• Nenhum resultado encontrado

Post-occupancy evaluation of residential buildings in Luxembourg with centralized and decentralized ventilation systems, focusing onindoor air quality (IAQ). Assessment by questionnaires and physical measurements.

N/A
N/A
Protected

Academic year: 2021

Share "Post-occupancy evaluation of residential buildings in Luxembourg with centralized and decentralized ventilation systems, focusing onindoor air quality (IAQ). Assessment by questionnaires and physical measurements."

Copied!
9
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Energy

and

Buildings

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Post-occupancy

evaluation

of

residential

buildings

in

Luxembourg

with

centralized

and

decentralized

ventilation

systems,

focusing

on

indoor

air

quality

(IAQ).

Assessment

by

questionnaires

and

physical

measurements

Marielle

Ferreira

Silva

a,∗

,

Stefan

Maas

b

,

Henor

Artur

de

Souza

a

,

Adriano

Pinto

Gomes

c

aCivilEngineeringPost-GraduateProgram,FederalUniversityofOuroPreto,MiningSchool,MorrodoCruzeiroCampus,35400-000OuroPreto,MG,Brazil bUniversityofLuxembourg,6RueCoudenhove-Kalergi,L-1359Luxembourg,Luxembourg

cDesignandProjectDepartament,FederalInstituteofMinasGeraisatOuroPreto,RuaPandiáCalógeras,898,Bauxita,35400-000OuroPreto,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received17August2016

Receivedinrevisedform14February2017 Accepted18April2017

Availableonline27April2017 Keywords:

Indoorairquality Post-occupancyevaluation Residentialbuildings

Centralizedanddecentralizedmechanical ventilation

Heatrecovery

a

b

s

t

r

a

c

t

Completeknowledgeabouthabitsoftheoccupants,includingtheiropinionsregardingventilation sys-temsisanimportantconditionforreducingtheconsumptionofnaturalresourcesandimprovingindoor comfort.Inaddition,uncomfortedoccupantstendtotakemeasurestoimprovetheirsituation,which mayincreaseenergyconsumption.Advancedthermalmodelsforbuildingscanperhapspredict interac-tionsbetweentheIAQdeterminants,e.g.energyconsumption,ventilationandcomfort,butdonottake intoaccountthebehaviorofresidents.Byquestionnairesandphysicalmeasurementsthisstudy evalu-ateddwellingsequippedpartlywithcentralizedandpartlywithdecentralizedventilationsystemswith heatrecovery.Thisfieldstudyinvolvedtwopost-occupiedresidentialbuildingssituatedinthecityof Esch-sur-Alzette,Luxembourg,duringspringseason2015.Thus,boththephysicalmeasurementsand questionnaireswereconsidered.Theresultsobtaineddemonstratedthatmorethan80%oftheresidents weresatisfiedandtheperceivedIAQwasjudged“normal”,“good”oreven“verygood”.Furthermore, themeasurementsperformeddetectedinsomecasesmalfunctionofventilationdevices,whereforethe occupantswereunable.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Recentenergyraisingdemandandincreasingbuilding

construc-tionrates,aswellasenvironmental,epidemiologicalandeconomic

reasonshavepushedforwardthepressuretodesign,constructand

maintainuser-friendlyresidentialbuildingswithhighenergy

effi-ciency,goodindoorthermalcomfortandnobleindoorairquality

(IAQ)[1–3].Comfortisastateofwell-beingandstability andit

ismeasuredbytherateofdissatisfiedoccupants.Iftheirportion

islow,thecomfortisjudgedasacceptable.However,itshouldbe

notedthataverystablecomfortcanalsobeboringandvariations

aresometimeswelcome[4].

Poorhousingenvironmentscannegatively affecta resident’s

overalllifestyleandalsoaffectthehealth,productivityandcomfort

ofoccupants.Theymayalsocausephysical,psychologicalandsocial

∗ Correspondingauthor.

E-mailaddresses:mariellearq@hotmail.com(M.F.Silva),stefan.maas@uni.lu (S.Maas),henorster@gmail.com(H.A.d.Souza),adriano.gomes@ifmg.edu.br (A.P.Gomes).

problems,deterioratingthequalityoflife.In thiswayagreater

effort is essential to improve indoor environments to provide

everyonewithhigherstandardsofliving,toimproveoverallwork

orlearningperformanceand/orreduceabsenteeism[5,6].

Unfor-tunatelysomebuildingsfailtomeettheserequirementsoccupants

sufferfromtheso-calledSickBuildingSyndrome(SBS),because

theyshowvarioussicknesssymptoms.TheSBSisthereactionof

occupantstotheirnon-perfectindoorenvironment;areactionthat

cannotbedirectlylinkedtospecialproblems,suchasexposureto

anexcessiveconcentrationofaknowncontaminant,oranevident

defectsintheventilationsystem.PeopledevelopingSBSusuallysee

theirsymptomsdisappear,whentheyleavethebuilding[4].

Advancedtheoreticalmodelsofthebuilding’sbehavior

includ-ingthetechnicalbuildingsystemsandthenumberofpeoplecan

predicttheindoorairquality,aswellascomfortparametersand

thus estimateheat consumption inthedesign stageand define

requirementsfortheheatingandventilationsystems[3,7].

How-ever,theyareusuallydeterministicanddonottakeintoaccount

thebehavioroftheresidentsandmanyotherparameters,likethe

numberofpersonsandtheirtimeofoccupation,theemissionsfrom

http://dx.doi.org/10.1016/j.enbuild.2017.04.049 0378-7788/©2017ElsevierB.V.Allrightsreserved.

(2)

bedrooms35l/s Hallways30l/sper 100m2)

5achb 10l/s

EN15251 0.42l/sm2 N/C 7l/s 1.0l/sm2 Kitchen Bathroom >15–20% 500(abovethe

outsideair) Living room: 25–40 Bedroom: 20–35 20–26 20l/s 15l/s NBR16401 N/C Summer 0.20–0.25 Winter 0.15–0.20 N/C N/C Summer (0.5clo) 35–65% Winter(0.9 clo) 30–60% <700(above theoutsideair: 400) N/C Summer (0.5clo) 22.5–26.0 Winter (0.9clo) 21.0–24.0 Notes:

aN/C:nothingin,ornotfoundinstandardreferencesforthisparameter.

b ach:airchangeperhour(airflowinvolumeunitsperhourdividedbythevolumeofthespaceonwhichtheairchangerateisbasedinidenticalunits.

activitieslikesmoking,orcooking,andemissionsfromfurniture,

carpets,cleaningproducts,hobbiesetc.[3,6].Thus,thepredicted

comfortandenergyconsumptionarenotprecise,duetoan

incor-rectestimationoftheindoorairqualityandcomfort conditions

[3,8].The incorrectand unpredicted useof ventilation systems

causesunexpectedandrandomairflow[3].

Indoorenvironment quality hasmediating effects and helps

toincreaseenergy efficiencyand overallresidentialsatisfaction.

So,themoretheresidentsareawareoftheimportanceofenergy

savings and energy costs, the higher the indoor environment

satisfaction[5,9].Contrarilyuncomfortedoccupantsarelikelyto

takeactionstohelpthemselvescomfortableandhasoftennegative

energyimplications [3,6,10,11].The degreeof occupant control

overtheenvironmentdependsnotonlyonthecharacteristicsof

thebuildingandonitssystems(buildingcontextualfactors),but

alsoonoccupantawarenessofthesefeatures[12].Inspiteof‘good’

and‘verygood’gradesfortheairqualityandcomfortperception,

theresidents’behavior isclosely reflectedby behaviorcustoms

thatleadtowindowopeninganduncontrolledheatlosses.Thus,

windowventilationispermanentlyrelatedtohumanhabitswhich

havetobeaccepted[3,12].Mechanical ventilationis astrategy

withahighimpactonthequalityoftheindoorairofabuilding

andthecomfortofusers,sinceit isdifficultorevenimpossible

fortheusertoprovideasufficientamountoffreshairbynatural

ventilation[13,14].

Intermsofenergyefficiency,thepurposeofmechanical

ven-tilationis tocontroltheamountof airnecessarytoensureIAQ

withlowpowerconsumption andmakeuseofheatrecoveryto

reduceventilationlosses[14].Resultsshowthatenergysavingsin

ventilationheatrecovery(VHR)canbeverysignificant,depending

onthetypeofventilationsystem,andthetightnessofthebuilding

[13].Inpractice,thedesignandproperinstallationarecriticalfor

exploitingthe potentialof thesystem [13]. Reported problems

withventilationand spaceheating suggest thatcomprehensive

post-occupancyevaluationisessentialforimprovingthequality

ofdevelopmentsandcorrectingerrorswhichoccurrepeatedlyin

housingprojects[11].

Consideringtheseaspects,thispaperdevelopsapost-occupancy

evaluationinresidentialbuildings,consideringmechanically

ven-tilatedroomswhilefocusingonmeasuredandperceivedIAQand

theefficiencyoftheventilationsystems.

1.1. TheparametersforIAQevaluation

Inordertohaveaguidelineforevaluatingthephysical

measure-ments,fourstandardswereanalyzed.Table1isasummaryofthe

ASHRAE62.1[15]and62.2[16],EN15251[6]andNBR16401[17]

standardswiththemainparametersrecommendedforIAQ

evalu-ation.ItshouldbenotedthattheEuropeanstandardEN15251[6]

containsthelargestnumberofparametersrelatedtothe

evalua-tionofIAQ.Therefore,inthisstudyitwasusedasreferenceandis

relatedtothestandardEN15251[6]withanacceptable

satisfac-tionlevel.Thisstandardalsoconsidersthatthehumidificationof

indoorairisusuallynotnecessary,whileASHRAE62.1[15]suggests

amaximumlimitof65%forrelativehumidity,whichwasusedas

uppercomfortlimit.

2. Materialsandmethods

Thepaperpresentstheresultsofexperimentalinvestigations

conductedin16apartmentsoflowpowerconsumptionequipped

withfourdifferentmechanicalventilationsystemswithheat

recov-ery,distributedintworesidentialbuildingslocatedatthePierre

KrierSquareinthecityofEsch-sur-Alzette,Luxembourg(Fig.1).

TheIAQoftheresidentialbuildingsisexaminedfromthe

perspec-tiveoftheoccupants’acceptanceintwoaspects:indoorairquality

andventilation.

Originally built in 1957, the buildings were renovated in

theyears 2012–2014and equippedwithmechanicalventilation

systems.Threedecentralizedandonecentralizedmechanical

ven-tilationsystemwithheatrecoveryweremeasuredinmulti-family

homes.Forcentralizedventilationunits(namedsystemA)a

duct-workisusedtotransportthesupplyandextractair,whilethree

(3)

Fig.1.Photosofthefrontfacades.

Fig.2.Typesofventilationunitsforresidentialbuildings. Source:[13].

Table2

Mechanicalventilationsystemsstudied. Namedsystems Typesof

ventilationunits

Characteristics

A Centralized Thesystemconsistsofacentralizeddeviceforventilationofallroomswithheatrecovery.Theairflowpassesfreely frombedroomsandlivingroomstoexhaustroomssuchasbathrooms,kitchensandlaundries.

B Singleroomunit Thesystemisadecentralizedsingleroomventilationunitwithrecuperativeheatrecovery.

C Pair-wiseunits Theventilationsystemusedhaspair-wiseunitsthatalwaysoperatetogetherwithfansandinternalmassstoragefor heatrecovery.

D Pair-wiseunits Theventilationdeviceisdecentralizedpair-wiseunitswithheatrecovery,butdifferentsupplierasC.

directlyinthefacadeofthebuilding,Fig.2.Theircharacteristics

areshowninTable2.Alltheroomsofeachapartmentare

venti-latedwiththesamemechanicalsystem,exceptbathroomswhere

theairisalwaysexhausted.Thecentralized(systemA)andthe

sin-gleroomunits(systemB)userecuperativeheatexchangerswhere

theincomingandoutgoingairisseparated,whilethepair-wise

units(systemC andD)heatupaceramicor aluminumstorage

masswiththeexhaustairfortypically1min.Thentheflow

direc-tionisreversedandthestoragemassiscooledbytheincomingair

for1min,i.e.thereisalwaysapairofdeviceswithoppositeflow

direction.

Eachbuildinghasfivefloors:thebasement,streetlevel,1stFloor

and2ndand3rdFloorswithcompoundduplexapartments.The

twobuildingshavethesameexternalandinternalwall

mount-ing.Theexternalswallsarebuiltofbrickswiththicknessof49cm

andthermalisolationof30cm.Theinternalwallsarealsobricks

of24cmthickness.Eachfloorisdividedintofourapartmentswith

totalfloorareaof57m2 upto131m2.Table3showsthetypeof

mechanicalventilationsystemforeachapartment(systemname

andtheapartmentno.)forbuildingsIandII.

Theinvestigationwasdoneintwostages.Inthefirststage,

ques-tionnairesaboutthequalityofairandventilationweresuppliedto

theresidentsoftheapartments.Inthesecondphase,experimental

measurementswereconductedinthesamedwellings.

ThequestionnairewasbasedonmodelsbySilva[18]andRoulet

[4] andconsisted of21 questions includingaspectsof personal

information, suchassex and age,periodof permanency in the

residence,andnumberofpeoplelivingineachapartment(ref.to

appendices).Thefocusofthequestionsisrelatedtotheefficiencyof

ventilationsystemsinrelationtoindoorairqualityincluding

envi-ronmentalthermalsensation(temperatureandrelativehumidity),

CO2 concentration(bytheodor),noise,anddatarelated tosick

buildingsyndrome(SBS).ThequestionnairesforbuildingsIandII

wasdistributedon9and10March2015between9amand3pm.

Firstthequestionnairewaspresentedandthepurposeofthis

ques-tionnairewasdiscussed.Afterexplanationanyuserhadaperiod

of1hforanswering,withoutinterferenceoftheinterviewer,who

waspresent.Weobtainedatotalof16adultresponders,onefor

eachapartment.Thisnumberofrespondentscorrespondsto67%

of24apartments,dividedinto12womenandfourmen,withage

between26and71years.Ofthetotalnumberofapartments,16%

werevacatedand17%ofresidentswerenotinthedwellingatthe

timeoftheinterview.Accordingtotheresponsesoftheoccupants,

theapartmentswererentedforoversixmonthsafterrenovation

ofthebuildings.

Formeasurementsinsitu,weusedtheWöhler[19]andDIFF

Airflow[19,20]equipment.The“WöhlerCDL210CO2-Datalogger”

(4)

(A) (A) (A) (A) roomunit (B)

Units(D) units(D) units(C)

1 2 3 4 13 14 15 16

Fig.3.Thenotesofresidentsin%relatedtotheindoorenvironment.

airtemperatureandrelativehumidity.Thedatafromthisdevice

wereusedfordeterminingtheIAQ.TheCO2 levelwasobtained

byinfrared measurement. The automatic DIFF airflow is a

sin-glemeasureairflowdevice,whichisbasedonthezero-pressure

method.Thepressuregeneratedbyaninternalresistance

measure-mentdeviceis automaticallycompensatedbythezero-pressure

methodwithrespecttoatmosphericpressureoutsidethedevice.

Thepressurecompensationisproducedbyabuilt-infan,whichis

controlledbyadifferentialpressuresensor.Thismeasuringdevice

canbeusedfordeterminationofthesupplyorexhaustairflowat

in-andoutlets.

3. Resultsanddiscussion

3.1. Questionnaire

Fig.3showstheresultsin%fromtheanswersoftheresidents

withrespecttotheairqualityandcomfortperceptionrelatedto

theindoorenvironment,focusedontheindoorairtemperature,

relativehumidityofindoorair,noise,odorelimination,overall

per-ceivedIAQandtheventilationsystem.

Itshouldbenotedthat69%ofresidentsclassifiedtheindoorair

temperatureas“neutral”and56%consideredthehumidity

“nor-mal”.Atotalof69%thinkthatthenoiseproducedbytheventilation

systemsis“verylow”upto“normal”.Regardingtheefficiencyofthe

ventilationsystemstoeliminateodors,57%ofthepeopleanswered

“normal”to“verysufficient”and43%ofthemanswered

“insuffi-cient”to“veryinsufficient”.ForoverallperceivedIAQ,88%ofthe

residentsclassifieditas“normal”to“verygood”,whilethe

venti-lationsystemswithheatrecoverywereclassifiedas“normal”to

“verygood”in82%ofresponses.

Statisticallythewomenhadadifferentperceptionofthe

ther-malenvironmentthanman,sotherearemoresensitivetothelow

temperaturesthanmanincoolconditions,withapreferencefora

warmerenvironment[21–23].As75%ofrespondentsinthisstudy

werewomen,thisstudyshouldbeexpandedtoachieveasimilar

percentageofmenandwomenformoreaccurateresults.

Residents were requested to answer whetherthey had any

symptoms(Fig.4a)relatedtotheSickBuildingSyndrome(SBS),and

whetherthesesymptomsdisappearedwhentheyleftthe

apart-ment.Allsymptomsputinthequestionnairewerementioned,and

runny nosewasthemostfrequent (23%). For64% ofoccupants

thesesymptomsdisappeared,oncetheywereoutsidethebuilding

(Fig.4).Howevertoknowtheexactcausesofthisphenomenon,

newstudiesandmeasurementsintheapartmentsneedtobe

per-formed.

Residentswerealsoasked,iftheyopenedthewindowsandat

whattime.88%ofthemanswered“yes”aftercooking,and38%also

answered“yes”whensleeping.

During explanation of the questionnaires and studying the

responses,itwasobservedthatresidentshaddifficultiesin

under-standingthefunctioningofventilationdevicesandtheirinteraction

withopenwindows.Onlyperceivedinformationcanbeusedand

inthissensethesystemsaswellastheinformationpolicyneeds

improvement.

3.2. Insitumeasurements

AtfirsttheapartmentswereequippedwithWöhlersensors[19]

tomeasuretherelativehumidity,temperatureandCO2

concen-trationoftheindoorair.Intotal,17measuringpointsregistered

every15minmeasureddataforonemonthintotalduringspring

2015.ThesecondevaluationusedDIFFAirflowequipment[19]to

measurethevolumeairflow.

Thedatafromtheexternaltemperatureandexternalrelative

humidityofEsch-sur-AlzettecityintheperiodofMarch9,2015to

April14,2015areshowninFig.5.Thesewereobtainedfromthe

dailyweatherserviceprovidedbythewebsiteFREEMETEO[24].It

(5)

Fig.4.PercentageofSBSsymptomspointedoutbyresidents.

Fig.5.EvolutionofexternaltemperatureandrelativehumidityforthemeasuringperiodfromMarch9,2015toApril14,2015inEsch-sur-Alzettecity(L). Source:[13].

Fig.6. ConcentrationofCO2aboveorbelowathresholdvaluein%ofmeasurementtime.

and20◦C.Inadditiontheoutdoorrelativehumiditywasbetween

65%and100%.

BeforetheinstallationoftheWöhlermeasuringdeviceanyuser

wasaskedtoidentifywhethertheliving roomorthebedroom

wasmostsuitedandhenceselectionforinstallationofthesensor.

Finally15ofthe24apartmentsweresuccessfullyanalyzed.

Fig. 6 shows the CO2 concentration divided by the limit of

1500ppmintotwointervals.

Onlytheapartments15,22and24,i.e.20%oftheapartmentshad

CO2 concentrationsabove1500ppmin20–30%ofthemeasured

time,i.e.badair.

Fig.7 showstheindoorair temperaturevaluesgroupedin3

intervalsin%ofmeasuredtime.

Fromtheresults,wecannoticethattheindoorairtemperature

wasbelow20◦Cformorethan20%ofthemeasuredtimeinseven

apartments,whichis46%oftheapartmentsanalyzed.Therefore,it

canbeconcludedthattheairtemperaturewasquitelowthere.

Fig.8showsthevaluesresultingfromtherelativehumidityof

indoorairinpercentageofthemeasuredtime.

Itcanbeobservedthatonlyoneapartment’srelativehumidity

exceededthe65%limitby76%ofthemeasuredtime,andthiswas

apartment24.

Inordertounderstandtheuser’ssensation, wecancompare

themeasurements ofindoor airtemperature, relative humidity

andCO2concentrationtotheresponsesfromthequestionnaire,

knowingthatconcentrationofCO2isoftenusedaspollution

indi-cator.Itwasobservedthatinapartmentswithhighconcentrations

of CO2 (nos.15, 22 and 24,Fig. 6)theoccupants classifiedthe

IAQdifferently. The ventilationsystemwasjudges“Very good”

inapartment15,eventhoughtheCO2 concentrationwasabove

1500ppmformorethan20%ofthemeasuredtime,while

apart-ment 22 wasclassified “Bad”and apartment 24 as “Very bad”

(Table4).

Comparingthemeasuredtemperaturewiththeanswersofthe

question6(Howdoyoufeeltheambienttemperatureinyour

apart-ment?), itwasobservedthat manypeopleclassifiedtheindoor

environmentas“slightlycool”and“cold”(Table4),which

(6)

Fig.7.Indoorairtemperaturegroupedin3intervalsin%ofmeasuredtime.

Fig.8.Relativehumidityaboveorbelowathresholdvaluein%ofmeasuredtime.

Table4

Theresponsesofoccupants(sittingorrestingactivity).

No.ofApt Gender Ageoftheperson Questionsrelatedto

Temperature Humidity CO2

Question6 Question7 Question17 Question18

3 Woman 40 Neutral Normal Normal Normal

5 Man 30 Neutral Low Good Normal

7 Woman 28 Neutral Normal Normal Normal

9 Woman 36 Neutral High Normal Normal

11 Man 44 Neutral Normal Normal Normal

12 Woman 36 Neutral Normal Normal Good

13 Woman 71 Neutral Normal Good Good

15 Woman 38 Slightlycool Low Verygood Verygood

16 Woman 49 Slightlycool Low Normal Verygood

17 Woman 30 Neutral Normal Verygood Verygood

18 Woman 49 Neutral Normal Good Bad

19 Woman 26 Slightlycool Normal Good Good

20 Man 65 Neutral High Normal Normal

22 Woman 46 Cold Veryhigh Verybad Verybad

23 Man 43 Neutral Normal Good Verygood

24 Woman 37 Cold Veryhigh Bad Bad

morethan20%ofmeasuredtime(Fig.7).Apartment15was

classi-fiedas“Slightlycool”andapartments22and24as“cold”.Hereit

wasobservedthattheindoorairtemperaturesinFig.7werebelow

20◦Cformorethan30%ofthemeasuredtime.

Asnotedpreviously,onlyapartment24hadarelativehumidity

abovethelimitfor 76%ofthemeasuredtime(Fig.8),in

agree-mentwiththeresponsesoftheoccupants,whoalsoclassifiedthe

humidityas“veryhigh”(Table4).

Inorder toverifythereasonsfor thehighconcentrations of

CO2 inapartments15,22and24andthehighrelativehumidity

inapartment24,newmeasurementsweretakenwiththeDIFF

(7)

Table5

Valuesformeasuredairflowtobedroom2inapartment15,–pair-wiseunits(D). Date Function Airflow(m3/h) Indoorairtemperature(C) 26/May/2015 Supply 10.2 20.4

2/June/2015 Supply 19.6 21.8 2/June/2015 Supply 0.9 22.5

Table6

Valuesformeasuredairflowtobedroom3inapartment24,–pair-wiseunits(C). Date Function Airflow(m3/h) Indoorairtemperature(C) 17/June//2015 Exhaust 2 24.8

24/June/2015 Supply 4.8 23.5 25/June/2015 Exhaust 0.8 24

ittopreviousresults. Tables5and 6presenttheairflowvalues

measuredinbedroom2ofapartment15andinbedroom3of

apart-ment24.Unfortunatelyitwasnotpossibletotakemeasurements

inapartment22,becausethetenantdidnotlikeit.

AccordingtoASHRAE62.1andEN15251theseapartmentsneed

minimum airflow ratesof 12 and 14m3/h respectively, which

isbyfarmorethanthemeasuredvaluesinaverage.Inaddition,

thevalues oftheairflowmeasurementsvariedconsiderably,for

instanceinapartment15between0.9and19.6m3/h(Table5),and

from0.8to4.8m3/hforapartment24(Table6).Hencethe

ven-tilationdevicesdidnotworkproperlyandapparentlythesystem

hadproblems,whichwerelateranalyzedandsolvedbyspecialized

technicians.

4. Conclusions

Thepost-occupancyevaluationintwonewlyrenovated

apart-mentbuildingsinLuxembourgfocusedonIAQandtheeffectiveness

ofventilationsystems.Theanalysiswasdoneusingquestionnaires

togetherwiththephysicalmeasurementsoftheCO2,temperature

andrelativehumidity.

Itwasdetectedthatin3apartments(15,22and24)the

mechan-icalventilationwasnotworkingproperly:thetemperaturewastoo

low;andtheCO2oftenexceededthecriticalthreshold.Sometimes,

butnotalways,theoccupantsfeltthemalfunctioning,butdidnot

notifythelessor.Itwasobservedthatwhentherearetwoormore

parametersabovethecomfortrange,peopleseemtodetectmore

easilyproblemsofthetechnicalsystem.

Thestudypresentsofcourselimitations:thereare75%women

andhenceonly25%men,whofilledoutthequestionnaires,though

itisknownthatbothgenderanswerdifferently.Furthermore,the

evaluationandmeasurementperiodswerequiteshortandnotall

knowncomfortparametersweremeasured,ase.g.theradiant

tem-perature,theairdraft,temperatureasymmetry.

Inadditionitisknownthatmultipleothersubstancesinsmall

concentrationsarepresentinsidethebuildingsandareinfluencing

thewell-being,e.g.manychemical,physicalandbiological

pollu-tants.Thelackofquantitativedataisanobstacleandshouldtackled

byresearchers.

However,itcanbeexpectedthatinsitustudiesaboutoccupant’s

acceptanceanduseofenergyefficientventilationsolutionshelpto

minimizeorcorrectproblems.Theyarenecessaryfordetectionof

malfunction,andforoptimizationoffutureprojects.

Acknowledgments

The authors gratefully acknowledge the University and the

“SociétéNationaledesHabitationsàBonMarché(SNHBM)”of

Lux-embourg,theUFOP,theFAPEMIGandtheCAPES,Brazilfortheir

valuablesupport.

AppendiceQuestionnaireaboutindoorairqualityand mechanicalventilation

Questionnairemechanicalventilation(TheUniversityof

(8)

References

[1]H.R.R.Santos,V.M.S.Leal,Energyvs.ventilationrateinbuildings:a comprehensivescenario-basedassessmentintheEuropeancontext,Energy Build.54(2012)111–121.

[2]C.A.Alves,D.H.S.Duarte,F.L.T.Gonc¸alves,Residentialbuildings’thermal performanceandcomfortfortheelderlyunderclimatechangescontextinthe cityofSãoPaulo,Brazil,EnergyBuild.114(2016)62–71.

[3]T.Maier,M.Krzaczek,J.Tejchman,Comparisonofphysicalperformancesof theventilationsystemsinlow-energyresidentialhouses,EnergyBuild.41 (2009)337–353.

[4]C.A.Roulet,Santéetqualitédel’environnementintérieurdanslesbâtiments, in:PressesPolytechniquesetuniversitairesromandes-Ingénieriede l’environnement,seconded.,Espagne,2008.

[5]T.K.Lee,J.T.Kim,Residents’responsesonindoorenvironmentqualityand energyuseinapartments,EnergyBuild.98(2015)34–38.

[6]EuropeanCommitteeForStandardization,EN15251:IndoorEnvironmental InputParametersforDesignandAssessmentofEnergyPerformanceof BuildingsAddressingIndoorAirQuality,ThermalEnvironment,Lightingand Acoustics,CEN,Brussels,2007.

[7]A.C.K.Lai,K.W.Mui,L.T.Wong,L.Y.Law,Anevaluationmodelforindoor environmentalquality(IEQ)acceptanceinresidentialbuildings,EnergyBuild. 41(2009)930–936.

[8]R.K.Andersen,V.Fabi,S.P.Corgnati,Predictedandactualindoor environmentalquality:verificationofoccupants’behaviourmodelsin residentialbuildings,EnergyBuild.127(2016)105–115.

[9]G.M.Huebner,J.Cooper,K.Jones,Domesticenergyconsumption—whatrole docomfort,habit,andknowledgeabouttheheatingsystemplay?Energy Build.66(2013)626–636.

[10]J.Han,G.Zhang,Q.Zhang,J.Zhang,J.Liu,L.Tian,C.Zheng,J.Hao,J.Lin,Y.Liu, D.J.Moschandreas,Fieldstudyonoccupants’thermalcomfortandresidential thermalenvironmentinahot-humidclimateofChina,Build.Environ.42(12) (2007)4043–4050.

[11]A.Zalejska-Jonsson,Evaluationoflow-energyandconventionalresidential buildingsfromoccupants’perspective,Build.Environ.58(2012)135–144. [12]M.Vellei,S.Natarajan,B.Biri,J.Padget,I.Walker,Theeffectofreal-time

context-awarefeedbackonoccupants’heatingbehaviourandthermal adaptation,EnergyBuild.123(2016)179–191.

[13]A.Dodoo,L.Gustavssona,R.Sathrea,Primaryenergyimplicationsof ventilationheatrecoveryinresidentialbuildings,EnergyBuild.43(7)(2011) 1566–1572.

[14]A.Merzkirch,S.Maas,F.Scholzen,D.Waldmann,Fieldtestsofcentralizedand decentralizedventilationunitsinresidentialbuildings–specificfanpower, heatrecoveryefficiency,shortcutsandvolumeflowunbalances,EnergyBuild. 116(2016)376–383.

[15]AmericanSocietyOfHeating,RefrigeratingandAir-ConditioningEngineers. ASHRAE62.1:VentilationforAcceptableIndoorAirQuality,ASHRAE,Atlanta, 2013.

[16]AmericanSocietyofHeating,RefrigeratingandAir-ConditioningEngineers. ASHRAE62.2:VentilationandAcceptableIndoorAirQualityinLow-Rise ResidentialBuildings,ASHRAE,Atlanta,2013.

[17]Associac¸ãoBrasileiraDeNormasTécnicas,NBR16401:Instalac¸õescentraisde arcondicionado–Sistemascentraiseunitários:Parte1–Projetodas instalac¸ões,Parte2–Parâmetrosdeconfortotérmico,Parte3–Qualidadedo arinterior,ABNT,RiodeJaneiro,2008(inPortuguese).

[18]A.F.S.Silva,Avaliac¸ãodaqualidadeambientalinteriordeumedifício climatizadoartificialmente,comênfasenaanálisedoconfortotérmico, Dissertac¸ão(MestradoemEngenhariaHidráulicaeSaneamento),Escolade Engenharia,UniversidadedeSãoPaulo,SãoCarlos,2010,169pp.(in Portuguese).

[19]Wöhler,TheMeasureofTechnology.Catalog,2015,Availableat:http://www. woehler.de/shop/us/applications/measuring-instruments-iaq-and-building/ iaq-indoor-air-quality/wohler-cdl-210-co2-datalogger.html(accessedon: 20.02.15).

[20]DIFFAirflowCatalog,2015,Availableat:http://www.airflow.de/de/Produkte/ Messgeraete-1/Mobile-Messgeraete-fuer-den-HLK-Bereich-1/

(9)

Volumenstrom-und-Druck/detail/DIFF-Digitales-Volumenstrommessgeraet-mit-automatischer-Druckkompensation-und-Datenspeicherung-1.html (accessedon:26.06.15).

[21]M.Indraganti,R.Ooka,H.B.Rijal,ThermalcomfortinofficesinIndia: behavioraladaptationandtheeffectofageandgender,EnergyBuild.103 (2015)284–295.

[22]M.Indraganti,K.D.Rao,Effectofage,gender,economicgroupandtenureon thermalcomfort:afieldstudyinresidentialbuildingsinhotanddryclimate withseasonalvariations,EnergyBuild.42(2010)273–281.

[23]K.C.Parsons,Theeffectsofgender,acclimationstate,theopportunityto adjustclothingandphysicaldisabilityonrequirementsforthermalcomfort, EnergyBuild.34(2002)593–599.

[24]Freemeteo,TempsEsch-Sur-Alzette–Letempsmaintenant,2015,Available at:http://freemeteo.fr/(accessedon:30.02.15).

Referências

Documentos relacionados

O nome, Casa do Massa Barro, segundo a Associação, bastante sugestivo, foi inspirado pelo poeta da terra conhecido como Gabriel Vandoni de Barros, por comparar o trabalho do

poultry including management status, number and size of poultry houses, the technology used in the walls and roof (resistance to heat exchange), ventilation and fan systems (based

France; the Bundesministerium f ¨ur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat

A atividade ecoturística atrai um grande número de pessoas, de forma seletiva, que estão interessadas em ver ambientes naturais pouco modificados ou inalterados, mas, o

To the realization of this work, 17 samples of dried pears subject to different drying methods were analyzed, together with 5 samples of dried prunes and 5 samples of raisins,

À partida, tais teorias económicas são direcionadas para empresas que seguem os caminhos tradicionais de internacionalização; no entanto, quando adicionamos o fenómeno

Como referido anteriormente, esta linha é constituída por três postos de trabalho dedicados somente à montagem do produto final; porém, existe mais um posto de