)andcarbon(13C)andHPLC(Fig.1), confirmingitsidentificationas(−)-cubebin.

Obtainmentofsemi-syntheticderivatives

Scheme1representsasummaryofthereactionsforobtainment ofthederivativesof1.

Obtainingthederivate2(a)

(3)

7

6

1

3

2

4

5

Scheme1.Obtainingsemisyntheticderivativesof1:2,where:CH3I,NaH,dryTHF,30min,TAatmN2;3,whereb:benzylbromide,NaH,THF,6h,TA;4,wherec:acetic

anhydride,drypyridine,toluene,dichloromethane;5,whered:dimethylethylaminechloride,sodiumethoxide,refluxfor8h,6wheree:PCC,dryDCM,atmN2,-60C,24h;

7,wheref:HNO36equiv,CHCl3,10◦C,4h.

v/v).ThereactionwasneutralizedwithdiluteHClandsubjected topartitionwithethylacetate(3×30ml).Theorganicfractionwas washedsuccessivelywith5%aqueousNaHCO3(3×20ml)and10% saline(3×20ml),driedwithMgSO4andfiltered.

Obtainingthederivate3(b)

Toobtainthebenzylderivative(Souzaetal.,2004),asolutionof 1(300mg)and10mlofdryTHFwasaddedtoamixtureofNaHand dryTHF(5ml),anditwasallowedunderrefluxfor30min.Benzyl bromide(0.12ml)wasaddedandleftunderthesameconditions for2h.Tocompletethereaction,waterwasslowlyaddedtothe flaskandbecameextractionswithether.

Obtainingthederivative4(c)

Toobtainthederivative4(Souzaetal.,2004),50mgof1and 3mlofaceticanhydridewereaddedto0.8mldrypyridine.After 5hofreactionatroomtemperature,themixturewasplacedinavial containingtolueneandevaporatedunderthereducedpressureto removepyridine.Subsequently,dichloromethanewasaddedand evaporatedunderreducedpressuretoremovetracesoftoluene.

Obtainingthederivate5(d)

To obtain 5 (Souza et al., 2004), 300mg of 1 was added a 10mlof sodiumethoxideand leftit underrefluxfor2h. Later,

itwasadded120mgof dimethylethylaminechloride.The reac-tion wasmaintainedunder thesame conditions for 6h. Water (5ml)wasadded and partitions weremade withethyl acetate (3×10ml).Theorganicphasewaswashedwith10%NaClaqueous solution(3×10ml),driedwithMgSO4andfiltered.Thesolventwas evaporatedandtheresiduewaspurifiedbycolumn chromatog-raphyonsilicagel60(0.063–0.200mm,MerckCo.)eluted with dichloromethane.

Obtainingthederivative6(e)

Inathree-burnerreactionflaskprotectedfromlightand main-tainedat0◦C,wasaddedto10mlofdichloromethaneand50mgof

1.Later,underinertatmosphere,wasadded2equivalentsof1to 1equivalentofPCC(pyridiniumchlorochromate),andthereaction wasmaintainedunderstirringfor12h(Souzaetal.,2004;DeSouza etal.,2005).

Obtainingthederivate7(f)

Toobtainanitratedderivative(DaSilvaetal.,2005;DeSouza et al.,2005), 200mg of 6wassubjected toreactionwith nitric acid(6EqM)for2hundermagneticstirringand0◦C.Later,itwas

(4)

Determinationofminimuminhibitoryconcentration(MIC)

Toobtaintheinoculum,thestrainswerestoredat−20◦Cand resuspendedinliquidmediumbrothSchaedlersupplementedwith hemin(5mg/ml) andmenadione(1mg/ml). Thenalltest bacte-ria weresubculturedin Schaedler agarplus defibrinated sheep blood(5%),hemin(5mg/ml)andmenadione(1mg/ml)were subse-quentlyincubatedintemperatureof36◦Cinananaerobicchamber

for72hinanatmospherecontaining10.5%H2,10%CO2and80–85% N2 toconfirmthe purityof thestrains. Afterconfirmation,the strainswereusedinthetestsfordeterminationofMIC.

Thedensityoftheinoculumwaspreparedtoscaleof0.5Mc FarlandsecondBier(1981).Allbacterialsuspensionswereadjusted inthesametransmittance.Compoundsweredissolvedindimethyl sulfoxide(DMSO)usinganultrasonicbathwhichwereusedforthe brothmicrodilutiontechnique.

The following “American Type Culture Collection” (ATCC) microorganismswere used in this study: Porphyromonas

gingi-valis(33277),Prevotellanigrescens(33563),Actinomycesnaeslundii

(19039),Bacteroidesfragilis(25285)andFusobacteriumnucleatum

(25586).

Methodofbrothmicrodilution

Thetechniquewasperformedaccordingtomethodology rec-ommendedbytheClinicalandLaboratoryStandardsInstitute(CLSI, 2007),withadaptations.

Inasterileplateof96holesweredepositedatotalof200␮lof themixtureofSchaedlerbroth,microbialsuspensionandtest sub-stanceinordertoobtainconcentrationsfrom20to400␮g/ml.It wasmadetheculturecontrol,thecontrolofsterilityofthebroth andcompounds.Thechlorhexidinedigluconatewasusedas posi-tivecontrolandDMSOasnegativecontrol.

Theplatewasincubatedat36◦Cinananaerobicchamberfor

72h.Laterwereaddedtoeachholeof30␮lresazurin0.02% pre-paredinaqueoussolution.Theplatewasreincubatedfor30min. Therewas,then,changingthecolorblue(nobacterialgrowth)and pink(bacterialgrowth).Thisprocedurewasperformedintriplicate.

Determinationofminimumbactericidalconcentration(MBC)

TodeterminetheMBCweusedthequantitativetechniquebased onthemethodofLifengetal.(2004).TheseriesusedforMIC deter-minationwereperformedinduplicateandonewasusedtoevaluate theMBCofthesubstancesobtained.10mlofthesolutionwhich showedinhibitionof bacterialgrowthintheMICmethodwere platedinSchaedleragar,andsubsequentlyincubatedfor24hat 37◦C.Themediawereanalyzedtoobservethepresenceorabsence

ofgrowthoforalbacteria.

Cytotoxicityassay

TheLLCMK2fibroblastcellsweregrowninRPMI(RoswellPark MemorialInstitute)1640mediumsupplementedwith100U/mlof penicillin,100␮g/mlofstreptomycin,and5%ofinactivatedfetal calf serum, and maintainedat 37◦C in 5% CO2. A cell

suspen-sionwasseededataconcentrationof1×106cells/mlina96-well microplatecontaining RPMI1640medium. Thereafter, thecells weretreatedwithPC-EOatdifferentconcentrations(200,100,50, 25,12.5,6.25,and3.125␮g/ml).Theplateswereincubatedat37◦C

for 24h, andthe biologicalactivitywasevaluated byusingthe MTTcolorimetricmethod[MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide]thatiscleavedbythemitochondrial enzymeresultingformazancrystalsdetectinglivingcellsina24h period in a microplate reader at 540nm. RPMI 1640 medium plusDMSO and RPMI1640medium wereused aspositive and

negative controls, respectively. All the experiments were per-formedintriplicate.Thepercentageofcytotoxicitywasdetermined bytheformula:%cytotoxicity=1−[(Y−N)/(N−P)]×100,where Y=absorbance of wells containing cells and PC-EO at different concentrations;N=negativecontrol;P=positivecontrol( Muellas-Serranoetal.,2000).

Resultsanddiscussion

Isolationof1

Regarding the method for extraction by percolation with ethanol,itcouldbeconcludedthatitisaneffectiveprocedure,in whichalargeamountofsubstancesofdifferentdegreesofpolarity intheextractcouldbeextracted.Thepartitionsmadewithorganic solventsfortheseparationoflesspolaroils,forfurther fraction-ationbychromatographictechniquesallowedabetterseparation ofsubstances.

In the analysisby HPLC, compound 1 presented two peaks, showingtheexistenceof␤and␣epimers indifferentamounts (Fig.1).Theepimersarediastereoisomersgeneratedbyhydroxyl linkedtothelactolring.Itisaconvertiblemixtureofbothepimers, inwhichitwaspossibletoassigntheirsignalsduetoalarger per-centageofeachconformation.Thetestedsampleisastablemixture ofbothisomers.

Thecrystalswereanalyzedusingtechniquesof1Hand13CNMR. [␣]D25◦=−8.12(c0.46,CHCl3).Thepurityof(−)-cubebinwas esti-matedtobehigherthan95%bybothHPLCand13CNMRanalyses, aswellasitsmeltingpoint,131–132◦C,1HNMR[ı,multiplicity

(JinHz),400MHz,CDCl3]:ArH(6.8–6.4;m;6H);H7(2.8–2.4;m; 4H);H7′(2.8–2.4;m;4H);H8(2.3–1.9;m;1H);H8(2.8–2.4;m;

1H);H9(5.2;s;1H);H9′[4.05(dd;6Hz;1H);3.72(dd;8Hz;1H)];

O CH2 O(5.9;s;4H).13CNMR[ı,multiplicity(JinHz),100MHz, CDCl3]:C1(132.3);C2(108.3);C3(147.5);C4(145.9);C5(109.5); C6(121.9);C7(39.5);C8(53.1);C9(103.5);C1′(133.9);C2(109.3);

C3′(147.5);C4(145.9);C5(109);C6(121.6);C7(38.7);C8(45.1);

C9′(72.7); O CH2 O (101.1).

Obtainingthesemi-syntheticderivatives

Thepuritiesoftheobtained(−)-cubebinderivativecompounds wereestimatedtobehigherthan95%bybothHPLCand13CNMR analyses.

Obtainingthederivative2

The compound was successfully obtained using methods

describedbyVenkateswarluetal.(1999),withayieldof approxi-mately95%(Fig.1S).

Thereactionoccursviaabimolecularnucleophilicsubstitution reaction,whichthereistheformationofthealkoxideion, nega-tivelycharged,inthetreatmentof1withastronglyreactivemetal. Thisintermediatereactionisusuallyusedasacatalyst,sothatthe centerislocatedinthenucleophiliccarbonatompartially nega-tivecharge.Ingeneral,it isareactioninwhich thenucleophile approaches thesubstrate fromthesideopposite thehalideion, directlyattackingthecarbonandatthesametime,shiftingthe leavinggrouploosingitthemolecule.Thenucleophilehasapairof electronsthatwillbeusedtomakethenewbondtocarbon.The reactionisaprocessinasinglestep,withoutintermediaries,that formswhenthecarbon-nucleophile–givingrisetotheexpected compound,2,breaksthecarbon-halogen.

(5)

isalsoanucleophile,becauseitalsohasapairofelectronstomake asubstitutionreaction.

Thecompoundobtainedwassubjectedtospectroscopicanalysis of1HNMR,13Canddeterminationof[]

D25◦[−120.4◦ (c0.0057,

CHCl3)].1H[multiplicity(JinHz)]:ARH(6.5m),H7andH15␦NMR at400MHzinCDCl3 [(5.8m)],H2inagreaterproportionofthe epimer(J=1.3Hz)(4.6d),H2epimerwaslower(J=4.6Hz)(4.55d). Theremainingsignalsareindicativeofepimers:3.9(m,H5aoftwo epimers),3.5(m,H5boftwoepimers),3.2and3.1(twosingletsof protonsof16twoepimers),andbetween2.7and1.9(m,H3,H8, H6andH4ofthetwoepimers).

Obtainingthederivative3

Thebenzylderivative(73.78%)wasobtainedfromthereaction between1andbenzylbromide.Bythinlayerchromatographywas possibletoobservethedisplacementoftheproductwithRfthan 1,indicatingthepossiblepresenceofpolaritylowerthanthatof1 (Fig.2S).

ThereactionoccursviatheWilliamsonsynthesis,which con-sistsofanalcoholatesbyreactinganalcoholwithareactivemetal, andsubsequenttreatmentofthealkoxidewithanarylhalide.It producesa nucleophilic substitutionreactionwithformation of ether.

Itisalsoabimolecularnucleophilicsubstitution,inwhichthe nucleophileapproachesthesubstratefromtheoppositesidetothe halideion.Theaffinityforoppositechargesallowsthedirectattack onthecarbonandthesimultaneousdisplacementoftheleaving group.

Thereactionisaprocessinasinglestep,without intermedi-aries,thatformswhenthecarbon-nucleophile–givingrisetothe expectedcompound,3,breaksthecarbon-halogen.

Thiswassubmittedtospectroscopicanalysisof1HNMR,13C anddeterminationof[␣]D25◦=−2.09(c0.008,CHCl3).1HNMR[ı, multiplicity(JinHz),400MHz,CDCl3]:ArH(6.8–6.4;m;6H);H7 [2.60–2.10(m;4H)];H7′[2.60–2.10(m;4H)];H8[2.15–1.80;(m;

1H)];H8′[2.60–2.70(m;1H)];H9[4.80(s;1H)];H9[3.95(dd;12

and6Hz;1H)and3.70(dd;12and8Hz;1H)]; O CH2 O [5.90 (s;4H)];CH2[4.70(d;1H)and4.85(d;1H)]andAr[6.40–6.8(s;5H) and7.0(s)].13CNMR[ı,multiplicity(JinHz),100MHz,CDCl

3]:C1 (133.9);C2(108.2);C3(142.2);C4(146.3);C5(109.3);C6(121.8); C7(38.9);C8(52.5);C9(103.7);C1′(134.5);C2(108.3);C3(148.2);

C4′(146.3);C5(109.3);C6(121.7);C7(39.4);C8(46.2);C9(72.3);

O CH2 O (100.8);Ar-CH2(69.0);Ar(109.7–108.2).

Obtainingthederivative4

Theproductappearedasayellowishoil,whichcanbeexplained bythepresenceoftwoforms(␣and␤)oflignanmodified,andthat theproductwasmixedwith1.Themassderivedfrompointedend ofthereactionyield(85%)(Fig.3S).

Theacetylationreactionwasnotdevelopedinaconventional mannerasitisforthesynthesisofacetylsalicylicacidandother estherificationreactions, because theyuse acidcatalysis which leadstodisruptionoftheringorsufferdehydrationcetalic non-characterizingthemoleculeoftheoriginal1.

Thus,theacetylationof1wasperformedusingpyridineasa catalystforitsabilitytomediateredoxreactions,actingas “elec-trontransport”,whichleadstotheformationofthenucleophile. Thenucleophilicsubstitutionoccurs,then,withtheattackofthe nucleophiletothecarbonpartiallypositivechargeofacetic anhy-dride.Atthesametime,thiscarbonatomattackstheoxygenatom whichhaspartialnegativecharge.Thesereactionsoccurinonestep, withoutformationofintermediates,givingriseto4andacetateion. ThiswassubjectedtoNMRspectroscopicanalysisof1H,13C,and determinationof[␣]D25◦.

[␣]D25◦=123.33(c0.0057,CHCl3);1HNMR[␦,multiplicity(Jin Hz),400MHz,CDCl3]:Ar-H(6.65–6.40;m,6H);C-8(2.30–1.95;m, 1H);C-9′(4.04(dd;1H)and4.00(dd;1H)); O CH2 O (5.90;s,

4H); CH3(1.99,s,3H).13CNMR[ı,multiplicity(JinHz),100MHz, CDCl3]:C-1(132.21);C-2(107.63);C-3(147.42);C-4(145.72);C-5 (108.43);C-6(121.51);C-7(38.71);C-8(51.10);C-9(102.89);C-1′

(133.29);C-2′(109.01);C-3(147.42);C-4(145.92);C-5(108.43);

C-6′(120.88);C-7(37.40);C-8(44.23);C-9(73.32); O CH2 O

(100.49); O CO (169.91); CH3(20.89).

Obtainingthederivative5

Thesynthesiswascarriedoutwithoutcausingdamagetothe lactolicringof1(Fig.4S).Itwasobtainedin93%yield.

The technique of Williamson was also utilized, as it is an importantprocessforthepreparationofethers,symmetricaland asymmetricones. Thesodium alkoxidewasprepared by direct actionofethoxide,whichcanmakenucleophilicsubstitutions eas-ily,onalcohol.Replacedalkylhalidereactedwiththepreviously formed.Itconsistsofthenucleophilicsubstitutionofhalideionby thealkoxideion,withthesimultaneousattackoncarbonpartially loaded,andofthechloride.

ThiswassubjectedtoNMRspectroscopicanalysisof1H,13C,and determinationof[␣]D25◦.

[␣]D25◦=4.38◦ (c 0.067, CHCl3); 1H-RMN ␦ (CDCl3): Ar-H [6.70–6.40(m;6H)];H7[2.80–2.30(m;4H)];H7′ [2.80–2.30(m;

4H)];H8[2.10–1.90(m;1H)];H8′[2.80–2.40(m;1H)];H9[4.75

(s;1H)];H9′[4.05(m;1H)and3.80(m;1H)]; O CH2 O [5.90

(s;4H)];O CH2 [3.66–3.52(m;2H)];CH2 N [1.12(t;7.07Hz; 1H) and 1.09 (t;7.07Hz;1H)]; N (CH3)2 [1.09 (s; 6H)]. 13 C-RMN␦(CDCl3):C1(134.5);C2(108.3);C3(147.8);C4(146.2);C5 (109.6);C6(122.0);C7(39.5);C8(52.5);C9(104.5);C1′ (133.8);

C2′(108.9);C3(147.2);C4(145.9);C5(109.3);C6(121.8);C7

(39.0); C8′ (46.2); C9(72.3); O CH2 O (101.1); O CH2

(63.2); CH2 N (43.7); N (CH3)2(46.2).

Obtainingthederivative6

Theproductwaspurifiedbyproviding98%yield,anditspurity wasdeterminedbyHPLC(Fig.5S).Inanacidicenvironment, per-hapsthe1sufferlactolichydroxyldehydrationandelimination. Theoutputofthe OHgroupleadstoformationofadoublebond inthefuranring.Thiseffectofacidinordertoremovethehydroxyl lactolicof1ismoredifficulttooccur.Inanotherpossible behav-ioralmechanismof1inanacidmedium,protonationofthefuran oxygenandsubsequentopeningoflactolicringwiththeformation ofanaldehydeandanalcohol.

Thus,theoxidation requiresa detailed analysis.Possiblythe reaction with PCC led to the formation of an intermediate inorganicesterofanalcohol.Theresiduecontainsametalthatcan beeasilyreduced,andintheprocessthealcoholisoxidized.

Inthe1HNMRspectrumshowedamarkeddifferenceinthe structureof6withrespecttothestructureof1,which consists mainlyin the absenceof hydrogenH-9 and maybe notedthe absenceof signalin5.20ppm(s,1H),indicatinganoxidationat thisposition.

[␣]D25◦=30 (c 0.99, CHCl3); 1H-RMN ␦ (CDCl3): Ar-H [6.80–6.40 (m; 6H)]; H7 [2.65–2.40 (m; 4H)]; H7′ [2.65–2.40

(m;4H)];C8[2.10–2.95(m;1H)];H8′ [2.85(m;1H)];H9[3.85

(dd; 7.4Hz; 1H) and 4.12 (dd; 7.0Hz; 1H)] and O CH2 O [5.90 (s; 4H)]. 13C-RMN ı (CDCl3): C1 (131.6); C2 (108.4); C3 (147.9);C4(146.3);C5(108.3);C6(121.6);C7(34.8);C8(46.5); C9(178.4);C1′ (131.3);C2(108.8);C3(147.9);C4(146.5);C5

(108.3);C6′(122.2);C7(38.4);C8(41.3);C9(71.2); O CH2 O

(6)

Obtainingthederivative7

Themechanismofnitrationmaybethroughamixtureofnitric andsulfuricacids.Inreactiontoobtain7(Fig.6S),whichhad97.6% of yield,it wasused fuming nitricacidwhich already contains nitroiliondissolved,whichistheelectrophilicparticlethatattacks thebenzenering.Solutionsofthesesaltsarestableincertain sol-ventssuchasnitromethaneoraceticacid,performthenitrationof aromatics,gentlyandwithhighyieldatroomtemperature.

Needingelectrons,thisionfindthemparticularlyavailablein the␲cloudofthebenzenering,soitwillbefixedtooneofthe carbonatomsoftheringbyacovalentbond,formingacarbocation, oftendesignatedasbenzenoidion(MorrisonandBoyd,1996).

Thismeansthatthepositivechargeisnotlocalizedinonecarbon atom,butdistributedthroughoutthemolecule,andisparticularly strongonthecarbonatomsinorthoandparapositioninrelationto thatwhichbindstheNO2group,thedispersionthepositivecharge throughoutthemolecule,theeffectofresonance,theionbecomes morestablethanitwouldhavehadapositivechargelocated. Prob-ablythisisthesamestabilizingeffectthatallowstheformationof carbocation,takingintoaccountthestabilityoftheoriginalbenzene molecule.

Thereactionissimilartotheadditiontoalkenes:anelectrophile species,drawnelectrons,isattachedtothebenzenemolecule form-ingacarbocation␲.Theinclusionofabasicgroupinbenzenóico ionwithformationofanadditionproductwoulddestroythe char-acterofthearomaticring.Instead,thebasicion,HSO4−,extractsa hydrogenionandformbenzenoidasubstituteproductthatstays intheringstabilizedbyresonance.Thelossofhydrogenisoneof thetypicalreactionsofcarbocations(MorrisonandBoyd,1996).

Theelectrophilic substitution,suchas electrophilicaddition, takesplaceinsuccessivesteps,involvingtheformationofa car-bocationintermediate. Bothreactions,however,differfromone another,thefateofthecarbocation.Althoughthemechanismof nitrationispossiblybetterthanelucidatedthemechanismsofother aromaticsubstitutionreactions,itseemsalmostcertainthatallof themareprocessedinthesamemanner(MorrisonandBoyd,1996). Aromaticsubstitutionreactionsarecharacterizedbythe addi-tionofNO2grouptothearomaticringleadingtothedesired prod-uct.Thearomaticcompoundsasmuchascanbenitratedaliphatic, formingimportantproductsinorganicsynthesis.Thenitrationof aromaticringdeactivatesit,inareactionwhoseproductsareeasily separatedandanalyzed,whichidentifiestheproportionsofortho, metaandparaproductsformed(Kouletal.,1983).

Thiswassubmittedtospectroscopicanalysisof1HNMRand 13Cand[]

D25◦.[␣]D25◦=29.07(c0.008,CHCl3).1HNMR[ı, mul-tiplicity(JinHz),400MHz,CDCl3]:7.5(s,1H),7.48(s,1H),6.8(s, 1H);6.6(s,1H);6.1(m,2H);4.35(dd,1H,J=7.1and9.1Hz);4.0 (dd,1H,J=7.3and9.1Hz);3.26(d,2H,J=7.1Hz);3.2(dd,1H,J=6.3 and13.6Hz);3.0(dd,1H,J=7.8and13.6Hz);2.8(m,2H).13CNMR [ı,multiplicity(JinHz),100MHz,CDCl3]:178.00;152.3;152.2; 147.6;143.1;142.9;130.9;130.7;112.5;111.2;106.6;106.2;103.6; 103.5;71.4;45.7;41.7;37.2;34.2;EMAR(M+H)+Calculationfor C20H17N2O10:445.0884;found:445.0890.Analyticcalculationfor C20H16N2O10:C,54.0937;H,3.6315;N,6.3081;O,35.9667;found: C,53.9173;H,3.5462;N,6.2121;O,36.3244.

DeterminationofMIC

Silvaetal.(2007)studiedtheantimicrobialactivityof deriva-tives of 1 extracted fromPiper cubeba, compared toother oral micro-organisms.Theantimicrobialactivitywastestedonseven oftheoral cavity pathogens:Enterococcusfaecalis,Streptococcus

salivarius,Streptococcussanguinis,Streptococcusmitis,Streptococcus

mutans, Streptococcus sobrinus and Candida albicans. The

com-poundswereeffectiveonmostofthepathogensstudied.

Inthepresentwork,othermicroorganismsthatcause endodon-tic infection were tested, to expand knowledge regarding the chemicalstructureandbiologicalactivity.Assayswereperformed intriplicate,evaluatingthecompoundsseparately.TheMICvalues ofcompoundsareshowninTable1.

According to Rivers and Recio (2005), among the results obtainedinthiswork,compounds2and3showedsignificant activ-ity(50␮g/ml)comparedtothemicroorganismP.gingivalis(ATCC 33277)forcompounds1and7,whichalsoshowedsignificant activ-ity(200␮g/ml).However,5and6showedloweractivities,and4 wasnotactive(MIC>400␮g/ml).

Compound 6 displayed significant activity against B. fragilis

(ATCC 25285)(100␮g/ml).On theother hand, noactivity was observedfortheotherevaluatedcompounds(>400mg/ml). Com-pounds1,2,3and7showedlowactivity(400␮g/ml)againstP.

nigrescens(ATCC33563),andcompounds4,5and6werenotactive

MICvalues(>400␮g/ml).

Thecompounds werenotactiveagainst themicroorganisms

Actomycesnaeslundii(ATCC19039)andF.nucleatum(ATCC25586)

showingMICvalues>400␮g/ml.

The MICvalues displayedby compounds 2 and 3 were sig-nificant(50␮g/ml)comparedtothevaluesformicroorganismP.

gingivalis(ATCC33277)andforcompound6againstthe

microor-ganismB.fragilis(ATCC25285)(100␮g/ml).Theresultsobtained forantimicrobialactivityinthisstudyareinaccordancewiththe activitiesobtainedfortheanti-inflammatoryandanalgesic, accord-ing toreportsin theliterature (Da Silva etal., 2005), in which theanti-inflammatoryandanalgesiceffectsof dibenzylbutyrolac-tonelignanswereinvestigatedusingdifferentanimalmodels.It wasobserved that (−)-cubebin and (−)-hinokinininhibited the edemaformationintheratpawedemaassayandthatallresponses weredosedependent.Also,atthedoseof30mg/kg,compounds (−)-cubebin,(−)-hinokinin,(−)-6,6′-dinitrohinokinininhibitedthe

edemaformationby53%,63%and54%,respectively,atthethird houroftheexperiment.Intheaceticacid-inducedwrithingtest inmice,(−)-hinokininproducedinhibitionlevelof97%,while(− )-6,6′-dinitrohinokinindisplayedlowereffect(75%),whichwasstill

higherthan(−)-cubebin.

Compounds2and 3differfrom1bythepresenceofmethyl orbenzylgroupsreplacingthelactolichydrogen.Compound6is alignan-lactonethatdiffersfrom1bythepresenceofacarbonyl groupatC-9.

Theliterature reportsthat compoundshavinga lactonering with two methylenodioxyaril groups showed significant anti-inflammatoryandanalgesicactivities,andtheintroductionofpolar groupsonthearomaticringsisalsoadvantageousforthese activ-ities(DaSilvaetal.,2005).However,withrespecttotrypanocidal activity,theintroductionofnitrogroupsinthearomaticringsis harmfulforthisactivity(DaSilvaetal.,2005).

Althoughchlorhexidine have displayeda considerablylower valueoftheMICagainstalltestedmicro-organismsinrelationto thecompoundsobtainedinthiswork,theresultsseemtobe sat-isfactorycomparedwithotherpreviouslypublishedworksinthe literature.Inaddition,thecontinualsearchfor newcompounds against oral pathogens may be justified by the side effects of chlorhexidine,suchasdiscolorationoftheteethandtaste perver-sion.Itshouldbenotedthatthisstudyprovidesadditionaldatathat isrelevanttoshowthepotentialactivityagainstoralpathogens presentedbypurecompoundsobtainedfromP.cubeba,alongwith theirsemisyntheticderivatives.

DeterminationofMBC

(7)

Table1

MICvaluesofevaluatedcompounds.

Compounds Minimuminhibitoryconcentration(␮g/ml)

P.gingivalis A.naeslundii B.fragilis P.nigrescens F.nucleatum

1 200 >400 >400 400 >400

2 50 >400 >400 400 >400

3 50 >400 >400 400 >400

4 >400 >400 >400 >400 >400

5 400 >400 >400 >400 >400

6 400 >400 100 >400 >400

7 200 >400 >400 400 >400

Control(Chlorexidine) 0.922 1.844 7.375 0.922 1.844

Concentrationsofthetestedsubstances:20␮g/mland400␮g/ml.Concentrationsofpositivecontrol:0.0115␮g/mland8␮g/ml.

Table2

Minimumbactericidalconcentrationvaluesoftheevaluatedcompounds.

Compounds Minimumbactericidalconcentration(␮g/ml)

P.gingivalis A.naeslundii B.fragilis P.nigrescens F.nucleatum

1 400 >400 >400 >400 >400

2 200 >400 >400 >400 >400

3 300 >400 >400 >400 >400

4 >400 >400 >400 >400 >400

5 >400 >400 >400 >400 >400

6 400 >400 >400 >400 >400

7 >400 >400 >400 >400 >400

Control(Chlorexidine) 0.922 1.844 7.375 0.922 1.844

Concentrationsofthetestedsubstances:20␮g/mland400␮g/ml.Concentrationsofpositivecontrol:0.0115␮g/mland8␮g/ml.

humansgrowsfasterthanthedevelopmentofnewdrugs. There-fore,thesearchforalternativetherapiesisimperative.

An antibiotic may have bactericidal (cause cell death with reducedbacterialgrowthgreaterthanorequalto80%), bacterio-static(inhibitsbacterialgrowthwithreductionusuallylessthan 80%sinceitdoesnotoccurcelldeath),ornotpresentanyactivity, whenthebacteriumisresistanttoit,accordingtoCLSI(2007).

Thetestsconcerningtheminimumbactericidalconcentrationof thecompoundsobtainedareshowninTable2.Amongit,notethat therewassomeactivityof2and3againstP.gingivaliswithMBCof 200␮g/mland300␮g/ml,respectively.1and6presentedtheMBC of400␮g/ml.Asfortheothercompounds,theirMBCvalueswas notdetermined(>400␮g/ml).

However,comparedtoothermicroorganisms(P.nigrescens,A.

naeslundii,F.nucleatumandB.fragilis)itwasnotobservedactivity,

sinceallthecompoundsshowedMBCvalues>400␮g/ml.

Determinationofcytotoxicity

Theviabilityofthecultureswasdeterminedbyestablishinga relationbetweentheabsorbancevalues obtainedin thetreated

100

80

60

40

Viability

, %

20

(1) (2) (3) (4) (5) (6) (7)

6.25

µM

12.5

µM

25µ M

50µ M

100

µM

200

µM

400

µM

0

Fig.2.EffectsofthecompoundsontheviabilityofLLCMK2fibroblastcells. Cyto-toxicitywasdeterminedusingMTTassayafter24htreatmentwiththeindicated concentrations.Valuesareexpressedbymean±S.D.

anduntreated(control)groups,asshowninFig.2.Theseresults revealedthattheinvitroactivityofthetestedsubstancesmaynot berelateddocytotoxiceffects,sincetheydonotpresentsignificant cytotoxicity.

Althoughinvitroassayshavenotbeenconsideredsuitableto cover all the aspects of the activities of drugs, especially with respecttopharmacologicalandimmunologicalinteractions,they providefirstevidenceoftheeffectsandinsightintothemodeof action,thus,theymayleadtothedevelopmentofnewtherapeutic approacheslikedrugtargeting(Holtfreteretal.,2011).

Conclusions

Fromthisstudyitwaspossibletoobtainrelevantdata concern-ingtherelationshipbetweenstructureandantimicrobialactivity forlignansderivedfrom(−)-cubebin(1)againstmicroorganisms thatcauserootcanalinfections,ie,whichsubstituentgroupsare importantformaintenanceorincreaseofantimicrobialactivityfor thesecompounds.Investigationson1arealwaysgearedtoward findingoutnewbiologicalpropertiesandsynthesizingmorepotent derivativesfromapharmacologicalviewpoint.Itshouldbe high-lightedthatthederivativeswereobtainedwithhighyields,which allowedthecompletionofallstepsofpurification,identification andbiologicalevaluation.

Accordingtothecurrentstudy,thepresencesofcarbonylgroup atcarbon9,aswellastheintroductionofpolargroupsarebeneficial forantimicrobialactivity.Theanalysisoftheresultsalsosuggests thatthelignan1anditsderivatives,especially2,3and6, consti-tuteanimportantsourceofnewbioactivenaturalproducts,which encouragesfurtherstudies.

Authors’contributions

(8)

AHJ contributed tocritical reading of themanuscript. VRE and CHGMcontributedtobiologicalassays.MAS contributedto iso-lationandidentificationofcompounds.WRCcontributedtothe identificationofderivatives.JKBcontributedtocriticalreadingof themanuscript.MLASdesignedthestudyandsupervisedthe labo-ratory.Alltheauthorshavereadthefinalmanuscriptandapproved thesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisworkwassupportedbyFAPESP(forGrantsProcessNumber 2008/07089-9and 2009/05049-2),CNPq(forfellowshipsGrants ProcessNumber303349/2013-1)andCAPES.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2015.12.006.

References

Arruda,D.C.,D’alexandri,F.L.,Katzin,A.M.,Uliana,S.R.,2005.Antileishmanialactivity ofterpenenerolidol.Antimicrob.AgentsChemother.49,1679–1687.

Ayres,D.C.,Loike,J.D.,1990.Lignans:Chemical,BiologicalAndClinicalProperties. ChemistryandPharmacologyofNaturalProducts.CambridgeUniversityPress, Cambridge.

Baumgartner,J.,1997.Microbiologiaendodôntica.In:Walton,R.E.,Torabinejad,M. (Eds.),PrincípiosEPráticaEmEndodontia.SantosLivrariaEditora,SãoPaulo,pp. 277–291.

Bergenholtz,G.,Crawford,J.,1989.Endodonticmicrobiology.In:Walton,R.E., Tora-binejad,M.(Eds.),PrinciplesandPracticeofEndodontics.,1sted.W.B.Saunders Co.,Philadelphia,P.A.,USA,pp.267–282.

Bier,O.,1981.BacteriologiaEImunologia:EmSuasAplicac¸õesàMedicinaEA Higiene.Ed.Melhoramentos,SãoPaulo.

Braquet,P.,Godfroid,J.J.,1986.PAF-acetherspecificbindingsites:2.Designof spe-cificantagonists.TrendsPharmacol.Sci.7,397–403.

Charlton,J.L.,1998.Antiviralactivityoflignans.J.Nat.Prod.61,1447–1451.

CLSI,2007.MethodsforAntimicrobialSusceptibilityTestingofAnaerobicBacteria; ApprovedStandard–SeventhEdition.CLSIdocumentM11-A7[ISBN 1-56238-626-3]. Clinical and LaboratoryStandards Institute, Wayne,Pennsylvania, USA.

DaSilva,R.,deSouza,G.H.B.,daSilva,A.A.,deSouza,V.A.,Pereira,A.C.,Royo,V.A., Silva,M.L.A.,Donate,P.M.,Araujo,A.L.S.M.,Carvalho,J.C.T.,Bastos,J.K.,2005.

Synthesisandbiologicalactivityevaluationoflignanlactonesderivedfrom(− )-cubebin.Bioorg.Med.Chem.Lett.15,1033–1037.

DeLillo,A.,Booth,V.,Kyriacou,L.,Weightman,A.J.,Wade,W.G.,2004. Culture-independent identification of periodontitis-associated Porphyromonas and Tannerellapopulationsbytargetedmolecularanalysis.J.Clin.Microbiol.42, 5523–5527.

DeSouza,V.A.,daSilva,R.,Pereira,A.C.,Royo,V.A.,Saraiva,J.,Montanheiro,M.,de Souza,G.H.B.,daSilvaFilho,A.A.S.,Grando,M.D.,Donate,P.M.,Bastos,J.K., Albu-querque,S.,Silva,M.L.A.,2005.Trypanocidalactivityof(−)-cubebinderivatives againstfreeamastigoteformsofTrypanosomacruzi.Bioorg.Med.Chem.Lett.15, 303–307.

Deyama, T., Nishibe, S., Nakazawa, Y., 2001. Constituents and pharmacolog-ical effects of Eucommia and Siberian ginseng. Acta Pharm. Toxicol. 22, 1057–1070.

Elfahmi,Y.,2006.LignanprofileofPipercubeba,anIndonesianmedicinalplant. In:PhytochemicalandBiosyntheticStudiesofLignans.UniversiyofGroningen, Netherlands(Chapter4).

Fine,D.H.,2000.Chemicalagentstopreventandregulateplaquedevelopment. Periodontology8,87–107.

Hirata,N.,Naruto,S.,Ohguchi,K.,Akao,Y.,Nozawa,Y.,Iinuma,M.,Matsuda,H., 2007a.Mechanismofthemelanogenesisstimulationactivityof(−)-cubebinin murineB16melanomacells.Bioorg.Med.Chem.15,4897–4902.

Hirata,N.,Tokunaga,M.,Naruto,S.,Iinuma,M.,Matsuda,H.,2007b.Testosterone 5a-reductaseinhibitoryactiveconstituentsofPipernigrumLeaf.Biol.Pharm.Bull. 30,2402–2405.

Hirata,N.,Naruto,S.,Inaba,K.,Itoh,K.,Tokunaga,M.,Iinuma,M.,Matsuda,H.,2008.

HistaminereleaseinhibitoryactivityofPipernigrumleaf.Biol.Pharm.Bull.31, 1973–1976.

Holtfreter,M.C.,Loebermann,M.,Klammt,S.,Sombetzki,M.,Bodammer,P.,Riebold, D.,Kinzelbach,R.,Reisinger,E.C.,2011.Schistosomamansoni:schistosomicidal effectofmefloquineandprimaquineinvitro.Exp.Parasitol.127,270–276.

Kakehashi,S.,Stanley,H.R.,Fitzgerald,R.J.,1965.Theeffectsofsurgicalexposuresof dentalpulpsingerm-freeandconventionallaboratoryrats.OralSurg.OralMed. OralPathol.20,340–349.

Kassuya,C.A.,Silvestre,A.,Menezes-De-Lima,O.J.R.,Marotta,D.M.,Rehder,V.L., Calixto,.J.B.,2006.Antiinflammatoryandantiallodynicactionsofthelignan niranthinisolatedfromPhyllanthusamarus.Eur.J.Pharmacol.546,182–188.

Koul,S.K.,Taneja,S.C.,Dhar,K.L.,Atal,C.K.,1983.LignansofPiperclusii. Phytochem-istry22,99–1000.

Li,N.,Wu,J.,Hasegawa,T.,Sakai,J.,Wang,L.,Kakuta,S.,Furuya,Y.,Tomida,A.,Tsuruo, T.,Ando,M.,2006.Bioactivedibenzoylbutyrolactoneanddibenzoylbutanediol lignanesfromPeperomiaduclouxi.J.Nat.Prod.69,234–239.

Lifeng,Q.I.,Zirong,X.,Xia,J.,Caihong,H.,Xiangfei,Z.,2004.Preparationand antibac-terialactivityofchitosannanoparticles.Carbohyd.Res.339,2693–2700.

Luisi,S.B.,Fachin,E.V.F.,1990.Revisãoeenfoqueclínicosobreabacteriologiadas infecc¸õesendodônticasagudas.Rev.Fac.Odontol.UFGRS40,41–45.

Marcotullio,M.C.,Pelosi,A.,Curini,M.,2014.Hinokinin,anemergingbioactive lig-nan.Molecules19,14862–14878.

Marsh,P.D.,2005.Dentalplaque:biologicalsignificanceofabiofilmandcommunity lifestyle.J.Clin.Periodontol.32,7–15.

Morrison,R.,Boyd,R.,1996.QuímicaOrgânica:Hidrogenac¸ão,13aedic¸ão.Fundac¸ão CaloustreGulbenkian,Lisboa,375,380,382e384.

Muellas-Serrano,Nogal,S.,Martinez-Dias,J.J.,Escario,R.A.,Martinez-Fernandez,J.Á., Gomes-Barrio.,A.R.,2000.AinvitroscreeningofAmericanplantextractson

TrypanosomacruziandTrichomonasvaginalis.J.Ethnopharmacol.71,101–107.

Parmar,V.S.,Jain,S.C.,Bisht,K.S.,Jain,R.,Taneja,P.,Jha,A.,Tyagi,O.D.,Prasad, A.K.,Wengel,J.,Olsen,C.E.,Boll,P.M.,1997.PhytochemistryofthegenusPiper. Phytochemistry46,597–673.

Piccinelli,A.L.,Mahmood,N.,Mora,G.,Poveda,L.,Simone,F.,Rastrelli,L.,2005. Anti-HIVactivityofdibenzylbutyrolactone-typelignansfromPhenaxspeciesendemic inCostaRica.J.Pharm.Pharmacol.57,1109–1115.

Rimando, A.M.,Pezzuto, J.M.,Farnsworth, N.R.,Santisuk, T.R.V.,Kawanishi,K., 1994.Newlignansfromanogeissus-acuminatawithhiv-1reverse-transcriptase inhibitoryactivity.J.Nat.Prod.57,896–904.

Rivers, J.C., Recio, M.C., 2005. Medicinal plants and antimicrobial activity. J. Ethnopharmacol.100,80–84.

Saleem,M.,Kim,H.J.,Ali,M.S.,Lee,Y.S.,2005.Anupdateonbioactiveplantlignans. Nat.Prod.Rep.22,696–716.

Saraiva,J.,Veja,C.,Rolon,M.,Silva,R.,Silva,M.L.A.,Donate,P.M.,Bastos,J.K., Gomez-Barrio,A.,Albuquerque,S.,2007.Invitroandinvivoactivityoflignanlactones derivativesagainstTrypanosomacruzi.Parasitol.Res.100,791–795.

Schmidt,T.J.,Hemmati,S.,Klaes,M.,Konuklugil,B.,Mohagheghzadeh,A.,Ionkova,I., Fuss,E.,WilhelmAlfermann,A.,2010.LignansinfloweringaerialpartsofLinum

species–chemodiversityinthelightofsystematicsandphylogeny. Phytochem-istry71,1714–1728.

Shen,T.Y.,Hwang,S.B.,Chang,M.N.,Doebber,T.W.,Lam,M.H.,Wu,M.S.,Wang,X., Han,G.Q.,Li,R.Z.,1985.CharacterizationofaPAFreceptorantagonistisolated fromhaifenteng(Piperfutokadsura):SpecificinhibitorofinvitroandinvivoPAF inducedeffects.Proc.Natl.Acad.Sci.U.S.A.82,672–676.

Silva,M.L.A.,Albuquerque,S.,Souza,B.H.B.,Bastos,J.K.,Silva,R.,2009.Processto obtaindibenzylbutyrolactoniclignans,processtoobtainsyntheticderivatives fromlignansbearinganti-Chagaschemoprophylacticandtherapeutical activ-ities.Fundac¸ãodeAmparoàPesquisadoEstadodeSãoPaulo.US7,521,569 B2.

Silva,M.L.A.,Silva,R.,Rodrigues,V.,PereiraJúnior,O.S.,SilvaFilho,A.A.,Donate,P.M., Albuquerque,S.,Bastos,J.K.2007.Processtoobtainsyntheticandsemi-synthetic lignanderivatives,theirantiparasiticactivitiesandcorresponding pharmaceu-ticalformulations,includingthetherapeuticmethodusingsaidlignanforthe treatmentofparasitosis.Fundac¸ãodeAmparoàPesquisadoEstadoeSãoPaulo. WO2007/009201.

Socransky,S.S.,Haffajee,A.D.,2002.Dentalbiofilms:difficulttherapeutictargets. Periodontology28,12–55.

Souza,G.H.B.,Silva,A.A.,Souza,V.A.,Pereira,A.C.,Royo,V.A.,Silva,M.L.A.,Silva,R., Donate,P.M.,Carvalho,J.C.T.,Bastos,J.K.,2004.Analgesicandanti-inflammatory activitiesevaluationof(−)-O-acetyl,(−)-O-methyl,(−)-O-dimethylethylamine cubebinandtheirpreparationfrom(−)-cubebin.IIFarmaco59,55–61.

Tani-Ishii,N.,Wang,C.Y.,Tanner,A.,Stashenko,P.,1994.Changesinrootcanal micro-biotaduringthedevelopmentofratperiapicallesions.OralMicrobiol.Immunol. 9,129–135.

Usia,T.,Watabe,T.,Kadota,S.,Tezuka,Y.,2005.PotentCYP3A4inhibitory con-stituentsofPipercubeba.J.Nat.Prod.68,64–68.

Venkateswarlu,R.,Kamakshi,C.,Moinuddin,S.G.A.,Subhash,P.V.,1999. Transfor-mationsoflignans,PartV.ReactionsofDDQwithagmelinolhydrogenolysis productanditsderivatives.TetrahedronLett.55,13087–13108.

WittgowJr.,W.C.,SabistonJr.,C.B.,1975.Microorganismsfrompulpalchambersof intactteethwithnecroticpulps.J.Endod.1,168–171.

Imagem

Fig. 1. Chromatogram of the epimers of 1 obtained using a. Shim-pack ODS, 250 × 4.20 mm, 5 ␮m Column, volume of injection: 20 ␮l, flow: 1 ml/min, detection at  254 nm and linear gradient: MeOH-H 2 O (50%)/MeOH (100%), in 48 min.
Fig. 2. Effects of the compounds on the viability of LLCMK2 fibroblast cells. Cyto- Cyto-toxicity was determined using MTT assay after 24 h treatment with the indicated concentrations

Referências

Documentos relacionados

Conclusão: Conforme descrito nos artigos encontrados, o cirurgião-dentista tem grande importância no momento do diagnóstico da leucemia, já que as primeiras manifestações

The purpose of this study was to analyze the individual lawsuits to obtain insulin pumps from SUS users with DM between 2007 and 2013 against the Regional Health Department

A análise do gerador composto para obtenção de sua característica de saída não é realizada apenas por meio da comunicação entre as equações base de sua

CONCLUSÃO: UMA TESE EMPÍRICA SOBRE A ORIGEM DA MORALIDADE HUMANA E A NOÇÃO DE “NECESSIDADE DE INCLUSÃO DO HOMEM NA NATUREZA” COMO MECANISMO NATURAL DE AUTOCONSERVAÇÃO DA

Nas diatomáceas, assim como na generalidade das microalgas, as condições de cultura como a temperatura, luminosidade, disponibilidade em nutrientes ou pH afetam

Assim, tomando a governança como referencial teórico de enquadramento, a primeira inscreveu-se no contexto do reconhecimento do papel dos territórios no quadro da

RESUMO A premência da educação e formação de adul- tos (EFA) em Portugal, conjugada com a entrada num período (2007-2013) abrangido por um novo programa operacional, aconselha