• Nenhum resultado encontrado

Towards a de-carbonized energy system in North-Eastern Morocco: Prospective Geothermal Resource

N/A
N/A
Protected

Academic year: 2021

Share "Towards a de-carbonized energy system in North-Eastern Morocco: Prospective Geothermal Resource"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Renewable

and

Sustainable

Energy

Reviews

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / r s e r

Towards

a

de-carbonized

energy

system

in

north-eastern

Morocco:

Prospective

geothermal

resource

Abdelkrim

Rimi

a,∗

,

Yassine

Zarhloule

b

,

Alae

Eddine

Barkaoui

b

,

Antonio

Correia

c

,

Julio

Carneiro

c

,

Massimo

Verdoya

d

,

Francis

Lucazeau

e

aInstitutScientifique,UniversitéMohammedV-Agdal,AvenueIbnBattouta,B.P.703Rabat,10106Morocco bUniversitéMohammed1er,Oujda,Morocco

cGeophysicalCentreofEvora(CGE),UniversityofEvora,Portugal

dDipartimentoperloStudiodelTerritorioedellesueRisorse,UniversitàdiGenova,Italy eInstitutdePhysiqueduGlobedeParis,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received22April2011 Accepted19December2011 Keywords: Geothermalgradient Heatflow Thermalspring Geothermometer Geothermalpotential Morocco

a

b

s

t

r

a

c

t

Geothermaldatahasbeenindicatingpromisingpotentialitiesinthenorth-easternMorocco.Thispaper presentsnewtemperaturedata,recentlyrecordedinwaterboreholeslocatedintheBerkaneandOujda areas.Generally,theobservedtemperaturegradientsareratherhigh.OneholenearBerkane,revealedan averagegeothermalgradientofmorethan110◦C/kmatdepthsgreaterthan300m.Thisresultconfirms thegeothermalgradientestimatedinaminingboreholelocatedabout30kmwestoftheBerkane bore-hole,inwhichwatertemperatureof96◦Cisreachedatadepthofabout700m.Suchahighgeothermal gradient,exceedingbyfartheonesalreadydeterminedfornortheasternMorocco,couldactasastimulus toprogramsaimedatthegeothermalexploitationofhightemperatureaquifers.

© 2012 Elsevier Ltd. All rights reserved.

Contents

1. Introduction... 2207

2. Geologicalbackground... 2208

2.1. Recentvolcanism... 2208

3. Hydrogeologicalandgeochemicalfeatures... 2209

4. Geothermalpatternandnewboreholethermallogs ... 2210

4.1. Heatflow... 2212

4.2. SomeresultsfortheBerkanewell... 2212

4.3. PresentdaythermalwatersdirectuseinnortheasternMorocco... 2214

5. Discussion... 2215

6. Conclusion ... 2215

Acknowledgements... 2215

References... 2215 1. Introduction

Since2009,Moroccohasbeenengagedinasustainable develop-mentandrenewableenergystrategy.WithnooilreservesMorocco hasthe necessary assets toachieve thesegoals, particularlyof developingfreecarbonenergies,mainlysolar,windand geother-mal.Owing to its special geographical and geological position, NorthEastpartofMorocco,whichisendowedbyanaturalbounty

∗ Correspondingauthor.

E-mailaddresses:rimikrimo@gmail.com,rimi@israbat.ac.ma(A.Rimi).

ofsunshineandgeothermalresources,hasseenanumberof start-ingprojectsincludingthatofthesolarthermal plantofAin Bni Mathar.Thispaperwewillfocusparticularlyonitsgeothermal potential,whichmayreinforceitsdevelopmentasanemerging economicregion.

SinceRimiandLucazeau[1]havebeenpointedouttheregional thermalphenomena(volcanism,hotsprings,extensivetectonics and seismicactivity) inNorth-eastern Morocco,mostadvanced temperatureandgeochemicalsamplinghavebeendoneinthispart ofMorocco[2,3].Workaccomplishedinthisregionhashighlighted theopportunityforlarge-scalegeothermalanomalyfromdeep[4],

1364-0321/$–seefrontmatter © 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.rser.2011.12.008

(2)

whileseveralsouthernMoroccosedimentarybasinssuchasthe SoussCoastalBasinsarenowbeingexploredforlowerenthalpy. Bothsubsectorshavebeeninferredtocontainenormous quanti-tiesofstoredheat[5,6].Duetothelargenumberandsizeofsurface thermalmanifestations(hotsprings,recentvolcanismand neotec-tonicactivity),north-easternMoroccoisaregionthathasattracted theattentionofgeothermalexpertssincethe1960s[7–9]. 2. Geologicalbackground

EasternMoroccoisasystemofplains,plateausandmountain rangesextendingon theeastern parts of theMeseta-Atlas and Rifdomains.It is represented bytheEastern Middle Atlasthat continuesthroughtheGuercifbasintoBeniSnassen,thevalley ofMoulouya,theOujda-Tazacorridor,the“PaysdesHorsts”and acrustalblockwithoutnotable alpinedeformation, which con-stitutestheHighPlateaus.ThreeENE–WSWstructuralunitsare definedinEasternMoroccoregionFig.1:

-Theeastern-rifianforelandcomposedofGarebchaoticunitnear theactiveRifchainandalittledeformedtectonicforeland(Terni Masgout,BeniBou Yahi,BeniMamouand BeniSnassen), pro-longedtowardstheeast(inAlgeria)bytheTrarasmounts. -TheGuercifandTaourirt-Oujdabasinswhichshowsedimentsof

middleMiocenetoQuaternaryage,andareconnectedtotheTafna basintotheeast(Algeria).

- TheTaourirt-Oujdamountswhich show sub-horizontal Juras-sicsedimentsaffectedbyfaultsystemswhosedevelopmentand geometryarestronglydependentonthepre-existingstructures inhercynianbasement.Theyareprolongedtotheeastbythe pre-tellianforelandofTlemcen.

TheRifdomain,locatednorthwards,belongstotheBetic-Rifbelt andispartoftheperi-Mediterraneanalpinechain.WiththeAtlas, thesemorpho-structuralzonesresult fromthesuperpositionof severaltectonic,compressiveandextensionalphasesofalpineage. ThesephaseshaveoccurredsincetheLateCretaceous.Mostof thesezonesareENE–WSWtoE–Wdirected(e.g.,“PaysdesHorsts”) andNE–SW(MiddleAtlas,valleyofMoulouya),reflectingpartofthe alpinegeologicalevolution.

From Landsat image analysis, El Hammichi et al. [10] had depictedfourfaultssystems:

(a)Thefirstsystem,NE–SWoriented,iswelldevelopedand rep-resented by several faults with regional importance. Along thisfault,structuresareveryclearandindicateprevailingleft strike-slipmovement;

(b)NW–SE(N135◦EtoN160◦E)trendingfaultsare oftenlonger than15kmandextendthesouthernsector;

(c) The third system in this sector is represented by arcuate ENE–WSWtoE–Wtrendingfaults;

(d) Thelastfaultsystem,affectingespeciallythewesternsideof thestudiedarea,isrepresentedbyfaultstrendingN–S.These faultsareclearandlonglineaments.Kinematicindicatorsand verticaloffsetstestifynormalmovements.

2.1. Recentvolcanism

OnthescaleofMorocco,thevolcaniccentersextendroughly alongaNE–SWdirectionsincetheMediterraneancoasttothe Anti-AtlasandtheCanaryIslands.

InNorth eastern Morocco,lateMiocene toPliocenevolcanic activitiescorrespondtoashoshoniticedifices intheGuillizand

Fig.1.SimplifiedstructuralsketchmapandvolcanisminnortheasternMorocco(modifiedafterHernandez[29];Hervouet[30]).Heatflowdensityvaluesaresuperimposed onthismap;numbersincirclerepresentspringtemperaturevalues,K:miningboreholeatKariatArekman,B:boreholeatBerkaneandF:boreholeatFezouanesite.

(3)

KoudiatHamra(nearTaourirt)(Fig.1)withagerangingfrom8to 4.5My[11]andcalcalkalinecentersintheOujdaarea(Fig.1)with agerangingfrom6.2to4.8My[12].

Regionally,thestudyareaislocatedeastofGibraltarArc,which iscurrentlythesubjectofmanygeological,geophysicaland geo-dynamicalinvestigations.ThishasshownthattheGibraltarArcis characterizedbythinnedcrustandlithosphere,withafast thick-eningtowardstheBeticsandtheRifmountainranges.

IneasternMorocco,magmatismdevelopedduringtheMiocene. Amorerecentepisodeconsistingofalkalinevolcanicactivityhas takenplacefrom6to0.8Ma,andoccurredalonga NE-trending beltextendingfromtheTrans-AlboranzonetotheMiddle Atlas domainandtotheAnti-Atlas(J.Sirouavolcano).Their geochemi-calsignatureissimilartothatofintra-oceanicislandbasalts,and suggeststheroleofanasthenospheric“hotlineament”[13].Such interpretationisconsistentwithgravimetricandgeodetic model-ingofthelithosphere[14–16].ThisMHLcouldextendfromthe CanaryIslandstosoutheastSpainatleast.

Lithosphericthinning under theAlboran Seaand thickening undertworidgesoftheadjacentGibraltarArcisofbasic impor-tancefor geodynamicmodelswhich invokeconvective removal andorogeneticcollapse,a mantellicdelaminationandanactive subduction[17–21].TheAlboranSeacontinueseastwardwiththe Algerianoceaniccrustbasin[22].

3. Hydrogeologicalandgeochemicalfeatures

A sub-surface reservoir is suitable for extracting heat, if its porosity,permeability,thickness,lateralextensionand tempera-turesare sufficientlylarge. Fora preliminarydescriptionofthe geothermalareasofMorocco,twocriteriaareconsidered:

-Thestructural,lithologicalandhydrogeologicalcontextto estab-lishtheexistenceortheabsenceofaquifers;

-Temperaturesofaquifers,orimpermeableformationsupto3km deep.

ThevarietyoftectonicandlithostratigraphicinMoroccohas created various hydrogeothermal systems with heterogeneous lithologicalandphysicalproperties.RegionalstudiesinPrerif[23], easternMorocco[24],theplateauofphosphates[25], Essaouira-Agadir Basin [26,27] and the central Morocco [28] have been gathering backgroundinformation onaquifers fromarchivesof piezometersandoilBoreholes:structure,depth,porosity,modflow andgroundwatervelocity.

Butfeaturessuchaspermeability,transmissivityandsalinityare oftenlacking.Accordingtothesestudies,thepotentialgeothermal aquifersresourcesinMoroccoareoftwotypes:

(1)InthelatestTertiaryandQuaternarydeposits,waterpumped outfromporespacesduringcompactioncouldconstituteupto 700mdepth,aquifersofgoodlowtemperature(50–60◦C). (2)Thetypicalsystemofwatercirculationforpre-Tertiaryaquifers,

1000–4000mdepth,isguidedbydifferencesinhydraulicload associatedwithformationchanges.Themeteoricwater infil-tratesintothehillsandtopographicreliefanddischargesin areasof lowgroundwaterlevel, mainlyinMesozoic carbon-atesofthemajorbasins.Ifthepermeabilitiesarefavorable,the watercanpenetratedeepenoughandwarmupgradually (aver-agetemperatureis 100◦C).However,thelithologicalnature mayleadtotheformationoflocalorevenregionalconvective systems.Thedescentofcoldwaterandtheriseofhotwatercan disturbthethermalfield.

(4)

Table1

Thermaldatafromhydrogeologicalandpetroleumboreholes.

Descriptivescodes Latitude Longitude Elevation (m) Maximumdepth (m) Geothermalgradient (◦C/Km) Heatflow (mW/m2) Fezouane2 34.927 −2.213 252 49.0 140 1624/7Berkane 34.93 −2.3 160 127.0 510* 2952/12 34.693 −1.818 560 500 49.0 111 2362/12 34.647 −1.930 215 43.0 87 1199/12 34.645 −1.964 641 125 34.0 90 1225/12 34.782 −1.930 75 49.0 98 2899/12 34.642 −1.847 620 128 14.0 89 186/16 34.015 −1.913 385 255 32.0 60 A4 34.305 −2.227 1068 260 39.0 81 A13 34.311 −2.232 1095 170 30.0 119 A14 34.309 −2.238 1068 350 34.0 100 A7 34.299 −2.222 216 36.0 89 P3 34.308 −2.232 240 33.0 68 BR41W 34.45 −1.802 1058 170 45.0 144 TEFADIS 34.507 −1.780 1125 100 45.0 112 BN38NW 34.452 −1.81 1053 100 43.0 105 BN30 34.443 −1.792 1050 120 37.0 108 BS38N 34.450 −1.804 120 36.0 84 BR41S 34.448 −1.807 120 35.0 91 NADOR1 35.326 −2.662 2703 41.8 86 AREKMAN 35.109 −2.739 678.7 124.0 192 YADIM 35.093 −2.475 70 40 57 Grf1 34.279 −3.424 36.3 92 Tafrata1x 34.22 −3.106 34.6 76 Msd1 34.245 −3.47 37.0 90

* Thisvalueisstillaroughestimatesincewehavenorealdeterminationofthermalconductivityandporosity.Rangingfrom3.7to5.5W/mC,thethermalconductivity

ofthedolomitedecreasesastheporosityandtemperatureincrease.

For an areatobe prospectivefor high enthalpygeothermal resourcetheremustexist highaveragegeothermalgradientsto createhightemperaturesatdepthsoverasignificantareawhich canbeeconomicallydrilled.Inadditiontothistheheatmustbe abletobeeconomicallyexploited.Thisrequirestheexistenceof suitablereservoirrockswitheitherhighnaturalporosityand per-meabilityortheconditionsthatallowpermeabilitytobeartificially enhancedbyreservoirengineering.

Thesedimentary formationsin north-eastern Morocco units containhotreservoirs;inparticularLiassiccarbonatesupto500m thickwhichisthemostimportantaquiferintheregion(Fig.2).The mainaquiferisfedintotheHorstsareaanddischargesintheplainof Oujda-Angad,andiscomposedofcarbonaterocks(limestonesand dolomites)fromthelowerCretaceous,theLias(Fig.2).Theisobaths ofLiasvaryfromafewmeterssouthto1000mtowardsthenorth. Hydrostratigraphicstudiesbasedongeologicaland hydrogeologi-caldatafromboreholesshowtheLiassiccarbonatetobethemain hydrogeothermalreservoirofthehotspringsintheregion.

TheLiassicreservoirofEasternMoroccobelongs totheAtlas domain,whichischaracterizedbyasuccessionofNE–SWhorst andgrabenof pre-Miocene ageandby Plio-quaternarybasaltic volcanics,associatedwithcrustalthinning(Table1).

Thisreservoirisattheoriginoftwenty-fourthermalsprings. Table2whosetemperaturerangesfrom20to54◦Candtheflow ratecanreach40l/satcertainpoints.Salinityvariesfrom0.28to 29.6g/l.Someofthesehotspringsplayanimportantroleinthe economyofthearea(e.g.,Fezouane,nearBerkaneandHammam BenKachour,atOujda[3,4].

Fig.2showstheLiassicaquiferinbothOujdaandBerkaneregion. ThepiezometricalmapshowsthatflowdirectionisfromSEtoNW. Therechargeareaoftheconfinedaquiferislocalisedinthesouth, wheretheLiassicoutcrops.IntheFezouaneregion,theaquiferis artesian.

IntheOujdaregion,theLiassiclimestoneformsthemainaquifer. LimestoneoutcropsinBeniSnassen,High-Atlas,Middle-Atlasand thesouthernpartofthebasin.Thethicknessvariesfrom50mto 1140m,andthemaximumdepthis1370m.Thegroundwaterflow isfromsouthtonorthofbasinFig.2.Theaquifertemperatureand

salinityvaryfrom20◦Cto52◦Candfrom130mg/lto3000mg/l, respectively.

AccordingtoZarhloule[3],thehottemperatureandthe arte-sianriseofmostofthethermalspringsinnorth-easternMorocco originatefromdeepcirculationinrelationtoasystemofbasement activefaults,individuatinghorstsandgrabens,inarecentvolcanic area.

Winckel[28]performedathoroughgeochemicalanalysisofthe mainhotspringsinMoroccoandfoundthatelevenofthoselocated alongtheMHL(MoroccanHotLine)releaseCO2thatispartially

ofdeeporigin.Recently,Tassietal.[31]confirmedthatCO2-rich

thermalspringswith3Heanomaliesarelikelyrelatedtothishot line.TheyaremainlydistributedalongaNE–SWtrendfromNador toTaza,and fromFes(MoulayYacoub) toOulmessouthofthe Riffrontalthrust.Thecontemporary presenceof3Heanomalies andminorrecentbasaltoutcropsindicatethatCO2originatesfrom

mantledegassingordeephydrothermalsystemsinthesethermal discharges

Thegeochemicalanalysesandwaterclassificationbymeansof thediagramofLangelierandLudwiggavethefollowing hydrogeo-chemicalfaciesCa(Mg)–HCO3),NaClandCa–Mg[6].

Theestimated temperaturesbysilica geothermometersvary between37and85◦C(quartzofFournier), 23and73◦C(quartz of Arnorsson), 54◦C (chalcedony of Fournier) and 57◦C (chal-cedonyofArnorsson).Themeasuredemergencetemperaturesvary between20and54◦C.Thecorrectionofthewaterestimated reser-voirtemperaturesbythemixturegeothermometerrevealsthatthe temperatureintheoriginalreservoirmayexceed110◦C,witha rel-ativelylowrateofmixturebetweenhotdeepwaterandcoldsurface water.

4. Geothermalpatternandnewboreholethermallogs Hydrogeothermal structure was impulsed by a geothermal anomalymeasuredinaminingboreholedrilledinrhyoliticand andesiticseriesatKariatArekman(35.11◦N,2.74◦W;Fig.3).The well,680mdeep,revealedfrom450mdepthsaltartesianwater (20–25g/l and a flow rate of 1.4–2l/s) with a temperature of

(5)

Table2

Thermalspringsproperties.

Name Latitude Longitude T(◦c) Rate (l/s)

Gas ChimicalFacies Reservoir Use Project

Sidichaffi Midar 34.9 −3.61 32 4 CO2 Na–HCO3 Marl-limestone cretaceous Drink,therapeutic bathing,irrigation Hammam AinMessouda 35.03 −3.25 17–21 3 Chloride,sodium,

sulfate, calcic-magnesian

Gastricandurinary diseases Botling manufactory projectin1959 AinHammam BeniSidel

35.17 −3.19 32–35 1 H2S,CO2 Na–Cl Miocenerhyolite

postnappe,Tuffset breccias interbedded Dermatological bathings Hammam Hammam Chaabi

35.17 −3.09 34 2 Na–Cl Massivelimestone

andgrayslateof Jurassicof Taliouîne

Dermatological bathings

Hammam

HajraSafra 34.26 −3.56 2 CO2 Na–Cl Marl-limestone

cretaceous miocene Dermatological bathings Hammam AinHaddouOu Hamma

35.14 −3.09 29 1 H2S,CO2 Na–Cl Massivelimestone

andgrayslateof Jurassicof Taliouîne

Dermatological bathings

Hammam

AinGoutitir 34.35 −3.06 44–49 12 Cl–Ca

Limestone-dolomiticlower lias-Domerian

Hydrotherapy Hammam

GufaitSprings 34.24 −2.38 26 10–15 SO4–Ca

Limestone-dolomitic Lias

Bathing,drinkand irrigation

AinBourachad 33.86 −3.60 32 2 Na–Cl

Limestone-dolomitic Lias-Dogger

Dermatology Twopools

AinElHamra 34.61 −3.91 24–26 6–15 CO2 HCO3–Ca Marl-limestone

andsandstone Miocene

Reputeforkidney diseases

Hammam

42◦Catthesurface,andmorethan90◦Catthebottom[32].This

good result infirmedtheearlier studies [8,9], which concluded on the base on 60 meters deep thermal profiles, that north-easternMoroccodoesnotconstitutereallyazonewithsignificant geothermalpotential.Carriedoutintheveryshallowboreholes, suchworkscannot beconsideredconclusive, becausethe ther-malstateisstronglydisturbedbywatermovementatthisdepth. Inaddition,morerecentdeepgeophysicalinvestigations (seismo-logical,gravityandmagnetic)claimthatthepositivegeothermal anomalyintheRifandEasternMoroccoisexplainableasasurface manifestationofadeepandwidetectono-magmaticlithospheric process[33].

Thesurfaceheatflowandbroadthermalconductivitystructure (andthusthetemperaturefield)ofnortheasternMoroccohasbeen estimatedsince1987,[1,3,4,6]providedbroadapproximationsof northeasternMoroccocontinent temperaturefield, butsuffered fromasparsegeographic distributionofheatflow and thermal conductivitydata.

The analysis of the long wavelength anomalieshighlights a heatfluxincreasingnortheastward:80–110mW/m2 inthe

east-ernRif,northeasternMorocco,AlboranSea(eastofthemeridian line4◦W),southeasternSpainandnorthwesternAlgeria.In east-ernMorocco,thecrustisthinnedto15–20km.Thehighestheat flow(80–140mW/m2)andgeothermalgradient(35–50C/km)are

observedinthenorth-easternpartofthecountry(MiddleAtlasand EasternRif),whichischaracterizedbyintensiveQuaternary volcan-ism,highresidualmagneticanomaliesandshallowCuriedepths [34].TheGibraltarArcregionischaracterizedbyaradialheatflow patternwithincreasingvaluesfromtheouterrangestowardsthe centerandeasternpartofthebasin[2,35](Fig.4).Themost strik-inggeothermalfeatureistheabnormallyhotzoneobservedeastof 4◦WandtheheatflowincreasetowardstheAlgerianbasin,where wefindvolcanicenvironmentsandhighvaluestypicalofayoung oceaniclithosphere[2,36].

Fig.5showsasetoftemperaturedatarecordedinboreholesof thestudyareain1986[1].Itshowsthatthegeothermalgradientis generallylargerthan30◦C/km.Newthermallogswereperformed in2007and2009atsomeboreholes(seeFig.1fortheirlocation). Fig.6pointsoutabnormallyhotdeepgeothermsbeneathEastern RifandAlboranbasin[37].

Withtheobjectiveof improvingthegeothermaldatasetand gainingabetterinsight intothegeothermalpotentialofeastern Morocco,anexploratorygeothermalsurveywasconductedin2007 and 2009;intheregionofOujda(Fig.6)tologsomehydraulic boreholes.Inparticular,twowellsintheregionofBerkaneshow highgeothermalgradientsandcouldprovevalidforhighenthalpy geothermalpurposes.Thispaperisasummary oftheresultsof theserecentinvestigationsanddiscussesthenewdatainthelight ofpreviouslycollectedinformationindeepandshallowboreholes (Fig.7).

The borehole 2952/12. Fig. 8a shows a good concordance betweenthethermalprofilesmeasuredafter20years.At600m depth(correspondingtothelithologicalchangefrommarlto car-bonate),theboreholemaybeinvadedwithbyawarmwaterarrival. This resultsin a sharp decreasesand even aninversion of the geothermalgradient.Thethermallogofthewelllocated30kmwest ofBerkane.Fig.8bischaracterizedbyanincreaseofthe geother-malgradientat300mdepth.Noticethattheincreaseofgeothermal gradientcannot,toacertainextent,beexplainedbyachangein lithology.Inthatcase,asdolomiteshouldhavethermal conduc-tivityhigherthanclay,thegeothermalgradientshoulddecrease. Forthemoment,nothermalconductivitymeasurementisavailable andnoheatflowdensityestimatecanbedone.

ThethermallogoftheFezouanehole(Fig.8c)exhibitsa ther-malgradient,which apparentlyvariedwithdepth. Thethermal gradientis42◦C/kmintheuppermost60–120msection,andthen decreasesto14◦C/kmbetween120and150m,toincreaseagain toabout70◦C/kminthedeeperpartofthehole.Noticethatthis

(6)

Fig.3.ObservedtemperatureintheKariatArekmanhole[32].Localestimatedheatflowdensityexceeding200mW/m2[1].

Fig.4.TerrestrialheatflowdensityinMoroccoandneighboringregions[34].

logissignificantlyaffectedbywaterflowingwithinthehole,since itcrossesaconfined,artesianaquifer.

4.1. Heatflow

Ifweassumethattheconductionisthemainmodeofheat trans-ferinthecrust,averageverticalheatflow,attheearth’ssurfacecan bedeterminedby:

QS=zgradz+



H

where(zisthethermalconductivity(W/mK)atdepthzandgradz

thegeothermalgradient(K/m)atdepthz,(Histheadditive radioac-tiveheatproductionbetweenthesurfaceandthedepthz. 4.2. SomeresultsfortheBerkanewell

Thischange in the geothermal gradient is not a result of a thermal conductivity change. A simple calculation shows that theaveragegeothermalgradientabove300misabout29◦C/km (0.0293◦C/m)whilethegeothermalgradientbelow300misabout 127◦C/km(0.1275◦C/m).Atadepthofabout470mthe tempera-tureis50◦C,andassumingthatthesameformationreachesdepths of700m(seelithologiclog)thismeansthatanestimated temper-atureofabout78◦Cisattainedatabout700m.

Ifweassumeathermalconductivityof1.5W/mKfortheclay above 300m and a thermal conductivity of 4.0W/mK for the

(7)

Fig.5.ThermalprofilesinminingandwaterboreholesdoneinOujda–Berkane region.

dolomitesbelow300mwecanconcludethattheheatflowdensity (HFD)alongthewellisnotconstantandthereforethereis geother-malenergytrappedforlevelsbelow300mdeep.Theestimated HFDabove300mis43mW/m2,andbelow300mis510mW/m2.

Ifweassume thatthewellisrepresentativeof thegeologic, hydrogeologic,andthermalstatusforarelativelylargeare(let’s saytensofsquarekm),wecantrytoestimatetheheatinplace(H0)

withintheaquiferusingthefollowingequation: H0=[(1−˚)mCm+˚wCw]·(Tt−T0)·A·z

Fig.6. CrustalgeothermsbeneathEasternRif(RF)andAlBoranbasin(AB)[37].

Fig.7.Geothermalgradient(a)andHeatflowdensity(b)distributioninthestudy area.

˚istheeffectiveporosity,Cisthemeanspecificcapacity(j/KgK), isthemeandensityoftherockcolumn(kg/m3),T

tisthe

tem-perature at thetopof theaquifer (◦C),T0 theaverage regional

temperatureatthesurfaceoftheearth(◦C),aistheareaofthe aquifer,andzisthethicknessoftheaquifer;thesubscriptsm

andwrefertorockmatrixandwater,respectively.

For the Berkane well if we assume that: ˚=0.1, T0=20◦C,

Tt=30◦C, w=1000kg/m3, m=2600kg/m3, Cw=4190J/kgK,

Cm=840J/kgkm the heat in place per square meter is about

9.5×109J/m2(9.5GJ/m2).

Itmustbesaidthatwewereabletogowiththetemperature dataloggerasdeepas900minthewell;however,wewerenot countingthatsuchhightemperatureswerereachedatdepthsof about500mandsothetemperature dataloggersaturated just above50◦C.Thenexttemperaturelogmustthenbeobtainedwith

(8)

Fig.8.(a)Thermalprofilemeasuredinthewell2952/12(34.4◦N,1.5W)in1986and2007.(b)Temperaturelogofthewell1624-7intheregionofBerkane.(c)Temperature

loginthewellFezouane2intheregionofBerkane.

a temperaturedata loggerthat allows measuringtemperatures higherthan50◦Corwithanothertemperaturemeasuringdevice thatcanmeasuretemperatureshigherthan50◦C.

4.3. Presentdaythermalwatersdirectuseinnortheastern Morocco

ToughgeothermalenergyresearchinMoroccoisrelativelymore thanfortyyearsold[38],theutilizationofgeothermalresources hasnotyetbeenenoughdevelopedandstillrestrictedtosparse lowenthalpydirectuses.Amongthegeothermalpotentialitiesof Morocco,numeroushotspringsoccurandaremostlyconcentrated inthenortherncountry:CentralMorocco,Prerif,andnortheastern Moroccowherehighgeothermalgradientsareobserved.Because ofthelowtointermediateenthalpylevelofthesegeothermalhot springs,thedirectuseofthewarmspringsisstillfortherapeutic orfortheirchemicalcontents.Howeverexceptforthespringof

MoulayYacoubofFezwheremoderntherapeuticbathingexists,the thermalwatersinMoroccoremainstillprimitivelyused.Inspiteof thewholeenergydependenceofMoroccoandthedevelopmentof thegeothermalstudies,theMoroccanauthoritiesarenotdecided yettopromotetheuseofthegeothermalenergycontainedinthe undergroundofthecountrywhichcouldmakeprimarilyprofitit’s agriculturalandfishingvocation.

Foraflowrateof5l/sandanaverageof3l/sandatemperature changeof10◦Candatotalof12naturalspringbaths(Benkachour, MyYacoub,etc.).

Installedcapacity(MWt)=peakuseדT”×0.004184 ×numberofbaths=10l/s×10◦C×0.004184×12=2.51MWt Annualenergyuse (TJ/year)=averageuser“T”×0.1319 ×numberofbaths=3l/s×10◦C×0.1319×12=47.48TJ/year

(9)

Thereforegeothermalannualusedonlybythenaturalhotbaths inMorocco,remainslessthan50TJ/yearwhichcorrespondstoa capacityof3MWt.

5. Discussion

Thenewthermallogsrecentlyrecorded showpossible ther-malperturbationduetogroundwatereffectsand/orwaterflowing withintheholes.Theacquireddataneedfurtherprocessingand carefulanalysesbeforetheiruseforgeothermalmodeling. How-ever,somegeneralconclusionscanbedrawnfromtheobserved temperatures.

Achangeinthegeothermalgradientdoesnotappearasaresult ofachangeinthermalconductivity.Asimplecalculationforthe Berkanewell.Fig.8bshows thattheaveragegeothermal gradi-entabove300misabout29◦C/kmwhilethegeothermalgradient below300misabout127◦C/km.Atadepthofabout470mthe tem-peratureis50◦C,andassumingthatthesameformationreaches depthsof700m(seelithologiclog)thismeansthatanestimated temperatureofabout78◦Cisattainedatabout700m.

Ifweassumeathermalconductivityof1.5W/mKfortheclay above 300m and a thermal conductivity of 4.0W/mK for the dolomitesbelow300mwecanconcludethattheheatflowdensity alongthewellisnotconstantandthereforethereisheattrapped atdepthbelow300m.

The hot water may be recovered essentially in Lias series, forgeothermalpurposes.However,theproblemwiththeLiasic aquifersisthattheyareformedbyintrinsicallycompactlimestones anddolomites,butwhichcancontainwaterinfracturesandevenof karstssystems.Theformationsmaybethustransmissivesbutnot veryaccumulativeswhichmakeshardlythedefinitionofthe thick-nessoftheaquifer,theporosityandthetransmissibility.Further investigationsmustbedeservedforagoodestimationofthe thick-nessandtheporosityoftheaquiferwhichremainkeyparameters foranyattemptofgeothermalspringassessment[39,40].

TheboreholeofBerkanemaynotbeconsideredas represen-tative of the geologic, hydrogeologic, and thermal status for a relativelylargearea,owingprobablytocomplexupwardor down-ward groundwater flow. We remark the difference in thermal gradientbetweenthetwoboreholes,Berkane(Fig.6)andFezouane (Fig.8c),between150and200mdepth.

Noticethatwewereabletogowiththetemperaturedatalogger asdeepas900minthewell;however,atdepthsofabout500mand sothetemperaturedataloggerhasreacheditsmaximumoperation limit(50◦C).Futureinvestigationsshouldthenuseatemperature dataloggerthatallowstomeasuretemperatureshigherthan50◦C. 6. Conclusion

Itwashypothesizedfromgeologicalandgeophysicalthermal spring datathat NortheasternMorocco is likely to bea region of highaverage geothermalgradients and thus prospective for geothermalenergy.

Theheatflowmeasurementsinhydraulic,miningandoil bore-holesreturnedresultsthathavevalidatedthishypothesis.

Thesedimentsinthestudyareahavemoderatethermal conduc-tivity,andhavebeensampledforsomelaboratorymeasurements andestimatedbygeometricmodelstobebetween2.5and7kmin totalthickness.Withthisamountofmoderateconductivity sed-imentsoverlyinga thinnedcrust,plus itsproximity toexisting powerinfrastructure,theNortheasternMoroccoisnowconsidered prospectiveforeconomicgeothermalenergydevelopment.

Thestudyareaispartofalarger,elongate,geographicalregion extendingfromMoroccotoAlboranSeaandSouth-easternSpain.

These largeresources of geothermal energy in northeastern Moroccowouldnotbeunnoticed.Itcanbebelievedtheywillattract

interestofpotentialinvestorsandwillbeprofitablealsoforthose wholeareas.

HighgeothermalgradientsareobservedinNEMoroccoInthe regionofBerkane,temperatureshigherthan50◦Cweremeasured inawaterwellatdepthsofabout470mwhilethistemperature wasalmostreachedat600minanotherwellofOujdaregion.

Thislargegeothermalanomaliesoccurringatdepthand this alreadyobservedinaminingboreholeatArekmanarea(Eastern Rif)indicatethatmediumtohighenthalpyusesarenotdiscarded. OtherwellsareavailableinnortheasternMoroccofor tempera-turelogging,sothatthegeothermalpotentialcanbeestimated. For a valuable assessment of the potentialgeothermal springs, detailed geophysical surveys have to be carried out in the Oujda–Berkane–Arekmanarea.

Acknowledgements

This work was supported by the Moroccan-French project “CNRST-CNRSSDU02/07,theMoroccan-PortugueseCNRTS-GRICES project SDT/09, the Moroccan-Italian MAE project and 7PCRD Project:“COMET”no241400.

References

[1] RimiA,LucazeauF.HeatflowdensitymeasurementsinnorthernMorocco.J AfrEarthSci1987;6(6):835–43.

[2]Rimi A,Chalouan A,Bahi L. Heatflow inthe southernmostpart ofthe Mediterraneanalpinsystem,theexternal RifinMorocco. Tectonophysics 1998;285:135–6.

[3] ZarhlouleY.PotentialitésgéothermiquesduMaroc:traitementintégréparles températuresprofondesetindicesdesurface.Doctoratd‘Etat,FacSciOujda, Maroc(1999).

[4] ZarhlouleY,LahrachA,BenAabidateL,BouriS,BoukdirA,KhattachD,etal.La prospectiongéothermiquedesurfaceauMaroc:hydrodynamisme,anomalies géothermiquesetindicesdesurface.JAfrEarthSci2001;32:851–67. [5]RimiA.EvidenceofrecentwarminginthenorthofMoroccofromdisturbed

geothermalgradients.GeodinamicaActa2000;13(1):19–27.

[6] ZarhlouleY, BouriS,LahrachA,BoughribaM,ElmandourA,BenDhia H. Hydrostratigraphicalstudy,geochemistryofthermalsprings,shallowanddeep geothermalexplorationinMorocco:hydrogeothermalpotentialities.In: Pro-ceedings,WorldGeothermalCongress.2005.

[7] FaccaG.LespossibilitésgéothermiquesduMaroc.NoteSEGM(1968),no.14, inédit.

[8]AlsacC,CornetG,DestombesJP,HentingerR,LavigneJ.Etudegéothermiquedu Marocoriental.Rapportinédit,BRGM69SGL264GTM,Orléans,France(1969), 97p.,16Fig.

[9]CornetG,DemangeJ,DucrouxJ,LopoukhineM.EtudegéothermiqueduRif (Maroc).France:BRGM74SGN087gth;1974,53p.

[10]ElHammichiF,TabyaouiH,ChaouniA,AitBrahimL,ChotinP.Pliocène tec-tonicsinMoroccanRifianForland:coexistenceofcompressiveandextensional structures.RevSocGeolEspa2006;19:1–2.

[11]HernàndezJ,BellonH.ChronologieK-Arduvolcanismemiocéne.RevGeol GeogrPhys1985;26:85–94.

[12]BellonH.Sériesmagmatiquenéogènesetquaternairesdupourtourdela méditerranéeoccidental, comparéesdansleur cadre géochronométrique: implicationgéodynamiques.Ph.D.dissert.Univ.deParisSudCentreD’Orsay, France(1976).

[13]ChalouanA,MichardA,ElKadiriK,NegroF,FrizondeLamotteD,SaddiqiO. TheRifbelt.In:MichardA,ChalouanA,SaddiqiO,FrizondeLamotteD,editors. Continentalevolution:thegeologyofMorocco.Springer;2008.p.203–302. [14]AndewegB,CloetinghS.Evidenceforanactivesinistralshearzoneinthe

westernAlboranregion.TerraNova2001;13:44–50.

[15]ZeyenH,AyarzaA,FernandezM,RimiA.Lithosphericstructureunderthe west-ernAfrican-Europeanplateboundary:atransectacrosstheAtlasMountains andtheGulfofCadiz.Tectonics2005;24:TC2001,doi:10.1029/2004TC001639. [16]MissenardY,ZeyenH,FrizondeLamotteD,LeturmyP,PetitC,SébrierM,etal. CrustalversusasthenosphericoriginofthereliefoftheAtlasMountainsof Morocco.JGeophysRes2006;111:B03401,doi:10.1029/2005JB003708. [17]RoydenLH.Evolutionofretreatingsubductionboundariesformedduring

con-tinentalcollision.Tectonics1993;12:629–38.

[18]ZeckHP.Betic-Riforogeny:subductionofMesozoicTethyslithosphereunder eastwarddriftingIberia,slabdetachmentshortlybefore22Ma,andsubsequent upliftingandextensionaltectonics.Tectonophysics1996;254:1–16. [19]PlattJP,VissersRLM.Extensionalcollapseofthickened continental

litho-sphere:aworkinghypothesisfortheAlboranSeaandGibraltarArc.Geology 1989;17:540–3.

[20] SeberD,BarazangiM,TadiliBA,RamdaniM,IbenbrahimA,BenSariD. Three-dimensionaluppermantlestructurebeneaththeintraplateAtlasandinterplate RifMountainsofMorocco.JGeophysRes1996;101:3125–38.

(10)

[21]Pasquale V, Verdoya M, Chiozzi P. Some geophysical constraints to dynamic processes in the southwestern Mediterranean. Ann Geophys 1996;39(6):1185–200.

[22]ZieglerPA.EuropCenozoicriftsystem.Tectonophysics1992;208:91–111. [23]LahrachA.PotentialitéshydrogéothermiquesduMarocoriental.Thèsede

Doc-toratdespécialité,EcoleNationaled’IngénieursdeSfax,Tunisie,273p.(1994). [24]Ben Aabidate L. Contribution à l’étude hydrogéothermique du Maroc nord-occidental (Rharb, Rides et Saïss). Thèse de Doctorat de spécialité, Ecole Nationale d’Ingénieurs de Sfax, Tunisie, 245 p.(1994).

[25]BoukdirA.Contributionàl‘étudegéothermiquedubassindeTadla,Plateau desphosphatesetTassaoutaval.Applicationauréservoircalcairedu Tur-onien. Thèse de 3ème Cycle, Univ. Cadi Ayyad,Fac Sci Marrakech, 240 p.(1994).

[26]ZarhlouleY.Potentialitéshydrogéothermiquesdubassind’Essaouira-Agadir. ThèsedeDoctoratdespécialité,EcoleNationaled’IngénieursdeSfax,Tunisie. 239p.(1994).

[27] ZarhlouleY.Les.PotentialitésgéothermiquesduMaroc:Approcheintégréepar lestempératuresprofondesetindicesdesurface.ThèsedeDoctoratèsSciences. Univ.Mohammed1stFacSciOujda,153p.(1999).

[28] WinckelA.Etablissementd’unetypologiedeseauxthermalsparuneapproche hydrochimique,isotopiqueettectonique.ExempleduMaroc.PhDThesis, Uni-versitédeParisSud-Orsay,France(2002).

[29]HernandezJ.LevolcanismemiocèneduRiforiental(Maroc),géologie, pétrolo-gie,minéralogied’uneprovinceschochonitique.PhD.dissert.Univ.P.etMarie Curie.Paris,580p.(1983).

[30]HervouëtY.Géodynamiquealpine(Trias-Actuel)delamargeseptentrionale del’AfriqueauNorddubassindeGuercif(Marocoriental).Ph.D.dissert.Univ. Pau,France,367p.(1985).

[31]RimiA,ZeyenH,ZarhlouleY,CorreiaA,CarneiroJ,CherkaouiT.Structurede lalithosphèreàtraverslalimitedesplaquesIbérie–Afriqueparmodélisation intégréedetempératureetdedensitélelongd’untransectN-Sà3(Ouest.Bull InstSci2008;30:29–37.

[32] RimiA,FernandezM,ManarA,MatsushimaJ,OkuboY,MorelJL,etal. Geother-malanomaliesandanalysisofgravityfracturingandmagneticfeaturesin Morocco.In:WorldGeothermalCongressAntalya,vol.2.2005.p.4–290. [33]FernàndezM,MarzánI,CorreiaA,RamalhoE.Heatflow,heatproduction,

and lithosphericthermalregimeintheIberian Peninsula.Tectonophysics 1998;291:29–54.

[34] Polyak BG, Fernandez M, Khutoskoy MD,Soto JI,Basov IA, Comas MC, etal.HeatflowintheAlboranSea,westernMediterranean.Tectonophysics 1996;263:191–218.

[35]RimiA,VariationsrégionalesdufluxgéothermiqueauMaroc,application. ThèsedeDoctoratèsSciences,Univ.MohammedV,FacSciRabat,154p.(1999). [36]ZarhlouleY,RimiA,BoughribaM,BarkaouiAE,LahrachA.Thegeothermal researchinMorocco:historyof40years.In:WorldGeothermalCongress (2010).2010.

[37]MufflerLJP,CataldiR.Methodsforregionalassessmentofgeothermalsprings. Geothermics1978;7:53–89.

[38]Rimi A,CorreiaA,Carneiro J,Verdoya M,ZarhlouleY, LucazeauF, etal. Newgeothermalprospectinnorth-easternmorocco.In:WorldGeothermal Congress,2010.2010.

Referências

Documentos relacionados

The developed Regional Tourism Innovation Sys- tem framework brings contribution at two different levels: first, it provides a model for understanding the dynamics of tourism

Os compósitos representam um material alternativo que pode ser utilizado em ambiente marinho. Nesse sentido, existe uma busca por fibras que possam atuar como

O aumento signifi cativo da atividade Eletromiográfi ca (EMG) em apneia pode ser explicado pelo mecanismo de execução da tarefa, por ter sido realizada em apneia inspirató- ria,

Talvez seja este o caminho para renovar a educação como prática formativa, uma noção ainda hoje pouco familiar à atual engenharia epistêmica da educação presa, de

Up until just a few years ago, the high prices of modern renewable forms of energy (solar, wind, biomass and geothermal) meant that access to energy was almost inevitably linked

Através de vários estudos é possível definir os locais de ligação dos inibidores CTS, PCAB, PPI, TG e CPA à P-ATPase. O conhecimento da estrutura da bomba e o modo como

it is very important to know the average time from emergency department arrival to diagnosis of acute ischemic stroke in our medical services.. This prospective study was undertaken

Resultados: O presente estudo demonstrou que o antagonista do MIF (p425) diminuiu significativamente proteinúria, excreção urinária de GAGs , relação proteína/creatinina na