• Nenhum resultado encontrado

Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene

N/A
N/A
Protected

Academic year: 2021

Share "Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene"

Copied!
7
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Ligninolytic

fungus

Polyporus

sp.

S133

mediated

metabolic

degradation

of

fluorene

Zainab

Mat

Lazim

a,b

,

Tony

Hadibarata

a,b,∗

aCentreforEnvironmentalSustainabilityandWaterSecurity(IPASA),ResearchInstituteforSustainableEnvironment(RISE),

UniversitiTeknologiMalaysia,Skudai,Johor,Malaysia

bDepartmentofEnvironmentalEngineering,FacultyofCivilEngineering,UniversitiTeknologiMalaysia,Johor,Malaysia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11July2015

Accepted22December2015

Availableonline23April2016

AssociateEditor:CynthiaCanêdoda

Silva Keywords: Metabolites Ligninolyticenzymes Polyporussp.S133 Non-ionicsurfactants Solubilization

a

b

s

t

r

a

c

t

Thisstudyaimedtoinvestigatetheimpactofnonionicsurfactantsontheefficacyoffluorine

degradationbyPolyporussp.S133inaliquidculture.Fluorenewasobservedtobedegraded

initsentiretybyPolyporussp.S133subsequenttoa23-dayincubationperiod.Thefastest

cellgrowthratewasobservedintheinitial7daysintheculturethatwassupplemented

withTween80.Thedegradationprocesswasprimarilymodulatedbytheactivityoftwo

ligninolyticenzymes,laccaseandMnP.Thehighestlaccaseactivitywasstimulatedbythe

additionofTween80(2443U/L)followedbymixedsurfactant(1766U/L)andBrij35(1655U/L).

UV–visspectroscopy,TLCanalysisandmassspectrumanalysisofsamplessubsequentto

thedegradationprocessintheculturemediumconfirmedthebiotransformationoffluorene.

Twometabolites,9-fluorenol(max270,tR8.0minandm/z254)andprotocatechuicacid(max

260,tR11.3minandm/z370),wereidentifiedinthetreatedmedium.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Fungalbiotransformationisconsidered asoneofthe most

importantmethodsforremovingpollutantfromthe

ecosys-tem. In case oforganic pollutants, the primary issue that

impedes their clearance is their characteristically low

sol-ubilityinwater. Theinherenthydrophobicnature ofthese

organic pollutants results intheir selective partitioning in

the soil matrix such that their bioavailability is seriously

Correspondingauthor.

E-mail:hadibarata@utm.my(T.Hadibarata).

compromised. This in turn jeopardizes the success of the

bioremediation treatment. Thereis anurgentneed forthe

developmentofalternativetreatmentmodalitieswhichwill

help remove these pollutants from the environment by

makingthemmoreavailableforthedegradationby

microor-ganisms. Surfactant-mediated biodegradation is one such

promisingprocess.Thismethodhasthepotentialtoincrease

the solubility of hydrophobic compounds, such as PAHs,

thereby increasingtheirbioavailabilityand expeditingtheir

removal from the environment.1–3 Previous studies have

http://dx.doi.org/10.1016/j.bjm.2016.04.015

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

shownthatdependingonthesurfaceofthesubstanceand

thetypeofthesurfactantused,theprocessofsurfactant

sorp-tiontomicroorganismscanresultineitheranincreaseora

decreaseinadhesion.4

Micellesarethesolutionaggregatesformedbysurfactant

moleculesinwaterwhentheirconcentrationisabovethe

crit-icalmicelleconcentrationorCMC.Micelleshavedualnature:

their hydrophilic outer surface is exposed to the solvent

whereasthecoreiscomposedofhydrophobicmoieties.

Sev-eralresearchersareactivelyconductingstudiesinanattempt

toinvestigatetheeffectofsurfactantsonmicrobial

transfor-mationofpollutants;allthesestudiesarebasedonsurfactant

utilization atconcentrationsabove CMC.Hydrocarbons are

known to be partitioned into the hydrophobiccore of the

micelles.5,6But,itiswellestablishedthatextentof

solubili-zationisinfluencedbyamultitudeoffactorssuchastypeand

concentrationofthesurfactant,theinteractionbetweenthe

surfactantandsoil,thecontacttimebetweenthe

contami-nantandsoilaswellasthehydrophobicityofthecompound

inquestion.7,8

Fluorene is a three-ring PAH found ubiquitously in the

environment.9 It isproduced as a result ofan incomplete

combustionof certain products. Fluorene leaches into the

groundwatereitherasaresultofdirectcontaminationfrom

pollutedsurfacewatersorindirectlythroughthesoil.Fluorene

is not considered as a genotoxic agent but the

carcino-genic aspectof its molecularstructure hasbeen popularly

used as an indicator for the evaluation ofPAH-containing

pollutants.10White-rotfungihavebeenfrequentlyemployed

forthedegradationofvariousorganicenvironmental

pollut-ants.Theirexceptionalcapacitytodegradeandbiotransform

organiccontaminantscanbeattributedtotheproductionof

ligninolyticenzymessuchasMnP,LiP,laccase,andversatile

peroxidase.11–13Theligninolyticenzymesareresponsiblefor

thedepolymerizationofPAHs,whichresultsinthe

produc-tionofvarioustypesofphenol.Theyalsooxidizesubstrates

inthepresenceofasuitableco-substrate.14Extensivestudies

havebeenundertakeninordertoinvestigatethepotentialof

white-rotfungustodegradePAHs.15,16 However,theimpact

ofsolubilizationoffluorenewithsingleandmixednonionic

surfactantsonthedegradationrateremainsunexplored.

Thisstudy attempts tofill the above mentioned lacuna

byevaluatingthebiodegradationoffluorenebythePolyporus

speciesinliquid culturesin the presenceoftwo synthetic

surfactants.Ourstudyalsoquantifiestheresultantbiomass

produced,the extracellular enzymes and the glucose

con-sumptioninvolvedintheprocess.Furthermore,inanattempt

tocomprehensivelystudythedegradationprocess,

metabo-litesformedduringfluorenedegradationhavebeenidentified

andcharacterizedusingavarietyofchromatographic

tech-niques.Twononionicsurfactants,Tween80andBrij35,were

chosen to study the influence of the surfactant structure

onthebiodegradationandbiotransformationoffluoreneby

thefungal biomass.Studies haveestablishedthat nonionic

surfactants are more effective on account of their higher

adsorptioncapacityinclayfractionsascomparedtoanionicor

cationicsurfactants.6Therelationshipbetweenenzyme

activ-ity, glucose consumption, fluorene utilization and biomass

productioninthepresenceofTween80andBrij35wasalso

established.Thedatageneratedbythisstudywillcontribute

Table1–Structureandphysical–chemicalcharactersof

fluorene.

Molecularstructure

Molecularformula C13H10

Appearance Whitecrystal

Molecularweight 166.22 Density 1.202g/mL Meltingpoint 117◦C Boilingpoint 295◦C Aqueoussolubility (20–25◦C) 1.98mg/L Octanol–waterpartition coefficient(logL/kg) 4.0155

towarddefininganewapproachforbiotransformationofPAHs byimprovingourunderstandingabouttheinfluenceof surfac-tantsintheprocess.Itishopedthattheresultsofourstudy willbeasignificantcontributiontothefieldofbiodegradation especiallysurfactantenhancedbiodegradation(Table1).

Materials

and

methods

Chemicalsandmicroorganisms

Fluorene and an internal standard,4-chlorobiphenyl, were

obtainedfromSigma–Aldrich(Milwaukee,WI).Bothwere

sup-pliedat>97%purity.NonionicsurfactantssuchasBrij35and

Tween80,andextractionsolventssuchasethylacetateand

dichloromethanewereobtainedfromAcrosChemicals.Malt

extract as well as other chemicals required forliquid

cul-turewereprocuredfromDifco(Detroit,USA).Allthesolutions

obtainedorpreparedutilizedanalyticalgradeandhigh-purity

reagents. Thefungus usedin the study was isolated from

Matsuyama,Japan.ThePolyporussp.S133wascultivatedin

a100-mLErlenmeyerflaskcontainingmineralsaltmedium

(MSM).ThecompositionofthegrowthmediumMSMisgiven

inTable2.ThesterilityofMSMwasensuredbyautoclaving

the growthmediumpriortouse.Fluorene (10mg/L),Tween

80andBrij35solutionsweresterilizedbyvacuumfiltration

inordertopreventanyconversionofthecompounds.15,17For

estimationofenzymeactivity,theculturewassupplemented

withthedesiredamountoffluoreneandincubatedforspecific

timeintervals.Allexperimentswereconductedintriplicate.

Enzymeassaysandbiomassdetermination

The enzymeanalysis of the funguswas conducted as per

the protocoldescribed earlier.18 Laccaseactivity was

deter-minedbyABTSoxidationandassayedspectrophotometrically

at420nm.MnPactivitywasdeterminedbytheoxidationof

malonate anddimethoxyphenol inan MnSO4 solution and

assayedbymonitoringchangesinabsorbanceat270nm.The

enzymeproductionwasexpressedinUL−1.Biomass

produc-tion was estimatedbycentrifugingthe culturefollowedby

filtrationthroughaWhatmanNo.1filterpaper.Thebiomass

(3)

Table2–Concentrationsofmineralsaltmedia(MSM)constituents.

MSMconstituents Concentration(g/L) Traceelement Concentration(mg/L)

Maltextract 10 FeSO4·7H2O 12

Glucose 10 MnSO4·7H2O 3 KH2PO4 2 ZnSO4·7H2O 3 MgSO4·7H2O 1 CoSO4·7H2O 1 CaCl2·2H2O 0.5 (NH4)6Mo7O24·4H2O 1 Ammoniumtartrate 0.5 Traceelement 10mL Solubilizationtest

The solubilization test was performed as described previously.19,20 Single nonionic surfactants were used in

the following concentrations: 0.1, 0.5, 1, 2, 4mM. Mixed

surfactantsolutions(Tween80andBrij35)werepreparedat

sameconcentrationina1:1ratio.

Instrumentalanalysis

Agilent 5975E FID GC-MS (DB–1 capillary column; 0.25␮m

ID;0.25mmdiameter;30mlength)wasusedtoidentifyand

characterize the metabolites present in the incubated

cul-ture.Asdescribedinourpreviousstudy,trimethylchlorosilane

wasusedinthesilylationprocedureemployedfordetecting

samplescontaininghydroxylandcarboxylgroups.18TheGC

temperaturewasmaintainedasfollows:initial70◦C(1min),

increasedatthe rateof18◦Cmin−1 till150◦C,increasedat

therateof28◦Cmin−1 till330◦C,heldat330◦Cfor10min.

Theinjector and interfacetemperatures were set at260◦C

withasplitlesstimeof2min.Theinjectionconcentrationwas

1␮Linthesplitlessconditionandflowrateoftheheliumwas

adjustedto1mL/min.TheEIionizationmodewasusedwith

electronenergyof1.3eVandamassrangeof50–500amu.The

massspectraofthesampleswerecomparedwithauthentic

standardcompoundsaswell asthedatabaselibrary (Wiley

275L).21

Results

and

discussion

Solubilizationoffluorene

Fig.1showsthechangeinthesolubilityoffluoreneasaffected

bytheadditionofsingleandmixednonionicsurfactants.It

wasobservedthatthesolubilityoffluorenewassignificantly

enhancedbyadditionofsurfactantsand thatthesolubility

ofthepollutantwas directlyproportional tothesurfactant

concentrations.Thehighestsolubilitynotedinthisstudywas

achievedbytheadditionofTween80(39.4mgL−1);the

addi-tion ofmixed solutions resultedin amoderate rise inthe

solubility,whereasthelowestsolubilityvalueswereobserved

uponadditionofBrij35(20.4gL−1).Itishypothesizedthatthe

additionoffluoreneincombination withthenonionic

sur-factantsolutionfacilitatesthe formationofmixedmicelles

whichinturnimprovesthecontactbetweenmicroorganisms

andsurfactant.

BiodegradationoffluorenebyPolyporussp.S133

Itisevidentfromthedataavailableintheliteraturethat

fluo-reneislikelytobeabsorbedontothefungalbiomasssurface

priortobeingaccumulated,degraded,andmetabolizedbythe

fungus.Inordertoidentifytheimpactofsingleandmixed

sur-factantsonfluoreneremoval,thegrowthmediumofPolyporus

sp.wassupplementedwiththeadditionofTween80,Brij35,

andmixturesofTween80andBrij35.S133culturewas

under-takeninordertoestimatebothbiomassproductionaswell

asfluorenedegradation.Resultsindicatedthatboththecell

growthaswellasthedegradationoffluorenewasinfluenced

bythepresenceofsurfactants(Fig.2).AsisshowninFig.2,

thepresenceofTween80significantlyenhancedtheremoval

offluoreneaswellasthebiomassproduction.Fluorenewas

foundtobedegradedinentiretybyPolyporussp.S133afteran

incubationperiodof23d.Thefastestgrowthratewas

expe-riencedintheinitial7days(0.6gL−1 perday)intheculture

thatwassupplementedwithTween80.Tween80increased

thesorptionextentandnodistinctionwasfoundbetween

sur-factantandmycelia.Fig.2suggeststhattheadditionofTween

80andmixedsurfactantsenhancedthefluorenedegradation

andbiomassproductionbyPolyporussp.S133.Itwasobserved

afterthe23-dayincubationperiodthatthecellularproduction

andgenerationslowlydecreasedlargelybecausemostofthe

fluorenehadalreadybeendegraded.Theresultsshowthatthe

maximumfluorenedegradationwasobservedfortheTween

80culture(0.4mgperday),which0.2and0.27mg/dcompared

towasmixedsurfactantandBrij35.

0 10 20 30 40 4 3 2 1 0 Concentration (mM) S olubilit y (mg /L ) Tween 80 Brij 35 Tween 80-Brij 35

Fig.1–Solubilizationoffluorenebysingleandmixed

(4)

40

A

B

C

5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0 30 20 10 0 40 30 20 10 0 40 30 20 10 0 0 5 10 15 20 Incubation time (d) Biomass production (g/L)

Fluorene residue Biomass production

Fluorene residue

(mg/L)

25 30 35

Fig.2–Utilizationoffluoreneandbiomassproductionin

singleandmixedsurfactant:Tween80(A);Brij35(B);

Tween80–Brij35(C).

Dioxygenase,peroxidaseandlaccaseenzymesplaya

crit-ical role in the biotransformation of fluorene by Polyporus

sp.S133.Enzymessuchas1,2-dioxygenase,2,3-dioxygenase,

MnP, LiP, and laccase were studied with the aim of

gain-ingadditionalinsightintothemechanismofdecolorization

(Table3).Itwasnotedthatthedegradationprocesswas

pri-marilydeterminedbytheactivityoftwoligninolyticenzymes:

Table3–EnzymedetectionofPolyporussp.S133at

initialdegradation(10d).

Enzyme Activity(U/L)

Manganeseperoxidase 45.4

Ligninperoxidase 1.3

Laccase 113.8

1,2-Dioxygenase 0.2

2,3-Dioxygenase 0.5

Valuesaremeansofthreeexperiments.

2500 Glucose Laccase MnP

A

B

C

2000 1500 1000 500 0 5 4 3 2 1 0 5 4 3 2 1 0 5 5 10 15 20 Incubation time (d) Glucose (g/L) Laccase (U/L); Mnp (U/L) 25 30 35 4 3 2 1 0 0 2500 2000 1500 1000 500 0 2500 2000 1500 1000 500 0

Fig.3–Effectofnon-ionicsurfactantonenzymeactivities andglucoseconsumption.Tween80(A);Brij35(B);Tween 80–Brij35(C).

laccaseand MnP.In order toassay the impactofnonionic detergents on the enzyme activity as well as on the fluo-renedegradationprocess,activityoftheenzymewasplotted againstglucoseconsumptionfordifferentconcentrationsof thesurfactants(Fig.3).

Itwasobservedthatforallsurfactants,themaximum

lac-case production was seen on day 30 of the incubation; it

wasalsoseenthattheactivitydeclinedsignificantlyatday

15 forBrij 35 andatday 23 formixedsurfactants. Growth

mediumsupplementedwithTween80exhibitedthehighest

activity(2443UL−1)forlaccasefollowedbythemixed

surfac-tant (1766UL−1)and lastlybyBrij35 (1655UL−1). Asimilar

analysis of the MnP activity with varying combinations of

thesurfactantprovedthatMnPactivitydecreasedafter7–15

days ofincubation and the downward trend continued till

the endoftheexperimentalperiod.Theglucose

consump-tion wassignificantlyhigh inthe first7daysofincubation

but was observedtodecrease slowlyafterthat tillthe end

oftheexperimentalperiod.Thehighestconsumptionof

glu-cosewasseeninthegrowthmediumsupplementedbyBrij

35 (3.8gL−1)after30daysofincubation. Fromthis resultit

canbeconcludedthatwhenthegrowthmediumis

(5)

fungalgrowth.Thefunctionofglucoseintheculturewasto

inducetheenzymaticsystemofthefungus.Fromtheresults

obtainedabove,wetheorizethattheproductionofligninolytic

enzymessuchaslaccaseandperoxidasewassuppressedby

additionoffluoreneandsurfactant.Ourresultsareinaccord

withapreviousstudythatanalyzedPAHdegradationby

var-iouswhite-rotfungi.Theauthorsofthestudyreportedthat

thedegradationrateswerefoundtobeassociatedbothwith

theactivityofligninolyticenzymesaswellaswiththetypeof

surfactantused.Theauthorsalsoproposedthattheenzymes

thatplayanimportantroleinPAHsdegradation,namely

lac-caseandMnP,arealsoimplicatedinthemetabolismofsome

PAHs.Laccaseisalsoconsideredtobeanimportantenzyme

foroxidizingPAHsinliquidculture.15,16ThefunctionofMnP

inthefluoreneremovalprocessissimilartothatoflaccasein

theearlyweeksofincubationanditsustainstilltheendofthe

incubationperiod.

Itwasobservedthatthemicroorganismsgrewatafaster

ratewhentheliquidculturewassupplementedwithacarbon

sourcesuchasglucose.Glucosewassupplementedintothe

fungalculturetofulfillthefunctionofaco-metabolicsubstrate

inthedegradationprocess.Previousstudieshaveestablished

thatglucoseplaysanimportantroleinthedepolymerization

oflongchainfattyacidsinthebiodegradationprocess.Also,

severalreportsinliteratureclaimthatmanyorganicpollutants

were morequicklytransformed when glucose was

supple-mented into the culture as a co-substrate for growth.22,23

Otherresearchershaveprovedthatformostwhite-rotfungi,

simple carbon sources, such as glucose, provide nutrients

thatarecrucialfortheproductionofextracellularenzymes

andbiomassproduction.Althoughligninolyticenzymesare

producedduringthesecondarymetabolismandarestrongly

influenced by nutrient limitation, the actual pollutant

II

OH O HO HO COOH COOH COOH

I

Fig.4–Proposedpathwayoffluorenemetabolismby

Polyporussp.S133.Bracket-compoundswereunidentified

inourcultureextract.

degradation process occurs after the production of

enzymes.24

Fluorenemetabolites

The culture was acidified with HCl in order to stop the

fungal growth following which the sample was extracted

with ethyl acetate.TLC and UV absorbance ofthe sample

extractsrevealedthepresenceofthreefluorinemetabolites

(Table4).GC-MSanalysesoftheethylacetate-extracted

sam-pleswere foundtohavetwomajorchromatographic peaks

(Table4).MetaboliteI(Rf0.35)exhibitedmaxat270nmwhich

corresponds to the 9-fluorenol standard. The spectrum of

CompoundI(tRof8.0min)showmaximam/z254,M+,a

frag-mentionatm/z239(M+−15)representinglossofmethyl,as

wellastheexpectedfragmentionatm/z165(M+−89)which

couldbeaccountedforbythesequentiallossofOSi(CH3)3,and

Table4–UVabsorbanceandmassspectralanalysisofthemetabolicproductproducedfromfluorenebyPolyporussp.

S133.

Metabolites Retentiontime(min) m/zoffragmentions(%

relativeabundance)

Possiblestructure UVabsorbance

I 8.0 73(62),104(6),139(12),152 (19),165(100),178(17),193 (5),221(5),223(6),239(82), 254(92,M+),255(31) 9-Fluorenol-BSTFA (confirmedwitha withastandard) 0 0.2 0.4 0.6 0.8 1 220 260 300 Wavelength (nm) Absorbance II 11.3 73(100),74(12),165(17), 181(14),193(98),194(28), 223(15),311(33),355(54), 370(73,M+),371(29) Protochathecuic acid-TMSderivative (confirmedwitha standard) 0 0.2 0.4 0.6 0.8 1 220 260 300 Wavelength (nm) Absorbance

(6)

at73,178,and254.Furthermetabolitecharacterizationwas

donebygrowingPolyporussp.S133ina9-flurenolacid

cul-ture.Intheculture,weidentifiedmetaboliteII(tRof11.3min),

whose spectra was found to have a main ion at m/z 370

(M+),afragmentionatm/z355(M+−15)representinglossof

methylalongwithexpectedfragmentionsatm/z181[M+−89;

OSi(CH3)3], 73[(CH3)3Si], 165and 193.Basedon the mass

spectraldataobtainedabove,weidentifiedcompoundII as

protocatechuicacid.

Polyporussp.S133isawhite-rotfungusthathasthe

capac-itytoeliminateandtransformmanytypesofPAHs.Inthis

study,weestablishedthatthefungussucceededinproducing

theligninolyticenzymeimportantforthedegradationof

flu-orene.Twomajorenzymes,laccaseandMnP,werepresumed

tobevitalforthetransformationofthefluorene.Duringthe

laccase-mediatedoxidationofPAHs,quinoneisformedduring

theinitialstepofdegradationwhile9-fluorenol-1-carboxylic

acid is formed at a later stage. In the next step the

car-boxylicacid compound undergoes a ring cleavage to form

9-fluorenolandprotocatechuicacidwhichisfinallyconverted

totricarboxylicacid.Unfortunately,fluorenequinoneand

9-fluorenol-1-carboxylicacid wasnotidentified inanyofthe

extractsobtainedinthisstudy(Fig.4).Itisknownthatcertain

metabolitesproducedasaby-productofPAHsmetabolismare

hazardousinnature.Forthisreasonfragmentarymetabolism

offluorenehas thepotential topose a gravethreat tothe

ecosystembecausethecharacteristicofintermediate

metabo-litesmay actuallybemoreharmfulthanthatoftheparent

compound.25–28

Conclusions

Fromtheresultspresentedaboveitcanbeconfidently

con-cludedthat fluorene,athree-ringPAH, wasdegradedinits

entirety by a fungusPolyporus sp.S133 followinga 23-day

incubationintheliquidcultureformat.Thepositive

relation-shipbetweenbiomass,enzymeanddegradationestablished

thatthe fluorenebioavailability was significantlyincreased

bysurfactantmediatedbioaccumulationenhancement

espe-ciallythatbyTween80.Nonionicsurfactantswereobserved

toincreasethesorptionrateoffluoreneonthebiomassand

thusimprovetheremovalprocess.Twoimportantligninolytic

enzymes,laccaseand MnP,werefoundtoplayasignificant

role in the complex process of fluorene transformation by

Polyporussp.S133.Toconclude,ourstudymakesapowerful

argumentinsupportoftheutilityandimportanceofTween

80inthePAHs-pollutedsoilbioremediationprocess.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

A part of this research was financially supported by

a Fundamental Research Grant Scheme (FRGS) of

Min-istryofHighEducationMalaysia(R.J130000.7809.4F465)and

Research University Grant ofUniversiti Teknologi Malaysia

(Q.J130000.2522.10H17).

r

e

f

e

r

e

n

c

e

s

1.KristantiRA,HadibarataT.Biodegradationandidentification

oftransformationproductsoffluorenebyascomycete

fungus.WaterAirSoilPollut.2015;226(12):1–6,406.

2.KhudhairAB,HadibarataT,YusoffARM,TheZC,AdnanLA,

KamyabH.Pyrenemetabolismbynewspeciesisolatedfrom

soilRhizocotoniazeaeSOL3.WaterAirSoilPollut.

2015;226(186):1–8.

3.LiJL,ChenBH.Surfactant-mediatedbiodegradationof

polycyclicaromatichydrocarbons.Materials.2009;2:76–94.

4.FuchedzhievaN,KarakashevD,AngelidakiI.Anaerobic

biodegradationoffluorantheneundermethanogenic

conditionsinpresenceofsurface-activecompounds.J

HazardMater.2008;153:123–127.

5.KimIS,ParkJS,KimKW.Enhancedbiodegradationof

polycyclicaromatichydrocarbonsusingnonionic

surfactantsinsoilslurry.ApplGeochem.2001;16:1419–1429.

6.ZhaoBW,ZhuLZ,LiW,etal.Solubilizationand

biodegradationofphenanthreneinmixedanionic–nonionic

surfactantsolutions.Chemosphere.2005;58:33–40.

7.MulliganCN,YongRN,GibbsBF.Surfactant-enhanced

remediationofcontaminatedsoil:areview.EngGeol.

2001;60:371–380.

8.ZhouM,RhueRD.Screeningcommercialsurfactants

suitableforremediatingDNAPLsourcezonesby

solubilization.EnvironSciTechnol.2000;34:1985–1990.

9.SeoJS,KeumYS,HuY,etal.Phenanthrenedegradationin

Arthrobactersp.P1-1:initial1,2-,3,4-and9,10-dioxygenation,

andmeta-andortho-cleavagesofnaphthalene-1,2-diolafter

itsformationfromnaphthalene-1,2-dicarboxylicacidand

hydroxylnaphthoicacids.Chemosphere.2006;65:2388–2394.

10.KweonO,KimSJ,JonesRC,etal.Apolyomicapproachto

elucidatethefluoranthenedegradativepathwayin

MycobacteriumvanbaaleniiPYR-1.JBacteriol.

2007;189:4635–4647.

11.HadibarataT,AdnanLA,YusoffARM,etal.Microbial

decolorizationofanazodyereactiveblack5usingwhite-rot

fungusPleurotuseryngiiF032.WaterAirSoilPollut.

2013;224:1595–1604.

12.KristantiRA,HadibarataT,ToyamaT,etal.Bioremediation

ofcrudeoilbywhiterotfungiPolyporussp.S133.JMicrobiol

Biotechnol.2011;21:995–1000.

13.RivaS.Laccases:blueenzymesforgreenchemistry.Trends

Biotechnol.2006;24:219–226.

14.NovotnyC,SvobodovaK,ErbanovaP,etal.Ligninolyticfungi

inbioremediation:extracellularenzymeproductionand

degradationrate.SoilBiolBiochem.2004;36:1545–1551.

15.TehZC,HadibarataT.Enhanceddegradationofpyreneand

metabolitesidentificationbyPleurotuseryngiiF032.WaterAir

SoilPollut.2014;225(1909):1–8.

16.KristantiRA,ToyamaT,HadibarataT,etal.Bioaugmentation

involvingabacterialconsortiumisolatedfromthe

rhizosphereofSpirodelapolyrhizafortreatingwater

contaminatedwithamixtureoffournitrophenolisomers.

RSCAdv.2014;4:1616–1621.

17.HadibarataT,KristantiRA.Effectofsurfactantand

identificationofmetabolitesonthebiodegradationof

fluoranthenebybasidiomycetesfungalisolateArmillariasp.

F022.BioprocBiosysEng.2014;28:920–926.

18.HadibarataT,TehZC.Optimizationofpyrenedegradationby

white-rotfungusPleurotuspulmonariusF043and

characterizationofitsmetabolites.BioprocBiosysEng.

(7)

19.ChanLC,LeeJJ,ParkJW.SolubilizationofPAHmixturesby

threedifferentanionicsurfactants.EnvironPollut.

2002;118:307–313.

20.ZhuL,ChiouCT.Watersolubilityenhancementsofpyrene

bysingleandmixedsurfactantsolutions.JEnvironSci.

2002;13:491–496.

21.HadibarataT,ZubirMMFA,RubiyatnoChuangTZ.Microbial

transformationandsorptionofanthraceneinliquidculture.

BioprocBiosysEng.2013;36:1229–1233.

22.AdosindaM,MartinsM,FerreiraIC,etal.Biodegradationof

bioaccessibletextileazodyesbyPhanerochaetechrysosporium.

JBiotechnol.2001;89:91–98.

23.LiJL,ChenBH.Solubilizationofmodelpolycyclicaromatic

hydrocarbonsbynonionicsurfactants.ChemEngSci.

2002;57:2825–2835.

24.WesenbergD,KyriakidesI,AgathosSN.White-rotfungiand

theirenzymesforthetreatmentofindustrialdyeeffluents.

BiotechnolAdv.2003;22:161–187.

25.KimSJ,KweonO,JonesRC,etal.Completeandintegrated

pyrenedegradationpathwayinMycobacteriumvanbaalenii

PYR-1basedonsystemsbiology.JBacteriol.2007;189:

464–472.

26.LopezZ,VilaJ,MinguillonC,etal.Metabolismof

fluoranthenebyMycobacteriumsp.strainAP1.ApplMicrobiol

Biotechnol.2006;70:747–756.

27.StorySP,ParkerSH,HayasakaSS,etal.Convergentand

divergentpointsincatabolicpathwaysinvolvedin

utilizationoffluoranthene,naphthalene,anthracene,and

phenanthrenebySphingomonaspaucimobilisvar.EPA505.JInd

MicrobiolBiotechnol.2001;26:369–382.

28.ZhongY,LuanT,LinL,etal.Productionofmetabolitesinthe

biodegradationofphenanthrene,fluorantheneandpyrene

bythemixedcultureofMycobacteriumsp.andSphingomonas

Referências

Documentos relacionados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Therefore the sulfurtransferase activity assay was performed to evaluate the enzyme activity of the mutants Glurho C33S and Glurho C266S compared to the wild type

Nowadays (but also in other times) we would say that it should be knowledge of the world, critical thinking and the exercise of citizenship. Without this, it is understood, an

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

 O consultor deverá informar o cliente, no momento do briefing inicial, de quais as empresas onde não pode efetuar pesquisa do candidato (regra do off-limits). Ou seja, perceber

CHARACTERIZATION OF ALKALINE LIPASE FROM FUSARIUM OXYSPORUM AND THE EFFECT OF DIFFERENT SURFACTANTS AND DETERGENTS ON THE ENZYME ACTIVITY.. Janaina Nicanuzia dos Prazeres*;

The knowledge of the Basic Infiltration Rate (TIB) of water in the soil is a way to assist in the management and conservation of the soil and allows greater control of