• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número4"

Copied!
8
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

-Glucosidase

and

pancreatic

lipase

inhibitory

activities

and

glucose

uptake

stimulatory

effect

of

phenolic

compounds

from

Dendrobium

formosum

Prachyaporn

Inthongkaew

a

,

Nutputsorn

Chatsumpun

b

,

Chonlakan

Supasuteekul

a

,

Tharita

Kitisripanya

c

,

Waraporn

Putalun

c

,

Kittisak

Likhitwitayawuid

a

,

Boonchoo

Sritularak

a,∗

aDepartmentofPharmacognosyandPharmaceuticalBotany,FacultyofPharmaceuticalSciences,ChulalongkornUniversity,Bangkok,Thailand

bDepartmentofPharmacognosy,FacultyofPharmacy,MahidolUniversity,Bangkok,Thailand

cFacultyofPharmaceuticalSciences,KhonKaenUniversity,KhonKaen,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11March2017 Accepted26May2017 Availableonline11July2017

Keywords:

Dendrobiumformosum

Glucoseuptake

␣-Glucosidase Pancreaticlipase

a

b

s

t

r

a

c

t

AmethanolextractfromthewholeplantofDendrobiumformosumRoxb.exLindl.,Orchidaceae,showed inhibitorypotentialagainst␣-glucosidaseandpancreaticlipaseenzymes.Chromatographicseparationof theextractresultedintheisolationoftwelvephenoliccompounds.Thestructuresofthesecompounds weredeterminedthroughanalysisofNMRandHR-ESI-MSdata.Alloftheisolateswereevaluatedfor their␣-glucosidaseandpancreaticlipaseinhibitoryactivities,aswellasglucoseuptakestimulatory effect.Amongtheisolates,5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone(12)showed thehighest␣-glucosidaseandpancreaticlipaseinhibitoryeffectswithanIC50valuesof126.88±0.66␮M and69.45±10.14␮M,respectively.AnenzymekineticsstudywasconductedbytheLineweaver-Burk plotmethod.Thekineticsstudiesrevealedthatcompound12wasanon-competitiveinhibitorof␣ -glucosidaseandpancreaticlipaseenzymes.Moreover,lusianthridinat1and10␮g/mlandmoscatilin at100␮g/mlshowedglucoseuptakestimulatoryeffectwithouttoxicityonL6myotubes.Thisstudy isthefirstreportonthephytochemicalconstituentsandanti-diabeticandanti-obesityactivitiesofD. formosum.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Diabetesmellitus(DM)isametabolicdisordercharacterizedby chronichyperglycemiathatcancausefurtherserioushealth prob-lemssuchasneurologicalandcardiovascularcomplications(Peng etal.,2016).Therearethreemaintypesofdiabeteswhicharetype I,typeII,andgestationaldiabetes.TypeIIdiabetes,whichisdueto insulinresistance,affectsthemajority(90–95%)ofdiabeticpatients (AmericanDiabetesAssociation,2006;RosakandMertes,2012).␣ -Glucosidaseisacarbohydrate-hydrolyzingenzymesecretedfrom theintestinalchorionicepithelium.Inhibitionof thisenzyme is oneofthetherapeuticapproachesfortypeIIdiabetessinceitcan causeretardationofcarbohydratedigestion,whichleadstothe pre-ventionofexcessglucoseabsorption(Youetal.,2012;Pengetal., 2016).Insulinplaysakeyroleinreductionoftheglucoselevelby stimulatingtheglucosetransportfrombloodintoskeletalmuscle

Correspondingauthor.

E-mail:boonchoo.sr@chula.ac.th(B.Sritularak).

cells.Itiswellestablishedthatinsulin-stimulatedglucoseuptake isimpairedintypeIIdiabeticpatients(Yapetal.,2007;Choietal., 2013).Therefore,searchingforcompoundsthatcanenhance glu-coseuptakeisanimportantapproachtofacilitatethedevelopment ofnewmethodsforinsulinresistancetreatment(Choietal.,2013). Inaddition,typeIIdiabetescanbecausedbythedysfunction ofinsulin-producingpancreatic␤cells,whichcouldbeinstigated bytheexcessiveaccumulationoflipidsinthepancreas(Tushuizen etal.,2007;Youetal.,2012).Pancreaticlipaseisthekeyenzymein lipiddigestion,responsibleforabsorptionofdietaryfatsthrough thebreakdownoftriacylglycerolsintofreefattyacidsand monoa-cylglycerolsintheintestinallumen(Yangetal.,2014).Recently, inhibitorsofpancreaticlipasehaveattractedmuchresearch inter-est due to their anti-obesity activity by delaying the lipolytic process.Thisactionwouldleadtothedecreaseinlipidabsorption andthusprotectthepancreas,whichwillrestoreregularinsulin productionfromthe␤cells(Tushuizenetal.,2007;Youetal.,2012; Yangetal.,2014).

DendrobiumisalargegenusintheOrchidaceaefamilywhich includeabout1100species,and150specieshavebeenidentified

http://dx.doi.org/10.1016/j.bjp.2017.05.005

(2)

in Thailand (Lam et al., 2015; Limpanit et al., 2016). Several

Dendrobiumspeciesarewell-knownfortheirtraditionalmedicinal properties. The stems of several species of Dendrobium have beenusedinfolkChinesemedicinecalled“Shi-Hu”assourcesof tonic,antipyretic, astringent, and anti-inflammatory substances (Hu et al., 2008; Lam et al., 2015). Previous studies revealed that Dendrobium plants contain diverse groups of secondary metabolites and possess various biological activities, including cytotoxic,antioxidant,anticancer,antimalarial,antifibrotic, hypo-glycemic, and neuroprotective activities (Lam et al., 2015). A numberofphenoliccompoundsfromDendrobiumtortile,suchas 3,4-dihydroxy-5,4′-dimethoxybibenzyl,(2S)-eriodictyoland

den-drofalconerolA,showedstrong␣-glucosidaseinhibitoryactivity inourrecentinvestigation(Limpanitetal.,2016).

Dendrobium formosumRoxb.ex Lindl.isa rare orchidnative to Himalayas and Indochina. It has one of the largest flowers amongthedendrobes(Dohlingetal.,2008).Anearlierreportof

D. formosum described potential antitumor activityof its etha-nolicextract(PrasadandKoch,2014).However,priortothisstudy, there have been no reports of the phytochemical constituents andanti-diabeticandanti-obesityactivitiesofthisplant.Aspart ofourongoingresearchonbioactiveconstituentsfrom Dendro-bium species (Sukphan et al., 2014; Klongkumnuankarn et al., 2015), a methanol extract from the whole plant of D. formo-sumataconcentrationof50␮g/ml wasevaluatedandfoundto exhibit95%inhibitionagainstboth␣-glucosidaseandpancreatic lipaseenzymes.Inthiscommunication,wewishtoreportthefirst studyonthechemicalconstituentsofD.formosumandtheir␣ -glucosidaseandpancreaticlipaseinhibitoryactivities,aswellas theirglucoseuptakestimulatorypotential.

Materialandmethods

General

MassspectrawererecordedonaBrukermicroTOFmass spec-trometer(ESI-MS).NMRspectrawererecordedonaBrukerAvance DPX-300FT-NMRspectrometerMicrotiterplatereadingwas per-formed on a Perkin-Elmer VictorTM 1420 multilabel counter.

Vacuum-liquidcolumnchromatography(VLC)andcolumn chro-matography(CC)wereperformedonsilicagel60(Merck,Kieselgel 60,70–320␮m),silicagel60(Merck,Kieselgel60,230–400␮m) andSephadexLH-20(25–100␮m,GEHealthcare).

Chemicals

Alphaminimalessentialmedium(␣-MEM),fetalbovineserum (FBS)andpenicillin-streptomycin(10000IU/ml)werepurchased fromThermoFisher Scientific (GrandIsland, NY,USA). Glucose Oxidase (GO) assay kit, sodium dodecyl sulfate (SDS), 3-(4,5-dimethyl thiazol-2-yl)-5-diphenyl tetrazolium bromide (MTT),

␣-glucosidasefromSaccharomycescerevisiae,lipasefromporcine pancreas,4-methylumbelliferyloleate(4MUO),p-nitrophenyl-␣ -D-glucopyranoside(pNPG), acarboseand orlistatwere obtained fromSigmaAldrich(StLouis,MO,USA).Insulin(100IU/ml)was obtainedfromBiocon(Bangalore,India).Allotherchemicalsused wereofanalyticalgrade.

Celllinesandculturemedium

L6(Ratskeletalmuscle,ATCC®CRL-1458)cellculturewas pur-chasedfromtheAmericanTypeCultureCollection(Manassas,VA, USA).StockcellsofL6wereculturedin␣-MEMsupplementedwith 10%FBS,1%penicillin-streptomycin,thegrowthmedium,at37◦C

under5%CO2.

Plantmaterial

ThewholeplantofDendrobiumformosumRoxb.exLindl., Orchi-daceae, waspurchased from Jatujakmarket, Bangkok, Thailand in September2015. It wascollectedfromMaeSot district,Tak province,Thailand.PlantidentificationwasperformedbyProf. Tha-treePhadungcharoen(FacultyofPharmacy,RangsitUniversity).A voucherspecimen(BS-DF-092558)isdepositedattheDepartment ofPharmacognosyandPharmaceuticalBotany,Facultyof Pharma-ceuticalSciences,ChulalongkornUniversity.

Extractionandisolation

ThedriedandpowderedwholeplantofD.formosum(2kg)was extractedwithMeOH(3×10l)atroomtemperaturetogivea vis-cousmassofdriedextract(115g)afterremovalofthesolvent.This materialwassuspendedinwaterandthenpartitionedwithEtOAc andn-butanoltogiveanEtOAcextract(57g),abutanolextract (25g)andanaqueousextract(30g),respectively,after evapora-tionofthesolvent.TheEtOAcextractwassubjectedtovacuum liquidchromatography(silicagel,EtOAc-hexane,gradient)togive eightfractions(A-H).FractionF(6.8g)wasfractionatedona sil-ica gel column (EtOAc-hexane, gradient)to give nine fractions (FI-FIX).FractionFII(271mg)wasseparatedbycolumn chromatog-raphy(CC)oversilicagel,elutedwithaCH2Cl2-hexanegradientto

givefourfractions(FII1-FII4).Confusarin(1)(3mg)wasobtained fromfractionFII2.Hircinol(2)(15mg)wasobtainedfromfraction FII4(21mg)afterpurificationonSephadexLH-20(MeOH). Purifi-cation offractionFIII(85mg)onSephadex LH-20(MeOH)gave erianthridin(3)(45mg).FractionFV(648mg)wasseparatedbyCC (silicagel,CH2Cl2-hexane,gradient)togivesixfractions(FV1-FV6).

Gigantol(4)(94mg)wasobtainedfromfractionFV3.FractionFV2 (17mg)wasfurtherpurifiedonSephadexLH-20(MeOH)toafford nudol(5)(10mg).FractionFV5(193mg)wassubjectedtoCC(silica gel,EtOAc-hexane,gradient)andthenpurifiedonSephadex LH-20(MeOH)toyieldlusianthridin(6)(8mg).FractionFVI(361mg) was fractionatedby CC (silica gel, CH2Cl2-hexane, gradient) to

givesixfractions(FVI1-FVI6).Coelonin(7)(75mg)wasobtained from fraction FVI2. Dihydroconiferyl dihydro-p-coumarate (8) (25mg)andbatatasinIII(9)(18mg)wereyieldedfromfractions FVI4(57mg)andFVI5(29mg),respectively,afterpurificationon Sephadex LH-20(MeOH).FractionFVIII(272mg)wasseparated by CC(silica gel, EtOAc-CH2Cl2,gradient) and then purified on

Sephadex LH-20 (MeOH)toafford 2,5,7-trihydroxy-4-methoxy-9,10-dihydrophenanthrene (10) (22mg). Fraction G (10g) was fractionatedbyCCoversilicagel,elutedwithanEtOAc-hexane gra-dienttogivesevenfractions(GI-GVII).FractionGIII(508mg)was separatedonSephadexLH-20(MeOH)togiveeightfractions (GIII1-GIII8). Fraction GIII2 (51mg) wasfurther purified by CC (silica gel,CH2Cl2-hexane, gradient)toyieldmoscatilin(11)(5mg).

5-Methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone(12) (11mg)wasobtainedfromfractionGIII4(52mg)afterpurification byCC(silicagel,MeOH-CH2Cl2,gradient).

Confusarin(1):yellowamorphoussolid;C17H16O5;HR-ESI-MS

m/z299.0919[M−H]−(calc.forC

17H15O5 requires299.0919).Its

structurewasidentifiedbycomparisonofNMRdatawithpublished values(MajumderandKar,1987).

Hircinol(2):yellowamorphoussolid;C15H14O3;HR-ESI-MSm/z

265.0847 [M+Na]+ (calc.forC

15H14O3Narequires265.0840).Its

structurewasidentifiedbycomparisonofNMRdatawithpublished values(Fischetal.,1973).

Erianthridin(3):yellowamorphoussolid;C16H16O4;HR-ESI-MS

m/z295.0949[M+Na]+(calc.forC

16H16O4Narequires295.0946).Its

(3)

Gigantol(4):brownamorphoussolid;C16H18O4;HR-ESI-MSm/z

297.1111[M+Na]+ (calc.for C

16H18O4Narequires 297.1103).Its

structurewasidentifiedbycomparisonofNMRdatawithpublished values(Chenetal.,2008).

Nudol(5):yellowamorphoussolid;C16H14O4;HR-ESI-MSm/z

293.0793[M+Na]+ (calc.for C

16H14O4Narequires 293.0790).Its

structurewasidentifiedbycomparisonofNMRdatawithpublished values(Bhandarietal.,1985).

Lusianthridin (6): brown amorphous solid; C15H14O3;

HR-ESI-MS m/z 265.0847 [M+Na]+ (calc. for C

15H14O3Na requires

265.0841).ItsstructurewasidentifiedbycomparisonofNMRdata withpublishedvalues(Guoetal.,2007).

Coelonin(7):brownamorphous solid;C15H14O3;HR-ESI-MS

m/z265.0845[M+Na]+(calc.forC

15H14O3Narequires265.0841).Its

structurewasidentifiedbycomparisonofNMRdatawithpublished values(Majumderetal.,1982).

Dihydroconiferyldihydro-p-coumarate(8):yellowamorphous solid; C19H22O5; HR-ESI-MS m/z 353.1368 [M+Na]+ (calc. for

C19H22O5Narequires 353.1365).Its structure was identified by

comparisonofNMRdatawithpublishedvalues(Zhangetal.,2006). BatatasinIII(9):brownamorphoussolid;C15H16O3;HR-ESI-MS

m/z267.0995[M+Na]+(calc.for267.0997,C

15H16O3Na).Its

struc-turewasidentified bycomparison ofNMR datawithpublished values(SachdevandKulshreshtha,1986).

2,5,7-Trihydroxy-4-methoxy-9,10-dihydrophenanthrene (10): brown amorphous solid; C15H14O4; HR-ESI-MS m/z 281.0791

[M+Na]+(calc.forC

15H14O4Narequires281.0790).Itsstructurewas

identifiedbycomparisonofNMRdatawithpublishedvalues(Hu etal.,2008).

Moscatilin(11):brownamorphoussolid;C17H20O5;HR-ESI-MS

m/z327.1219[M+Na]+(calc.forC

17H20O5Narequires327.1208).Its

structurewasidentifiedbycomparisonofNMRdatawithpublished values(MajumderandSen,1987).

5-Methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (12): red amorphous solid; C15H12O4;

HR-ESI-MSm/z279.0642[M+Na]+(calc.forC

15H12O4Narequires

279.0633).ItsstructurewasidentifiedbycomparisonofNMRdata withpublishedvalues(Sritularaketal.,2011).

Assayfor˛-glucosidaseinhibitoryactivity

Theassaywasperformedasdescribedpreviouslywithaslight modification(Sunetal.,2014).Theenzymeactivitywasassessedby monitoringthereleaseofp-nitrophenolfromthep-nitrophenyl-␣ -D-glucopyranoside(pNPG)substrate.Eachtestsamplewasinitially evaluatedataconcentrationof50␮g/ml,andthentwo-foldserial dilutionwasperformedforIC50determination.Inbrief,10␮lof

testsample(1.56–50␮g/ml)and40␮lof0.1U/ml␣-glucosidase weremixedandallowedtoreactat37◦Cfor10minina96-well

microtiterplate.Then,50␮lof2mMpNPGwasaddedandthe reac-tionmixturewasfurtherincubatedfor20min.Finally,100␮lof1M Na2CO3solutionwasaddedtoterminatethereaction.The

absorp-tionat405nmwasthenmeasuredusingamicroplatereader.The percentageof␣-glucosidaseinhibitoryactivitywascalculatedas follows:

% ␣-glucosidaseinhibitoryactivity=

AcAs Ac

×100

whereAcistheabsorbanceofthecontrolandAsistheabsorbance

ofthesample.Acarbose(15.6–1000␮g/ml)wasusedasa posi-tivecontrolandtreatedunderthesameconditionsasthesamples. Enzymeinhibitionreactionsforallsampleswerecarriedoutin trip-licate(n=3),andeachexperimentconsistedofthreerepetitions.

Theenzyme kineticsstudywasperformed usingthe double reciprocalLineweaver–Burkplot.Theexperimentwasconducted by varying the pNPG substrate concentration (0.125, 0.25, 1.0,

2.0mM)intheabsenceandpresenceofdifferenttestsample con-centrations(80and160␮M).

Assayforpancreaticlipaseinhibitoryactivity

Evaluation of pancreatic lipase inhibitory activity was done bymeasuringthereleaseof4-methylumbelliferone(4MU)from thesubstrate4-methylumbelliferyloleate(4MUO)(Sergentetal., 2012).Eachtestsamplewasinitiallyevaluatedataconcentrationof 50␮g/ml,andthentwo-foldserialdilutionwasperformedforIC50

determination.Briefly,25␮loftestsample(1.56–50␮g/ml),50␮l of0.25mM4MUO,and25␮lof0.125mg/mlpancreaticlipasewere mixedandincubatedatroomtemperaturefor30minina96-well microtiterplate.Then,100␮lof0.1Msodiumcitratewasadded tostopthereaction.Fluorescencefromtherelease of4MUwas measuredusingamicroplatereaderwithexcitationandemission wavelengthsof355and460nm,respectively.Thepercentageof pancreaticlipaseinhibitoryactivitywascalculatedasfollows:

% pancreaticlipaseinhibitoryactivity=

AcAs Ac

×100

whereAcistheabsorbanceofthecontrolandAsistheabsorbance

ofthesample.Orlistat(0.0008–50␮g/ml)wasusedasapositive controland treated under thesame conditions asthe samples. Enzymeinhibitionreactionsforallsampleswerecarried outin triplicate(n=3),andeach experimentconsistedofthree repeti-tions.Theenzymekineticsstudywasconductedusingthedouble reciprocalLineweaver–Burkanalysis.Theexperimentwas exam-inedbyvaryingthe4MUOsubstrateconcentration(0.0625,0.125, 0.25,0.5,1mM)intheabsenceandpresenceofdifferenttestsample concentrations(40and80␮M).

Glucose-uptakeassay

Theglucose-uptakeassaywasperformedfollowingthe meth-ods (Zhou et al., 2007; Jantaramanant et al., 2014) with some modification. Briefly, rat L6 myoblasts were maintained in ␣ -MEM supplementedwith 10%fetal bovine serum(FBS)and 1% penicillin-streptomycinat37◦Cunder5%CO

2.Fortreatmentwith

testcompounds,thecellswereplatedin24-wellplatesata den-sityof2×104 cells/well. Oncethecellreached90%confluence,

themediawasswitchedto␣-MEMwith2%FBSand1% penicillin-streptomycin(thedifferentiatemedium).Thecellswereallowedto differentiateintomyotubesfor5–7dayswithmediachangedevery otherday.Then,themyotubeswereincubatedat37◦Cunder5%

CO2for24hwiththevariousconcentrations(1,10and100␮g/ml)

oftestcompoundand500nMofinsulin.Thedifferentiatemedium plus0.1%DMSOwasusedasthediluentandnegativecontrol.Then, themediumwascollectedandanalyzedfortheglucoselevelusing aglucoseoxidaseassaykit.Theglucose-uptakewaspresentedas theratioofinsulinrelativewhichcalculatedasfollowed:

Theratioofinsulinrelative

=% glucoseuptakeofthetestcompounds

% glucoseuptakeofinsulin

Cytotoxicity

Continuously, after 24h of the cell treatment for the glu-cosedetermination,cytotoxicitytestwasperformedfollowingthe methodof Rissetal.withsomemodification(Rissetal.,2004). The medium was adjusted to 200␮l per well. The cells were treatedwith20␮loftheMTTsolution(5mg/ml)andincubatedat 37◦Cunder5%CO

2for2h.Todissolvetheformazancrystal,each

(4)

glacialaceticacid,16%w/vSDSindistilledwater)andshakenfor 20min.Then,thesupernatantswerecollectedandmeasuredfor absorbanceat595nmusingmodel550microplatereader(Biorad). Thecytotoxicitywasshownasthe%cellviability.

Resultsanddiscussion

Asmentionedearlier,aMeOHextractpreparedfromthewhole plantof D.formosum,at a concentrationof50␮g/ml, exhibited potentinhibitionof95%againstboth␣-glucosidaseandpancreatic lipaseenzymes,respectively.Theextractwasthenseparatedby sol-ventpartitiontogiveanEtOAc,abutanolandanaqueousextracts. Theseextractswereevaluatedfor their␣-glucosidaseand pan-creaticlipaseinhibitoryactivities.OnlytheEtOAcextractshowed stronginhibitoryeffectsataconcentrationof50␮g/ml,with83% againstpancreaticlipaseand96%against␣-glucosidaseenzymes whilethebutanolandanaqueousextractwereinactive(lessthan 50%inhibition).Therefore,theEtOAcextractwasselectedfor fur-therchemicalinvestigation.Throughchromatographicseparation, twelvephenoliccompoundswereidentified.

Currently,onlyafew␣-glucosidaseinhibitors,suchasacarbose andvoglibose,havebeenapprovedforthetreatmentofdiabetes mellitus,andtheirstructuresaremainlycomposedofsugar moi-eties(Yinetal.,2014).Theproductionprocessesoftheseinhibitors are,however,rather complexandinvolve multistepprocedures (Yinetal.,2014).Withregardtopancreaticlipaseenzyme,orlistat isapowerfulinhibitor,clinicallyusedforthetreatmentofobesity (BirariandBhutani,2007;Jangetal.,2008).In recentyears,the numbersofreportsonnaturalcompoundswith␣-glucosidaseand lipaseinhibitoryactivitieshavecontinuouslyincreased(Kimetal., 2000;Jangetal.,2008;Yinetal.,2014).Manyresearcheshavebeen focusedonthesearchforalternative␣-glucosidaseinhibitorswith non-sugarcorestructure,particularlythepolyphenolsduetotheir abundantavailabilityinthenatureandtheirpromisingbiological activities(Yinetal.,2014).

Table1

IC50valuesofcompounds1–12isolatedfromD.formosumfor␣-glucosidaseand

pancreaticlipaseinhibitoryactivities.

Compounds ␣-Glucosidase(␮M) Pancreaticlipase(␮M)

Confusarin(1) 189.78±1.11 154.61±8.58

Hircinol(2) NA NA

Erianthridin(3) NA NA

Gigantol(4) NA NA

Nudol(5) NA NA

Lusianthridin(6) NA NA

Coelonin(7) NA NA

Dihydroconiferyl dihydro-p-coumarate(8)

NA NA

BatatasinIII(9) NA NA

2,5,7-Trihydroxy-4-methoxy-9,10-dihydrophenanthrene (10)

NA NA

Moscatilin(11) NA NA

5-Methoxy-7-hydroxy-9,10-

dihydro-1,4-phenanthrenequinone (12)

126.88±0.66 69.45±10.14

Acarbose 745.9±88.4 –

Orlistat – 0.013±0.004

NAmeansnoinhibitoryactivity.

In this study, compounds 1–12 were evaluated for their

␣-glucosidaseandpancreaticlipaseinhibitoryactivities.Each com-poundwasinitially testedat aconcentrationof 50␮g/ml.Only

compounds1 and12 showed>50%inhibitionand werefurther

analyzedtodeterminetheirIC50values(Table1).Duetoitshigh

potencyandavailability,compound12wasinvestigatedfor inhibi-tionmechanismsagainst␣-glucosidaseandpancreaticlipaseusing theLineweaver–Burkplots,andkineticparameterswithrespectto thetwoenzymeswereobtained,aslistedinTable2.

Intheassayof␣-glucosidaseinhibitoryactivitywithpNPGas thesubstrate,themaximumvelocity(Vmax)valuewasdetermined

as 7.10×10−3 A

405/min, and the Michaelis–Menten constant

(Km)as0.3mM(Fig.1A).Thepresenceofcompound12at

differ-enceconcentrations(80␮Mand160␮M)reducedtheVmaxvalues

to2.70×10−3and7.35×10−4respectively,butdidnotaffectK mof

theenzyme.Theseresultssuggestedthat12isanon-competitive inhibitorofthisenzyme.

In experiments on pancreatic lipase inhibitory activity with 4MUOasthesubstrate,theVmaxvaluewasfoundtobe1.35×105 A355,460/min,andtheKmvaluewas0.4mM(Fig.1B).Thepresence

ofcompound12ataconcentrationof40␮Mand80␮Mdecreased theVmaxvaluesto9.60×104and7.60×104,respectively,buthad

noeffectonKm.Theseobservationsindicatedthat12isalsoa

non-competitiveinhibitorofpancreaticlipase.

The non-competitive mode of ␣-glucosidase and pancreatic lipaseinhibitionsobtainedfromtheLineweaver–Burkplots sug-geststhatcompound12doesnotcompetewithpNPGand4MUO substratesforbindingtotheactivesiteofenzymes,butitwould ratherbindtoothersitesoftheenzymestoretardthecarbohydrate andlipiddigestion(Kazeemetal.,2013;Martinez-Gonzalezetal., 2017).TheKmvalueswereunaffectedbecausetheinhibitor(12)did

notcauseanychangesattheactivesite.TheVmaxofthereactions

decreasedbecausethisnon-competitiveinhibitor(12)reducedthe quantityof activeenzymes(Balbaaand ElAshry,2012;Kazeem etal.,2013).

(5)

Table2

Kineticparametersinof␣-glucosidaseandpancreaticlipaseinthepresenceof5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone(12).

Inhibitors ␣-Glucosidase Pancreaticlipase

Dose(␮M) Vmax(A405/min) Km(mM) Dose(␮M) Vmax(A355,460/min) Km(mM)

None – 7.10×10−3 0.3 1.35×105 0.4

Compound12 80 2.70×10−3 0.3 40 9.60×104 0.4

160 7.35×10−4 0.3 80 7.60×104 0.4

concentrationsofthesubstrateascompared tothecompetitive inhibitorssuchasacarboseandorlistat,whichmayrequirelarge amountsofinhibitorstocompletewiththesubstrate(Ghadyale etal.,2012).

ThetreatmentforpatientswithtypeIIdiabetesrequires sev-eral types of medications to control the blood glucose level (Nathanetal.,2009).Thisimpliesthatnewglycemiccontrolagents withnovelmechanismsareindeedneeded.RecentstudiesinL6 skeletalmusclecellsshowedthatthestilbenoidsresveratroland piceatannoldisplayedantidiabeticactivitybypromotingglucose uptake (Breen et al., 2008;Minakawa et al.,2012).This ledus toinvestigatethestilbenederivatives1–12 inthehopeof find-ingnewglucose-uptakestimulators.Ourpreliminaryevaluationof

thesecompoundsrevealedthathircinol(2),lusianthridin(6)and moscatilin(11)showedhigher glucoseuptake stimulationthan insulin (insulinrelative value >1.0)(Fig.2A).However, hircinol (2)displayedtheactivityattheconcentrationlevelthatshowed toxicityonL6myotubeswhereaslusianthridin(6)andmoscatilin (11)didnot(Fig.2B).Whenweconsideredtheglucose-uptake stim-ulationpotenciesofthetestcompoundsatnon-toxicconcentration levels(≥100%cellviability),wefoundthatcompound6at1␮g/ml exhibitedrecognizableglucose-uptakestimulatoryactivity,with insulinrelativevalue≥0.8.

Maintainingthebalanceinbloodglucoselevelisanimportant processinhumanphysiology,andthisisregulatedbyhormones suchasinsulinandglucagon(Hanhinevaetal.,2010).Failureof

a

b

–2000 –1000 0 1000 2000 3000 4000 5000 6000

10 8

6 4 2 0 –2 –4 –6 –8

1/

V

1/[S]

Control

80 µM

160 µM

–0.00004 –0.00002 0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012

–10 –5 0 5 10 15 20

1/

V

1/[S]

Control

40 µM

80 µM

(6)

a

b

0 0.2 0.4 0.6 0.8 1 1.2 1.4

100 10 1 100 10 1 100 10 1 100 10 1 100 10 1

Compound 11 Compound 6

Compound 5 Compound 4

Compound 2

Insulin relative

Concentration (µg/ml)

0 20 40 60 80 100 120 140

100 10 1 100 10 1 100 10 1 100 10 1 100 10 1

Compound 11 Compound 6

Compound 5 Compound 4

Compound 2

% Cell viability

Concentration (µg/ml)

Fig.2. Stimulationofglucoseuptake(A)andcytotoxicity(B)ofL6myotubesbyhircinol(2),gigantol(4),nudol(5),lusianthridin(6)andmoscatilin(11)atadifferent concentrationintherangeof1–100␮g/ml.

thiscontrolcancauseanincidenceofmetabolicsyndrome(MetS), aclusterofmetabolicabnormalitiesthatincludeinsulinresistance, hyperglycaemia or type II diabetes, obesity, hypertension, and dyslipidemia(Hanhinevaet al.,2010;Lietal.,2013;Mohamed, 2014). MetS is known to increase the risk of atherosclerotic cardiovasculardisease,eventuallyleadingtomorbidityand mor-tality. Numerous dietary components and over 800 plants are foundtopreventorreduce MetS byassisting thecarbohydrate metabolism and glucose homeostasis through the inhibition of carbohydrate digestion, stimulation of insulin secretion from thepancreatic ␤-cells, suppression of glucose release fromthe liver storage, activation of insulin receptors and improvement glucoseuptakeintheperipheraltissues(Hanhinevaetal.,2010; Mohamed,2014).Inthisstudy,theinhibitionofcarbohydrateand lipidhydrolyzingenzymesbycompound12mayreducetherate oftheircleavage,componentreleaseandabsorptioninthesmall intestine,andconsequentlysuppresspostprandialhyperglycemia andhyperlipidemia.Moreover,compounds6and11atnon-toxic concentrations may find a role in helping to control glucose metabolismbystimulatingglucoseuptakeinskeletalmuscle,the largestsiteofglucosedisposal,leadingtothepreventionofMetS

and type II diabetes.However, furtherinvestigations in animal modelsarestillneededtoconfirmthesesuggestions.

Conclusions

So far, there have been a few attempts to investigate the constituents of Dendrobium for ␣-glucosidase and pancreatic lipase inhibitory activities,andglucose-lowering effects. In this study,thechromatographicseparationofthemethanolicextract from the whole plant of D. formosum led tothe isolation and identificationoftwelvecompounds,includingconfusarin(1), hir-cinol(2),erianthridin(3),gigantol(4),nudol(5),lusianthridin(6), coelonin(7),dihydroconiferyldihydro-p-coumarate(8),batatasin III (9), 2,5,7-trihydroxy-4-methoxy-9,10-dihydrophenanthrene (10),moscatilin(11),and 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone(12).Amongthesecompounds,compounds

(7)

Withregardtoglucose-uptakestimulationeffects, lusianthridin (6) and moscatilin (11) at non-toxic concentration (10 and 100␮g/ml,respectively)hadhigheractivitythaninsulin.In addi-tion, lusianthridin (6) at 1␮g/ml showed recognizable glucose uptakestimulationeffectwithouttoxicityonL6myotubes.Tothe bestofourknowledge,thisisthefirstreportonthephytochemical investigationandinvitrostudiesonglucoseuptakestimulation, and ␣-glucosidase and pancreatic lipase inhibitory activities of thisplant.Theresultsfromourinvestigationhaveformedabasis forthefuturedevelopmentofanti-diabeticandanti-obesitydrugs.

Authors’contributions

PIcontributedinisolationandpurificationofthecompounds andrunningthelaboratorywork.NCandCScontributionincluded theanalysisofthedataand draftedthepaper.TKandWP con-tributedincell-basedassayofglucoseuptakeandcytotoxicity.KL andBScontributedinsupervisionofthelaboratoryworkand crit-icalreadingofthemanuscript.Alltheauthorshavereadthefinal manuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Acknowledgements

Thisworkwassupportedbya 2016researchgrantfromthe National Research Council of Thailand (NRCT) through Chula-longkornUniversity(GB-A600183303).WethankTheResearch Instrument Center of Faculty of Pharmaceutical Sciences, Chu-lalongkornUniversity,for providing researchfacilitiesand Prof. ThatreePhadungcharoen(RangsitUniversity,Bangkok,Thailand) forplantidentification.

References

AmericanDiabetesAssociation,2006.Diagnosisandclassificationofdiabetes mel-litus.DiabetesCare33,62–69.

Balbaa,M.,ElAshry,E.S.H.,2012.Enzymeinhibitorsastherapeutictools.Biochem. Physiol.1,1–8.

Bhandari,S.R.,Kapadi,A.H.,Majumder,P.L.,Joardar,M.,Shoolery,J.N.,1985.Nudol, aphenanthreneoftheorchidsEulophianuda,EriacarinataandEriastricta. Phy-tochemistry24,801–804.

Birari,R.B.,Bhutani,K.K.,2007.Pancreaticlipaseinhibitorsfromnaturalsources: unexploredpotential.DrugDiscov.Today12,879–889.

Breen,D.M.,Sanli,T.,Giacca,A.,Tsiani,E.,2008.Stimulationofmusclecell glu-coseuptakebyresveratrolthroughsirtuinsandAMPK.Biochem.Biophys.Res. Commun.374,117–122.

Chen,Y.,Xu,J., Yu, H.,Qing,C., Zhang,Y.,Wang, L.,Liu,Y., Wang,J., 2008.

Cytotoxic phenolics from Bulbophyllum odoratissimum. Food Chem. 107, 169–173.

Choi,S.S.,Cha,B.Y.,Choi,B.K.,Lee,Y.S.,Yonezawa,T.,Teruya,T.,Nagai,K.,Woo,J.T., 2013.Fargesin,acomponentofFlosMagnoliae,stimulatesglucoseuptakeinL6 myotubes.J.Nat.Med.67,320–326.

Dohling,S.,Kumaria,S.,Tandon,P.,2008.Optimizationofnutrientrequirementsfor asymbioticseedgerminationofDendrobiumlongicornuLindl.andD.formosum Roxb.Proc.IndianNat.Sci.Acad.74,167–171.

Fisch,M.H.,Flick,B.H.,Arditti,J.,1973.Structureandantifungalactivityofhircinol, loroglossolandorchinol.Phytochemistry12,437–441.

Ghadyale,V.,Takalikar,S.,Haldavnekar,V.,Arvindekar,A.,2012.Effectivecontrol ofpostprandialglucoselevelthroughinhibitionofintestinalalphaglucosidase byCymbopogonmartinii(Roxb.).Evid.BasedComplement.Alternat.Med.,6p., ArticleID841752.

Guo, X.Y., Wang, J., Wang, N.L., Kitanaka, S., Yao, X.S., 2007. 9,10-DihydrophenanthrenederivativesfromPholidotayunnanensisandscavenging activityonDPPHfreeradical.J.AsianNat.Prod.Res.9,165–174.

Hanhineva,K.,Törrönen,R.,Bondia-Pons,I.,Pekkinen,J.,Kolehmainen,M., Mykkä-nen,H.,Poutanen,K.,2010.Impactofdietarypolyphenolsoncarbohydrate metabolism.Int.J.Mol.Sci.11,1365–1402.

Hu,J.M.,Chen,J.J.,Yu,H.,Zhao,Y.X.,Zhou,J.,2008.Fivenewcompoundsfrom Dendrobiumlongicornu.PlantaMed.74,535–539.

Jang,D.S.,Lee,G.Y.,Kim,J.,Lee,Y.M.,Kim,J.M.,Kim,Y.S.,Kim,J.S.,2008.Anew pan-creaticlipaseinhibitorisolatedfromtherootsofActinidiaarguta.Arch.Pharm. Res.31,660–670.

Jantaramanant,P.,Sermwittayawong,D.,Noipha,K.,Hutadilok-Towatana,N., Witit-suwannakul,R.,2014.␤-Glucan-containingpolysaccharideextractfromthe greyoystermushroom[Pleurotussajor-caju(Fr.)Sing.]stimulatesglucoseuptake bytheL6myotubes.Int.FoodRes.J.21,779–784.

Kazeem,M.I.,Adamson,J.O.,Ogunwande,I.A.,2013.Modesofinhibitionof␣ -amylaseand␣-glucosidasebyaqueousextractofMorindalucidaBenthleaf. BiomedRes.Int.,http://dx.doi.org/10.1155/2013/527570.

Kim,J.S.,Kwon,C.S.,Son,K.H.,2000.Inhibitionofalpha-glucosidaseandamylaseby luteolin,aflavonoid.Biosci.Biotechnol.Biochem.64,2458–2461.

Klongkumnuankarn,P.,Busaranon,K.,Chanvorachote,P.,Sritularak,B., Jongbun-prasert,V.,Likhitwitayawuid,K.,2015.Cytotoxicandantimigratoryactivitiesof phenoliccompoundsfromDendrobiumbrymerianum.Evid.BasedComplement. Alternat.Med.,http://dx.doi.org/10.1155/2015/350410.

Lam, Y., Ng, T.B., Yao, R.M., Shi, J., Xu, K., Sze, S.C.W., Zhang, K.Y., 2015. Evaluationofchemicalconstituentsandimportantmechanismof pharmaco-logicalbiologyinDendrobiumplants.Evid.BasedComplement.Alternat.Med.,

http://dx.doi.org/10.1155/2015/841752.

Li,M.,Li,Y.,Liu,J.,2013.Metabolicsyndromewithhyperglycemiaandtheriskof ischemicstroke.YonseiMed.J.54,283–287.

Limpanit,R.,Chuanasa,T.,Likhitwitayawuid,K.,Jongbunprasert,V.,Sritularak,B., 2016.␣-GlucosidaseinhibitorsfromDendrobiumtortile.Rec. Nat.Prod.10, 609–616.

Majumder,P., Laha,S.,Datta, N.,1982.Coelonin,a 9,10-dihydrophenanthrene fromtheorchidsCoelogyneochraceaandCoelogyneelata.Phytochemistry21, 478–480.

Majumder,P.L.,Joardar,M.,1985.Erianthridin,anew9,10-dihydrophenanthrene derivativefromtheorchidsEria carinata&Eria sticta. IndianJ.Chem.24, 1192–1194.

Majumder,P.L.,Kar,A.,1987. Confusarinandconfusaridin,twophenanthrene derivativesoftheorchidEriaconfusa.Phytochemistry26,1127–1129.

Majumder,P.L.,Sen,R.C.,1987.Moscatilin,abibenzylderivativefromtheorchid Dendrobiummoscatum.Phytochemistry26,2121–2124.

Martinez-Gonzalez,A.I.,Díaz-Sánchez,A.G.,Rosa,L.A.,Vargas-Requena,C.L., Bustos-Jaimes,I.,Alvarez-Parrilla,E.,2017.Polyphenolic compoundsanddigestive enzymes:invitronon-covalentinteractions.Molecules22,1–27.

Minakawa,M.,Miura,Y.,Yagasaki,K.,2012.Piceatannol,aresveratrolderivative, promotesglucoseuptakethroughglucosetransporter4translocationtoplasma membraneinL6myocytesandsuppressesbloodglucoselevelsintype2diabetic modeldb/dbmice.Biochem.Biophys.Res.Commun.422,469–475.

Mohamed,S.,2014.Functionalfoodsagainstmetabolicsyndrome(obesity, dia-betes,hypertensionanddyslipidemia)andcardiovasulardisease.TrendsFood Sci.Technol.35,114–128.

Nathan,D.M.,Buse,J.B.,Davidson,M.B.,Ferrannini,E.,Holman,R.R.,Sherwin,R., Zinman,B.,2009.Medicalmanagementofhyperglycemiaintype2diabetes:a consensusalgorithmfortheinitiationandadjustmentoftherapy.DiabetesCare 32,193–203.

Peng,X.,Zhang,G.,Liao,Y.,Gong,D.,2016.Inhibitorykineticsandmechanismof kaempferolon␣-glucosidase.FoodChem.190,207–215.

Prasad,R.,Koch,B.,2014.AntitumoractivityofethanolicextractofDendrobium formosuminT-celllymphoma:aninvitroandinvivostudy.BiomedRes.Int. 2014,1–11.

Riss,T.L.,Moravec,R.A.,Niles,A.L.,Benink,H.A.,Worzella,T.J.,Minor,L.,2004.Cell ViabilityAssays,AssayGuidanceManual.EliLilly&CompanyandtheNational CenterforAdvancingTranslationalSciences.

Rosak,C.,Mertes,G.,2012.Criticalevaluationoftheroleofacarboseinthetreatment ofdiabetes:patientconsiderations.DiabetesMetab.Syndr.Obes.5,357–367.

Sachdev,K.,Kulshreshtha,D.K.,1986.PhenolicconstituentsofCoelogyneovalis. Phy-tochemistry25,499–502.

Sergent,T.,Vanderstraeten,J.,Winand,J.,Beguin,P.,Schneider,Y.J.,2012.Phenolic compoundsandplantextractsaspotentialnaturalanti-obesitysubstances.Food Chem.135,68–73.

Sritularak,B.,Anuwat,M.,Likhitwitayawuid,K.,2011.Anewphenanthrenequinone fromDendrobiumdraconis.J.AsianNat.Prod.Res.13,251–255.

Sukphan,P.,Sritularak,B.,Mekboonsonglarp,W.,Lipipun,V.,Likhitwitayawuid,K., 2014.ChemicalconstituentsofDendrobiumvenustumandtheirantimalarialand anti-herpeticproperties.Nat.Prod.Commun.9,825–827.

(8)

Tushuizen,M.E.,Bunck,M.C.,Pouwels,P.J.,Bontemps,S.,Waesberghe,J.K.V., Schind-helm,R.K.,Mari,A.,Heine,R.J.,Diamant,M.,2007.Pancreaticfatcontentand

␤-cellfunctioninmenwithandwithouttype2diabetes.DiabetesCare30, 2916–2921.

Yang,M.H.,Chin,Y.W.,Yoon,K.D.,Kim,J.,2014.Phenoliccompoundswithpancreatic lipaseinhibitoryactivityfromKoreanyam(Dioscoreaopposita).J.EnzymeInhib. Med.Chem.29,1–6.

Yap,A.,Nishiumi,S.,Yoshida,K.I.,Ashida,H.,2007.RatL6myotubesasaninvitro modelsystemtostudyGLUT4-dependentglucoseuptakestimulatedbyinositol derivatives.Cytotechnology55,103–108.

Yin,Z.,Zhang,W.,Feng,F.,Zhang,Y.,Kanga,W.,2014.␣-Glucosidaseinhibitors isolatedfrommedicinalplants.FoodSci.Hum.Wellness3,136–174.

You,Q.,Chen,F.,Wang,X.,Jiang,Y.,Lin,S.,2012.Anti-diabeticactivitiesofphenolic compoundsinmuscadineagainstalpha-glucosidaseandpancreaticlipase.LWT –FoodSci.Technol.46,164–168.

Zhang,X.,Gao,H.,Wang,N.,Yao,X.,2006.PhenoliccomponentsfromDendrobium nobile.Chin.Trad.Herb.Drugs37,652–655.

Imagem

Fig. 1. Lineweaver–Burk plot of ␣-glucosidase (A) and pancreatic lipase (B) in the presence and absence of 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (12).
Fig. 2. Stimulation of glucose uptake (A) and cytotoxicity (B) of L6 myotubes by hircinol (2), gigantol (4), nudol (5), lusianthridin (6) and moscatilin (11) at a different concentration in the range of 1–100 ␮g/ml.

Referências

Documentos relacionados

Nesses  dois  livros,  ele  desistiu  da  ideia  do  neo  clássico  para  estudar  rigorosamente  as  formas  de  artes  góticas,  a  fim  de  estabelecer 

Este trabalho teve como objetivo avaliar a massa específica aparente, propriedades químicas e a qualidade de juntas coladas de seis espécies de madeiras tropicais da

The results of minimal fungicidal concentration (MFC) showed that amphotericin B at 0.25 μ g/mL or higher concentrations displayed fungicidal activity against Pb18 while

EEAPL was more active against VACV-WR at concentrations of 240 μ g/mL, inhibiting 50% of the virus, while the fraction APEL and the Sephadex LH20 fractions APSE2-4, derived from it,

Overall, all plants showed a fungicidal effect (MIC and MFC values of each extract were exactly at the same concentration) against either species, with MIC/MFC values of the

Antileishmanial activity [50% inhibitory concentration (IC 50 ) (µg/mL)] against infected BALB/c mice peritoneal macrophages, safety index for BALB/c mice peritoneal macrophages

Para efeito de cálculo do valor venal Predial serão considerados os valores padrão estabelecidos na Tabela 05 do Anexo I, os coeficientes de Conservação determinados na Tabela 06

Os aspectos gerais demonstraram um estado normal dos animais, sem alterações dignas de nota, pois a mucosa intestinal dos carcarás apresentou-se com uma