• Nenhum resultado encontrado

fiber erbium optic doped laser with magnetostrictive transducer Passive interferometric interrogation of a magnetic field sensor usingan Sensors and Actuators A: Physical

N/A
N/A
Protected

Academic year: 2023

Share "fiber erbium optic doped laser with magnetostrictive transducer Passive interferometric interrogation of a magnetic field sensor usingan Sensors and Actuators A: Physical"

Copied!
7
0
0

Texto

(1)

aINESCTEC,RuadoCampoAlegre,687,4169-007Porto,Portugal

bDepartmentofPhysicsandAstronomy,FacultyofSciencesofUniversityofPorto,RuadoCampoAlegre687,4169-007Porto,Portugal

cCentrodeCompetênciasdeCiênciasExatasedeEngenharia,UniversidadedaMadeira,Funchal,Portugal

dDepartmentofAppliedPhysicsandElectromagnetism,UniversityofValencia,Spain

a r t i c l e i n f o

Articlehistory:

Received4March2015

Receivedinrevisedform20August2015 Accepted8October2015

Availableonline22October2015

Keywords:

Magneticfieldsensor Passiveinterferometer Virtualinstrumentation Magnetostrictivematerial Erbiumdopedfiber Fiberopticlaser

a b s t r a c t

Anerbiumdoped(Er3+)fiberopticlaserisproposedformagneticfieldmeasurement.ApairofFBGs gluedontoamagnetostrictivematerial(Terfenol-Drod)modulatesthelaserwavelengthoperationwhen subjecttoastaticoratimedependentmagneticfield.Apassiveinterferometerisemployedtomeasurethe laserwavelengthchangesduetotheappliedmagneticfield.AdataacquisitionhardwareandaLabVIEW softwaremeasurethreephase-shiftedsignalsattheoutputcoupleroftheinterferometerandprocess themusingtwodistinctdemodulationalgorithms.Resultsshowthatsensitivitytovaryingmagnetic fieldscanbetunedbyintroducingabiasingmagneticfield.Amaximumerrorof0.79%wasfound,for magneticfieldshigherthan2.26mTRMS.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Fiberopticmagneticfieldsensorshavebeenstudiedoverthe years.Specialinteresthasbeenshowninthehighpowerindustry owing to its intrinsic insulation (silica), immunity to electro- magnetic interference,highdynamic range and bandwidthand possibility to employ remote interrogation [1]. Several sensing mechanismssuchasmagneticfluid,Lorentzforce,Faradayeffect andmagnetostrictiveeffecthavebeenproposedformagneticfield measurement.Thesemethodscanbeusedwithbothconstantand varyingmagneticfields.

Thefirstmechanismwasexploredbycombiningthemagnetic fluid withan optical fiberrefractive index sensor. In thepres- enceofthemagneticfieldtherefractiveindexofthefluidchanges 3×10-4RIU/mT(RIU—RefractiveIndexUnits)at28Cfrom0to 70mT[2].

SensorsestablishedontheLorentzforcerequireanothercurrent carryingconductor(fewmilliamps)thatwillexperiencedeforma- tionin the presence ofan orthogonal magneticfield. Although theydonotexperiencehysteresis,thedeformationinducedisvery

Correspondingauthor.

E-mailaddress:ivomac88@gmail.com(I.M.Nascimento).

small;in[3]theopticalsensorisaDistributedfeedbacklaser,with aPi-ShiftFBGwritteninEr3+fiber,andthewavelengthchangesare readwithaMichelsoninterferometerwith25mofopticalpath imbalance. Aminimal detected field of1.5␮T/Hz1/2 was calcu- lated.Anotheralternativereportedconsistsonusinga6cmlong cavitylaserwithonelongitudinalmodeandtwoorthogonalpolar- izations.Measurementofthebeatfrequencybetweenthesetwo polarizationsisproportionaltothelaserbirefringenceandchanges according topressure exerted in thecavity due to theLorentz force.Resultsshowedrelativelygoodlinearityformagneticfields between4and20mT[4].

Faradayeffectisoneofthemostpopularopticalsensingmech- anismsformagneticfield.Itconsistsoflightpolarizationrotation inducedbythemagneticfieldasitpropagatesthroughasensing mediumanditssensitivitydependsonthemediumVerdetcon- stant.Whilestandardfiberopticcanbeusedasasensingmedium toobservetheFaradayeffect,theVerdetconstantofsilicaisvery smallandthewoundingofthefiberaroundtheconductorgives risetolinearbirefringence,furtherdegradingthesensitivity[5].

Aprototypeoperatingat850nmandbasedonaSagnacconfigu- rationwasdevelopedandtestedwhereamaximumerrorof0.2%

wasachievedforcurrentsrangingfrom300to4000ARMSandtem- peraturesfrom40Cupto60C,satisfying0.5classoperation[6].

Faradaybasedsensorsareaffectedbytheresidualbirefringenceof standardfibers[7],althoughthisproblemhasbeenrecentlyover- http://dx.doi.org/10.1016/j.sna.2015.10.021

0924-4247/©2015ElsevierB.V.Allrightsreserved.

(2)

Fig.1. Experimentalsetupincludingthelaser,passiveinterferometerandacquisitionsetup.

comedinstandardfibers[8],analternativesolutionhasbeenthe useofspunfibersoflowbirefringenceorhighcircularbirefringence [9,10].Ontheotherhand,thebulkglassmaterialsaremorerobust andcanhavehigherVerdetconstantsthanfibers.However,fiber alignmentwiththebulkmaterialistricky[11,12].In[11]asensor operatingat820nminacloseloopconfigurationachieveda5.5%

errorunderstableenvironmentalconditionsfrom10A–20kA.

Inthelastcategory,magnetostricitveelementscanbedeposited orgluedtoanopticalfiberstrainsensor.Inreference[13],Terfenol- DisdepositedinanetchedFBG(FiberBraggGrating)with86␮m diameter, improvingthe sensitivity from 0.386 to 0.95pm/mT.

Adistributedsensor wasalsodeveloped in[14] andconsistsin woundinga standardsinglemodefiberaroundanickelwire.In thepresenceofthemagneticfieldthenickelwirestretchesandthe phaseoftheRayleighbackscatteredlightchangesaccordingtoit.

ApassiveMach–Zehnderinterferometerwitha3×3couplerand anOPDof2m(1mspatialresolution)wasusedtoreadthephase changes.

Inthispaperwepresentanerbiumdopedopticalfiberlaserwith twoFBGswhosewavelengthismodulatedaccordingtotheexter- nalmagneticfield.ThetransducerelementisaTerfenol-Drodthat stretchesbothFBGs,changingthelaseremissionwavelength.This variationisconvertedintoanintensitymodulationattheoutput ofapassiveinterferometerusinga3×3outputcoupler.Thelaser combineshigherSNR(SignaltoNoiseRatio)withnarrowerband- width,enabling,togetherwiththeinterferometricreadoutsystem, ahigherresolutionthanisattainablewithsystemsbasedonthe directmodulationofasingleFBG.

2. Principle

TheimplementedsetupisdemonstratedinFig.1.Thelasercon- sistsoftwo FBGsat1534.17nmwith150pmspectralwidth(at halfpower)and82%reflectivity,andtheotherat1534.21nmwith 160pmspectralwidthand87%reflectivity,writteninsinglemode BoroncodopedPhotosensitivefiberusinga1058nmperiodphase mask.InbetweenthetwoFBGs,apieceof6.8mofFibercoreErbium dopedfiberM-5isusedasthegainmedium,resultingin8mcavity length.

EachFBGisgluedsidebysideintwopoints,distant2cmapart,in aTerfenol-D(compositionTb0.27Dy0.73Fe2)rodhavingadiameter of0.5cmand10cminlength.Thethicknessofthemateriallim- itsthemagneticfieldfrequencyresponseto100kHz.Afunction generator,acurrentamplifierandaninductorareusedtogener- atemagneticfield(ACand/orDCwithamagnetic-currentrelation of12.2mT/A),modulatingbothFBGsandconsequentlythelaser

wavelengthemission.TheACandtheDCmagneticfieldcorrespond tothealternateandconstantfield,respectively.Laseroperationin reflectionispreferablethanintransmissionasnoresidualpump powerispresentintheoutput.

Forthedetectionofthemagneticfieldinducedwavelengthshift, aninterferometricreadoutschemewassetup.Apassiveinterfer- ometer,havingaOPDof3.96mm(OpticalPathDifference)resulting inaspectralrangeof594pmbetweeninterferometricfringesat 1534nmwasbuiltwitha2×2anda3×3couplerattheinput andoutput,respectively,producingthreeoutputswith120degrees phasedifferencebetweenthem,givenby[15]:

Vn=Ai+B.Cos[ϕ(t)+ϕDC−(n−1)]2

3 (1)

wherenistheoutput1,2and3,AiistheDCcomponentobtained whensweepingoneperiodoftheinterferometer,Bisthevisibil- ityofthefringeswhichismaximizedbyapolarizationcontroller (PC),Ø(t)andØDCisthetimevaryingandDCinterferometerphase, respectively.Insuchconfiguration,anychangeinthelaseremis- sionwavelengthresultsinachangeoftheinterferometeroptical outputphase (Ø(t)andØDC)proportionaltotheOPD.Thisway, theinterferometeractslikeawavelength-to-intensitymodulator enablingtotrackthewavelengthchanges,inducedbythemagnetic field,veryaccuratelywithlowcostinstrumentation.

Thisinterferometerhastheadvantageofnotneedinganactive elementtoavoidtotaloutputfading.Therelativephaseofthethree outputsandthesignalprocessingcanalwaysretrievetherelevant outputinformation,independentlyoftherandomdriftoftheinter- ferometer.Nevertheless,theinterferometerdriftismixedwiththe DCphasechanges,alsoaffectingtheoutputintensityandlimiting theapplicationofthisschemetoACmeasurements.Inanycase, magneticfieldmeasurementswereperformedinatemperature- controlledenvironment.

A16bitsanalogue-digitalconverterfromNI(NationalInstru- ments)with305␮Vresolutionand2Mbpsbandwidthisusedto readthethreeoutputsoftheinterferometerandtheappliedcurrent signaltotheinductor.Inthisway,theuseofvirtualinstrumentation becomes possible,makingit straightforwardto testand imple- ment any signalprocessing algorithm, by simplyadjusting the software,offeringamuchhigherversatilityandscalability.There- fore,totesttheversatilityof virtualinstrumentationsystems,a LabVIEWprogramwasdevelopedtoprocesstheinterferometric signals,andusedtotestandimplement,simultaneously,twodis- tinctivedemodulationmethods.Thefirstone(typeI)ispresented inFig.2andconsistsonperformingderivativesandanintegration asdepicted[15].Theoutputonlycontainsthevariantphaseinfor-

(3)

mationandinorderforthismethodtoworkproperlythevalues ofAimustbethesameforthethreeoutputs,whichisachievedby introducinganadjustablegainineachinterferometersignal.

Theotherimplementedalgorithm(typeII)consistsonperform- ingtheArctangentfunctionofthesignalsprovidedbythedetectors [16]:

ϕ(t)+ϕDC=ArcTan

3(a3V2−a2V3) a3V2+a2V3−2a2a3V1

(2) where˛2=A2/A1 and˛3=A3/A1.Ifthethreeoutputshavethe samegainthen.˛3=1Althoughitispossibletorecoverthecontin- uousphaseinformation,theinterferometerdriftisalsopresentand thismethodalsorequiresanunwrappingalgorithmtocompensate phasechangesoutof±p.

Laseremissionwavelengthistemperaturedependentanditis affectedbytheFBGsresponsetotemperatureandstraininducedby theTerfenol-Drodduetothermalexpansion.Attheoutputofthe interferometerthiseffectwillbemixedwiththerandomdriftofthe interferometerandusingtypeImethodthisDCeffectsareexcluded.

Ontheotherhand,whenusingthetypeIImethodtheoutputwill containthetemperatureeffectbuthavingaslowvariationwhich issimplyremovedbyfilteringtheACresponse.

3. Results 3.1. Laser

Laserspectral widthis measuredbycouplingatunablelaser (100kHz bandwidth)withthe developedone. In thefrequency domain,theconvolutionofbothincoherentsignalsisreadwitha 50GHzphotodetectorandanElectricSpectralAnalyzer.Sincethe tunablelaserisverynarrowwhencomparedtothedevelopedlaser theresultgivesthespectralshapeofthelaser,centeredinthefre- quencygivenbythebeatfrequencyofboth[17].InFig.3itisshown thelaserspectrumobtainedwiththeelectricalspectrumanalyzer.

Aspectralwidthof1.87GHz(14.7pmat1534nm)wasmeasured forapumppowerof560mW,thelaserlinewidthis40timessmaller thanthefringespectrumrangeoftheinterrogationinterferometer assuringadequatesensitivity.Thelinewidthdependenceonpump powerisresidualandthevariationsarenegligiblewithrespectto thefreespectralrangeoftheinterferometer,theslightbenefitsof thelinewdtidthreductionarepartiallyfadedbythereductionof theemittedpower,therefore,thepumplevelhadlittleimpacton thesensorperformance.Duringthefollowingmeasurements,the pumppowerwassetat560mW.

UsingtheThorlabsPM20CHpowermeterthelaserresponsewas characterizedusingseveralpumppowerlevels.Fig.4showsamax- imumlaserpowerof4.7mWfor560mWpumpandathresholdof 50mWforlasing.

Fig.3.Laserspectrummeasuredinanelectricalspectralanalyzer.

Fig.4. Laserpowerinfunctionofthepumppower.

Laserpowerstabilitywasalsomeasuredalongthetimeusinga photodetectorandtheanaloguedigitalconverter.Recordingthe laser power withan acquisition sampling frequency of 10kHz showedthatthelaserhadanoutputpowermodulationbelow1.2%

at50Hzcausedbytheelectronicsdrivingthepumpdiode.Long termpowerfluctuationsofabout4%whereobservedaswell,how- everthedetectionelectronicscompensatesforthisslowvariation.

(4)

Fig.5. LaserwavelengthchangewithDCmagneticfieldandintheinsetthematerial responseaccordingtothemanufacture.

3.2. Magneticfieldmeasurement

Severalcontinuouscurrentstepswereappliedtothecoiland thelaserwavelengthchangeswererecordedusingawavelength meter Burleigh WA-1650 (0.5pm resolution). Fig.5 shows the magnetostrictiveresponseofTerfenol-Ddrivingthelaseremission wavelength,thehysteresiscyclewasobtainedwiththreeindepen- denttestswhenthemagneticfieldgoesupanddown.Theerror barscorrespondtothestandard deviationofthethreeindepen- dentmeasurements,andaccountfortherepeatabilityofthesensor, orthemeasurementprecision.Themaximumfluctuationregis- teredwasof4.5pmatB=5.95mTfortheupcurveand10.7pmat B=8.33mTforthedowncurve.Inallcases,themeasurementaccu- racy,givenbythedeviationbetweenthemeasurementpointsand thenon-linearcalibrationcurvewasmuchbetter,corresponding tosmallererrorvalues.Thenon-linearbehaviorofthecalibration curveisintrinsictotheTerfenol-DresponsetoDCmagneticfields, ascanbeseenintheinsetofFig.5,wherearepresentationofthe manufacturerData-sheetisgiven(noticethatanunloadedrodwas used,thereforesaturationisreachedwithanappliedfieldsmaller thantheonepresentedintheinsetofFig.5).Thematerialexpansion inthepresenceofamagneticfieldisnon-linearandindependent ofthenegativeandpositivesignofthemagneticfields.Therefore, whennobiasmagneticfieldisapplied,theapplicationofanAC magneticfieldresultsinaresponsethatisdoubledinfrequency.

Moreover,sincethetransducerisintrinsicallynon-linear,different DCbiasingpointswillresultindifferentsensitivitiestoACfields.

HysteresisisanadditionalproblemforDCmeasurementsthatis overcamewithspecificsetups[18].

Thelaserresponsetoalternatemagneticfields(AC)at20Hzwas characterizedusingdifferentconstantmagneticfields(DC),with thesetuppresentedinFig.1.Theacquisitionsystemwasdefined with10kHzsamplefrequencyandalowpassfilterwith200Hzcut- offwasappliedforeachinputsignal,beforeprocessingthethree outputsoftheinterferometer.TheACRMSvaluewasobtainedafter filteringthedemodulatedsignalwithasecondorderButterworth band-passfilterwitha5Hzbandwidth.

Fig.6showstheRMSACresponseforaDCmagneticfieldof 0mTapplyingdifferentACstepsduring30seach.Theresultswere obtainedwiththe demodulationprocess type IIandthevalues shownin each step correspondtothe averagevalue.Response oftheTerfenol-Dtopositiveandnegativemagneticfieldsisthe same.Sofor0mTmagneticfieldoffset,theACmagneticfieldpro-

Fig.6. StepsofACmagneticfieldswith0mToffset.

Fig.7. TypeIIdemodulationalgorithmresponsetoAC,usingdifferentmagnetic fieldoffsets.

ducesamodulationwhosefrequencyisacquiredattwotimesthe modulationfrequency.Stillwhenamagneticfieldoffsetisintro- ducedthemodulationisthereforeobtainedatthesamemodulation frequency.Takingthiseffectintoaccount,theacquisitionwillbe acquiredattotwotimesthemodulationfrequencywhennobias magneticfieldispresentoratthemodulationfrequencywhena biasfieldisapplied.InFig.6itisshownthatforalternatemagnetic fieldsbelow4.55mTRMSthesensitivityissmall,ontheotherhand, atvalueshigherthan22.54mTRMSitsaturates.

Compilationofthesensorresponseobtainedusingdemodula- tionalgorithmtypeIIwithdifferentDCmagneticfieldsispresent inFig.7.Foreach,twoindependenttestswereconductedandthe resultsshowedgoodagreement.Also,astandarddeviationerrorin eachstepispresent,buttheyaretoosmalltobeobservedintheplot.

AnalyzingtheseresultsweseethatcontrollingtheDCmagnetic fieldoffset(thiscouldalsobedonebyapermanentmagnet)higher sensitivitycanbeobtained,dependingofthemeasurementrange.

Formagneticfieldsupto12.2mTRMS aconstantfieldof4.88mT givesthebestresponse.Ontheotherhand,forvalueshigherthan 12.2mTRMS,aDCmagneticfieldof8.54mTispreferable,measur- ingfieldsupto18.2mTRMS.Moreovertheworstsensitivitieswere foundforaconstantmagneticfieldof0,13.42and16.47mT,which alsocorrespondedtotheworstsensitivityregioninFig.5.

(5)

Fig.8. TypeIIdemodulationACsignalsforACmagneticfieldshigherthanthebias field.

Thesamemeasurementswhereperformedsimultaneouslywith thealgorithmI,theplotsobtainedwiththetwoalgorithmswhere indistinguishableandthereforetheresultshavebeennumerically compared.Consideringtheresultsobtainedforeachindependent testmaximumerrors werecalculated andpresentedinTable1.

Thecalculationisdoneconsideringtwotimesthestandarddevi- ationdividedbytheaverageACvalueineachstepforchanging magneticfieldshigherthan2.25mTRMS.Amaximumerrorof1.61%

wasfoundconsideringazeromagneticfieldoffset.Forotheroff- setvaluestheerrorislowerthan0.79%becausethesensitivityis higherforlowACmagneticfields.Also,bothdemodulationsalgo- rithmswerecompared.Althoughthesameresponsewasobtained, theerrorswereslightlylowerusingtypeIIalgorithm,whichmakes useoftheArctangentfunction.Howeveranisolatedcase,forabias of4.88mT,type IIprocessinggavea slightlysuperiorerror.The maximumandminimumimprovementobtainedwithitwas3.02 and0.1%,respectively.Betterresolutionsareingeneralachievedin typeIIthanintypeImethodbecausethelatteroneemploysmore complexfunctionssuchasderivativesandintegration,translating intoincreasednoise.

Fig.8 shows the signals recovered for two particular cases, wheretheACmodulationishigherthanthebiasfield.Itclearly showsthefundamentalfrequencyof20Hzandadistortioninthe lowerpartofthesinusoidalduetotheweekresponseofthemag- netostrictivematerialtolowmagneticfields.AccordingtoFig.5, theregionof0–2mT(fieldgoingdown)andfrom0to3mT(field goingdown)showsverylittleresponse.Thisrangeisabout5mT andjustifiestheflatresponseofthelowerpartofbothcurves.

ThesignaltoNoiseratiowasalsoinspectedbytheFFT(Fast FourierTransform)oftherecovereddemodulatedsignalasafunc- tionofthebiasfieldconsidering20Hzmodulationandbandwidth.

InFig.9itisshowntheFFTspectrumfora0and4.88mTbiasfields.

TheresultsarealsocompiledinFig.10forawiderrangeofbias fields,showingavariationbetween−63and67dBfornon-zerobias fieldswithnodependencewiththeappliedbiasfield.However,the SNRdecreasessignificantly,to−46dBforthe40Hzharmonicwhen nobiasfieldisapplied.

Fig.9.FFToftherecoveredsignalwhenanalternatingmagneticfieldisapplied withabiasfieldof0and4.88mT.

Fig.10.SNRasafunctionofthebiasfield.

InagreementwiththeDCresponseofthelasershowninFig.5, thebestresponseoftheACcurrentsenorisachievedwithalow butnon-zerobiasingfield,howeverthebestlinearityisobtained formoderateDCfieldsbecausethetransducerworksstillfarfrom saturation.ThesetwosituationsarecomparedinFig.11.

Finally, we haveto pint outthe foreseeable thermal behav- iorofthissystem.ThissensorisintendedforACmeasurements, temperatureisaquasi-DCeffectbecauseofitsvariationisslow.

Temperaturehastwoeffects,thefirstoneistheshiftofthewave- lengthemittedbythelaserduetothethermalexpansionofthe transducer,thetypeIprocessingoftheacquiredsignalsmakesup forthisshiftsothattemperaturedoesnotaffectthemeasurement oftheACmagneticfield,thetypeIIprocessingcanremovethether- malshiftbyaDCfilter.Thesecondthermaleffectisthevariationof magnetostrictivestrainwithtemperature;althoughmagnetostric- tivecurvesareverysensitivetostress,ithasbeendemonstrated [19,20]thattheresponseofTerfenol-Disalmosttemperatureinde-

(6)

Fig.11.TypeIIdemodulationalgorithmresponsetoAC,usingdifferentmagnetic fieldoffsets.

pendentintherangeof[0C,90C]forexcitationfieldsbetween 0and40kA/m.Therefore,itisassumedthatthesensorpresented herecouldbereasonablystablewithinthetemperaturerangesand magneticexcitationsmentionedbefore.Thermalcalibrationwould berequiredbeyondtheserangesand thisisa matteroffurther analysis.

4. Conclusion

Amagneticfieldsensorbasedonafiberopticlaserhasbeen proposed.Thelaseremissionwavelengthismodulatedbyamagne- tostrictivetransducerthatstretchestheBraggmirrorsofthelaser.

ThesensorisinterrogatedbyaMatch–Zenerinterferometerwith threeoutputsat120,thethreeoutputsareprocessedinrealtimeto retrievethephasevariationinducedbytheACwavelengthshiftgiv- ingastableoutput.Neitherthermalstabilizationofthegratingsnor driftcompensationoftheinterferometerisrequired.Theresponse ofthesensortoACmagneticfieldshasbeenanalysedfordiffer- entstrengthsoftheDCbiasfiled;theperformanceoftwodifferent demodulationalgorithmshasbeencompared. BytuningtheDC magneticfieldfrom0to16.47mTtheACresponseshoweddiffer- entresponses,wherethebestsensitivitieswereachievedfor4.88 and8.54mT.Additionally,lowersensitivitieswereobservedwhen aconstantmagneticfieldof0,13.42and16.47mTwasapplied, correspondingtothelowerandhighersaturationlevelsofthemag- netostrictivematerial.Moreover,amaximumerrorof0.79%was foundforACmagneticfieldsabove2.26mTRMS,withanon-zero biasmagneticfield.Furthermore,comparisonofbothdemodula- tionalgorithmsrevealedthesameresponse,buterrorswerelower inalltestswhenusingtheArctangentfunctionbasedalgorithm.

Themaximumandminimumimprovementwas3.02%and0.1%, respectively.

Acknowledgements

This work was supported by project SMARTGRIDS NORTE- 07-0124-FEDER-000056,financedbytheNorthPortugalRegional OperationalProgram (ON.2-O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European RegionalDevelopmentFund(ERDF),andbynationalfunds,through

the Portuguese funding agency, Fundac¸ão para a Ciência e a Tecnologia (FCT). Ivo Nascimento would like to acknowledge the financial support of FCT (SFRH/BD/80056/2011). J.L. Cruz andM.V.AndrésacknowledgethefinancialsupportoftheMin- isterio de Economia y Competitividad of Spain, Fondo FEDER andGeneralitatValenciana(projectsTEC2013-46643-C2-1-Rand PROMETEOII/2014/072).

References

[1]H.Cao,N.Shi,J.Xu,Anoveldesignoffiber-opticsagnaccurrentsensor,2012 FifthInt.Symp.Comput.Intell.Des.(2012)89–92.

[2]R.Lv,Y.Zhao,D.Wang,Q.Wang,Magneticfluid-filledopticalfiber fabry–pérotsensorformagneticfieldmeasurement,IEEEPhotonicsTechnol.

Lett.26(2014)217–219.

[3]G.A.Cranch,G.M.H.Flockhart,C.K.Kirkendall,DFBfiberlasermagneticfield sensorbasedonthelorentzforce,Opt.FiberSensors(2006)1–4.

[4]L.Cheng,Z.Guo,J.Han,L.Jin,B.Guan,Ampereforcebasedmagneticfield sensorusingdual-polarizationfiberlaser,Opt.Express21(2013) 13419–13424.

[5]P.Drexler,P.Fiala,Utilizationoffaradaymirrorinfiberopticcurrentsensors, Radioengineering17(2008)101–107.

[6]M.Takahashi,K.Sasaki,A.Ohno,Y.Hirata,K.Terai,Sagnac

interferometer-typefibre-opticcurrentsensorusingsingle-modefibredown leads,Meas.Sci.Technol.15(2004)1637–1641.

[7]J.L.Cruz,M.V.Andres,M.A.Hernandez,Faradayeffectinstandardoptical fibers:dispersionoftheeffectiveVerdetconstant,Appl.Opt.35(1996) 922–927.

[8]M.Segura,N.Vukovic,N.White,T.May-Smith,W.-H.Loh,F.Poletti,M.N.

Zervas,Lowbirefringencemeasurementandtemperaturedependencein metre-longopticalfibers,J.Light.Technol.8724(2015)2015.

[9]D.N.Payne,A.B.Barlow,Developmentoflowandhighbirefringenceoptical fibers,QuantumElectron.18(1982)477–488.

[10]N.Peng,Y.Huang,S.Wang,T.Wen,W.Liu,Q.Zuo,L.Wang,Fiberoptic currentsensorbasedonspecialspunhighlybirefringentfiber,IEEEPhotonics Technol.Lett.25(2013)1668–1671.

[11]J.Song,P.G.Mclaren,D.J.Thomson,R.L.Middleton,Afaradayeffectbased clamp-onmagneto-opticalcurrenttransducerforpowersystems,WESCANEX 95(1995)329–333.

[12]N.Fisher,D.Jackson,Vibrationimmunityforatriangularfaradaycurrent sensor,FiberIntegr.Opt.16(1997)321–328.

[13]M.Yang,J.Dai,C.Zhou,D.Jiang,Opticalfibermagneticfieldsensorswith TbDyFemagnetostrictivethinfilmsassensingmaterials,Opt.Express17 (2009)20777–20782.

[14]A.Masoudi,T.P.Newson,Distributedopticalfiberdynamicmagneticfield sensorbasedonmagnetostriction,Appl.Opt.53(2014)2833–2838.

[15]D.A.Brown,C.B.Cameron,R.M.Keolian,D.L.Gardner,S.L.Garrett,A symmetric3×3couplerbaseddemodulatorforfiberopticinterferometric sensors,FiberOpt.LaserSens.IX1584(1991)328–335.

[16]M.D.Todd,G.A.Johnson,C.C.Chang,Passivelightintensity-independent interferometricmethodforfiberBragggratinginterrogation,Electron.Lett.35 (1999)1970–1971.

[17]M.Nazarathy,W.V.Sorin,D.M.Baney,S.A.Newton,Spectralanalysisofoptical mixingmeasurements,J.LightTechnol.7(1989)1083–1096.

[18]D.M.Dagenais,F.Bucholtz,K.P.Koo,A.Dandridge,Detectionoflow-frequency magneticsignalsinamagnetostrictivefiber-opticsensorwithsuppressed residualsignal,J.Light.Technol.7(1989)881–887.

[19]A.E.Clark,HighPowerMagnetostrictiveTransducerMaterials-Actuator92, 3rdInternationalConferenceonNewActuators,(1992),127.

[20]E.du,T.deLacheisserie,D.Gignoux,M.Schlenker,Magnetism:II-materials andapplications,magnetostrictivematerials,Springer220(2002).

Biographies

IvoM.NascimentowasborninFunchal,Portugal,in 1988.HereceivedhisB.S.degreeinTelecommunications andElectronicEngineerin2009andhisM.S.degreein TelecommunicationsandNetworksintheUniversityof Madeira,Portugal.CurrentlyheisaPh.Dstudentinthe University ofPorto,Portugalandhis presentresearch includesfiberopticalsensorsnamelyforelectriccurrent measurement.

(7)

Lasers)attheUniv.ofMinho(1996),M.Sc.inOptoelec- tronicsandLasersatthePhysicsDepartmentofUniversity ofPorto(2000);in2006concludedhis Ph.D.program atUniversityofPortoincollaborationwiththeDept.of PhysicsandOpticalSciencesattheUniv.ofCharlotte, NorthCarolina,USA,withworkinluminescencebased optical fibersystemsfor biochemicalsensingapplica- tionsusingluminescentnanoparticles.Since1997Pedro Jorge hasbeeninvolvedinseveral researchandtech- nologytransferprojectsrelatedtoopticalfibersensing technology,developingnewsensingconfigurationsand interrogationtechniquesforopticalsensors.PedroJorge isaSeniorresearcheratINESCPortowhereheleadstheBiochemicalSensorsteam exploringthepotentialofopticalfiberandintegratedopticstechnologiesinindus- trial,environmentalandmedicalapplicationscoordinatingseveralprojectsinthese areas.Hehasmorethan150publicationsinthefieldsofsensorsinnationaland internationalconferencesandpeerreviewedjournals,isauthorof3bookchapters andalsoholdsonepatent.PedroJorgeisamemberofSPIE.

isresponsiblefortheleadershipandmanagementofthe GroupofFiberOpticsattheUniversityofValencia.He receivedtheB.Sc.andPh.D.degreesinphysicsfromthe UniversityofValencia,Spain,in1979and1985,respec- tively.Since1983,hehassuccessivelyservedasAssistant Professor,Lecturer,andProfessorintheDepartmentof AppliedPhysics,UniversityofValencia,Valencia,Spain.

Afterapostdoctoralstay(1984–1987)attheDepartment ofPhysics,UniversityofSurrey,U.K.,hefoundedtheGroup ofFiberOpticsattheUniversity ofValencia.Hiscur- rentresearchinterestsincludephotoniccrystalfibers, in-fiberacousto-optics,fiberlasersandnewfiber-based lightsources,fibersensors,microwavephotonics,andwaveguidetheory.

Referências

Documentos relacionados

Eliot, “que afirma não ser possível medir o impacto que Poe teve nos escritores que o sucederam devido à sua influência ‘enigmática’” (ibidem, p. Seguindo o

Therefore, this study intends to develop an indicator that will allow analyses of access preferences to websites on a world scale, which is titled Virtual Popularity

As stated by the Commission in 2004, “For major periods of European history, Turkey has been an important factor of European politics. Turkey is member of all important

O protocolo URP, em particular, incorpora soluções para problemas específicos que surgem pelo princípio de funcionamento dos receptores regenerativos, como alta

desarrolladas por el ingeniero. Esto es, los proyectos de puentes que realizó bajo el encargo de diversos organismos, así como la labor que llevó a cabo como ingeniero de la

8 LISTA DE ABREVIATURAS E SIGLAS AC – Ação Cautelar AI – Agravo de Instrumento CF – Constituição Federal CONSUN – Conselho Universitário CR – Constituição da República

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

Após o tratamento com acupuntura, 7 pacientes concluíram ao menos 5 sessões, e relataram melhora na dor e na fadiga dos músculos da mastigação, mesmo os