• Nenhum resultado encontrado

The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China

N/A
N/A
Protected

Academic year: 2021

Share "The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

The

effect

of

heavy

metal

contamination

on

the

bacterial

community

structure

at

Jiaozhou

Bay,

China

Xie-feng

Yao

a

,

Jiu-ming

Zhang

c,d

,

Li

Tian

c,d,∗∗

,

Jian-hua

Guo

b,∗

aInstituteofVegetableCrops,JiangsuAcademyofAgriculturalSciences,JiangsuKeyLaboratoryforHorticulturalCropGenetic

Improvement,Nanjing,China

bNanjingAgriculturalUniversity,CollegeofPlantProtection,DepartmentofPlantPathology,Nanjing,China cFirstInstituteofOceanography,StateOceanicAdministration,Qingdao,China

dQingdaoUniversityofScience&Technology,Qingdao,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28October2015 Accepted14July2016

Availableonline4October2016 AssociateEditor:WelingtonLuizde Araújo

Keywords:

Heavymetalcontamination PCR-DGGEfingerprinting Multivariateanalysis

Bacterialcommunitystructure

a

b

s

t

r

a

c

t

In thisstudy,determination ofheavymetalparametersandmicrobiological characteri-zationofmarinesedimentsobtainedfromtwoheavilypollutedsitesandonelow-grade contaminatedreferencestationatJiaozhouBayinChinawerecarriedout.Themicrobial communitiesfoundinthesampledmarinesedimentswerestudiedusingPCR-DGGE (dena-turinggradientgelelectrophoresis)fingerprintingprofilesincombinationwithmultivariate analysis.ClusteringanalysisofDGGEandmatrixofheavymetalsdisplayedsimilar occur-rencepatterns.Onthisbasis,17sampleswereclassifiedintotwoclustersdependingonthe presenceorabsenceofthehighlevelcontamination.Moreover,theclusterofhighly con-taminatedsampleswasfurtherclassifiedintotwosub-groupsbasedonthestationsoftheir origin.Theseresultsshowedthatthecompositionofthebacterialcommunityisstrongly influencedbyheavymetalvariablespresentinthesedimentsfoundintheJiaozhouBay. ThisstudyalsosuggestedthatmetagenomictechniquessuchasPCR-DGGEfingerprinting incombinationwithmultivariateanalysisisanefficientmethodtoexaminetheeffectof metalcontaminationonthebacterialcommunitystructure.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Pollutionofcoastalzones causedbyheavymetals, suchas Cd,Pb, Hg, and Ni,isone oftheimportant environmental problems facedin many parts of the world.1 Heavy metal

Correspondingauthor. ∗∗ Co-correspondingauthor.

E-mails:wshws68@126.com(L.Tian),jhguo@njau.edu.cn(J.Guo).

pollution canleadtoseverechanges inthecompositionof microbial communities that inhabit these zones.2,3

Micro-bial communities present in marine sediments primarily decomposeorganicmatterderivedfromplantlitterbutalso playavitalrole inthetransformationofpollutants.4,5 They

can alsoinfluencethe availabilityofheavymetals andare

http://dx.doi.org/10.1016/j.bjm.2016.09.007

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

metalson bacteriafoundinmarine sediments, theylack important ecological information, such as that offered by polymerasechainreaction(PCR)fingerprintingofthe micro-bialcommunityDNAextractedintheseenvironments.Ithas beenwidelyacceptedthatmetagenomictechniques,suchas PCR-DGGE (denaturing gradient gel electrophoresis) finger-printing,aresomeofthewidelyusedmethodsforexamining the diversityof prokaryoticcommunitiesin environmental habitats.12–15ThePCR-DGGEprofileswereusedtoconstructa

binarymatrixforaquantitativecomparisonbetweendifferent communities.16,17Thesedatawereobtainedeitherbyvisual

scoringofgelsorbycommerciallyavailablesoftwareprograms (forexample,Bionumerics, AppliedMaths, Belgium).These datacanbepresentedasclusteranalysis,e.g.,anunweighted pairgroupmethodwitharithmeticmeans,18 inwhich

den-drograms are used to illustrate the relationship between differentcommunities.19Alternatively,PCR-DGGEprofilescan

becombinedwithmultidimensionalscaling,whichiswidely used to study the relationships between microbial diver-sity and various measured environmental parameters.20–22

Multivariate analysis has been utilized to determine the effect of metal contamination on bacterial community structure.23

JiaozhouBayisthelargest semi-enclosedwaterbody in theYellowSea(Fig.1).ItislocatedontheChinesecoastin thewesternPacificOcean.Theenvironmentalqualityofthis bayhasdeteriorateddramaticallyinthepastthreedecades duetorapidincreaseinagriculture,industry,urbanization, andmaricultureinthesurroundingareas.24Thisregion

con-tainsveryhighlevelsofheavymetalsinthesediments,due tothe discharge ofconsiderable amounts of heavy metals fromtheindustrial plantslocatedattheheadofthe Bay.25

Theheavymetalslevelsintheseregionswerefarexceedthan theircrustalaveragebackgroundvaluesinthesedimentsat JiaozhouBay.Theconcentrationsoftheheavymetalsinthe sedimentsshowaremarkablegradientrangingfromhigh con-centrationsatthe inner bay (Licunheestuaryand Haibohe estuarystations)tobackgroundlevelsattheoutside ofthe bay(ShilaorenBeachstation).Therepresentativeareaschosen forthisstudyincludedtheLouHillestuary,Licunheestuary, Haiboheestuary,andDagongIslandthatarelocatedoutside thearea understudy.Thehighestlevelofconcentrationof heavymetalswasreportedinHaiboheestuarywhereinthe concentrationsoffiveheavymetalswere2.6–23.4foldshigher thantheircorrespondingbackgroundvalues.Inaddition,the concentrations ofZn and Cu were much higher than that observedforother metals;the highestconcentrationofZn

ing profiles incombination withmultivariate analysis.The concentrationsofindividualheavymetalspresentinthe sed-imentswerealsodetermined.

Materials

and

methods

Sitedescription

ThestudylocationwasJiaozhouBay,whichisasemi-enclosed bay locatedon thesouth bankofthe ShandongPeninsula, China. Thisbay is linkedto the YellowSeaby avery nar-rowentrancemeasuringonly3.1kmacross.Itextendsfrom 120◦16-120◦17Eto36◦00-36◦02N(Fig.1).Theaveragedepth ofthisbayis7mwithamaximumof64m.Itcoversanarea of362km2 ofseawaterandhasapopulationof7.2million. Thelong-termannual rainfallranges from340to 1243mm withanaverageof775.6mm,58%ofthatinsummerand23% inwinter.Morethantensmallseasonalstreamsemptyinto thebaywithvaryingwaterandsedimentloads,notablythe Yanghe,Daguhe,Moshuihe,Baishahe,Haibohe,andLicunhe estuaries.27

Samplecollectionandenvironmentalfactormeasurements Sediment samples were collected from two stations in JiaozhouBayandonestationoutside ofthebayon Decem-ber30,2011usinga0.05m2stainlesssteelboxcorer(Fig.1). Sevensampleswereobtainedfromdifferentpointslocatedat distancesof0.03,0.06,0.09,0.12,0.15,0.18,and0.21kmfrom theLicunheestuary,whichhasawasteinput,andwere num-beredasLC1,LC2,LC3,LC4,LC5,LC6,andLC7,respectively. Similarly, fivesampleswere obtainedfrom differentpoints locatedatadistanceof0.03,0.06,0.09,0.12,and0.15kmfrom theHaiboheestuary,whichhasawasteinput,andwere num-beredasHB0,HB1,HB2,HB3,andHB4,respectively.Another fivesampleswereobtainedfromdifferentpointslocatedat distancesof0.03,0.06,0.09,0.12,and0.15kmfromShilaoren Beachandweretreatedasthelow-gradecontaminated con-trolstationandnumberedasSLR1,SLR2,SLR3,SLR4,andSLR5, respectively.

The concentrations of heavy metals (V, Ni, U, Mo, Zn, Se, Sb, Co, Cr, Cd, Pb, As, Cu, and Hg) in the sediments were determined by graphite furnace atomic absorption spectrophotometry (GFAAS)usinganAAnalyst800graphite furnace atomicabsorption spectrometer (Perkin-Elmer, CT, USA).

(3)

Fig.1–MapshowingthesamplingstationsinJiaozhouBay.LC,Licunheestuary;HB,Haiboheestuary;SLR,ShilaorenBeach.

DNAextractionandPCR-DGGEanalysisofbacterial communities

TotalcommunityDNAwasextractedwiththeBIO-101DNA extractionkit(QBIOgene)from0.5gofsamples(wetweight). Thesediment pellets were taken inlysis tubes containing a mixture of ceramic and silica particles, and DNA was extractedaccordingtothemanufacturer’sprotocol.The proce-durecombinedhighlyenergeticmechanicalmeans(FastPrep Instrument,QBIOgene)inthepresenceofdetergentsandsalts intheveryfirststeptoallowdisruptionofhard-to-lysecells, minimizeshearing ofDNA,and inactivatenucleases. After DNAelution,asilica matrixwasutilized tobindDNA,and thesampleswere washedwithasalt/ethanolsolution.The GENECLEANSpin Kit(QBIOgene) was usedas described by themanufacturertore-purifytheDNA.Theyieldsofgenomic DNAweredeterminedafterelectrophoresisin0.8%agarose gelsstainedwithethidiumbromideunderanUV transillu-minator.TheconcentrationsofDNAwereestimatedvisually usingtheDL15,000DNAMarker(TaKaRa,China)intheagarose gels. Thegenomic DNA sampleswere diluteddifferentially toobtainconcentrationsof1to5ngDNAtobeusedinthe followingstep.28

PriortoDGGEanalysisofthebacterialprofiles,16SrRNA genefragmentswereamplifiedbyPCRfromtotalcommunity DNAusingtheprimerpairGC-F984(5-CGCCCGGGGCGCGCC CCGGGCGGGGCGGGGGCACGGGGGGAACGCGAAGAACCTTAC-3)/R1378 (5-CGGTGTGTACAAGGCCCGGGAACG-3)29,30 using

a DNA Engine (PTC-200) Peltier Thermal Cycler (Bio-Rad Laboratories, Inc). The reaction mixture was prepared as recommended by Costa et al.,28 with some modifications.

Briefly, the reaction mixture (50␮L) was composed of 1␮L template DNA (1–5ng), 1x ExTaq buffer (TaKaRa, China), 0.2mMdNTPs,3.75mMMgCl2,4%(w/v)acetamide,0.2mMof eachprimer,and5UExTaqDNApolymerase(TaKaRa,China). Aftera5mindenaturationstepat94◦C,30cyclesof1minat

95◦C,1minat53◦C,and2minat72◦Cwerecarriedout.A finalextensionstepof10minat72◦Cwasusedtofinishthe reaction. Products were checkedbyelectrophoresisin1.5% agarosegelswithethidiumbromidestaining.

DGGE was performed with an INGENY phorU-2 system (INGENYInternationalBV,Leiden,TheNetherlands)usinga doublegradientgelcontaining6–10%polyacrylamide (acry-lamide/bisacrylamide,37.5:1)withagradientof46.5–65%of denaturant(ureaandformamide).ThePCRproducts contain-ingapproximatelyequalamountsofDNAofsimilarsizeswere separatedonagelcontainingalineargradientofthe denatu-rants.Therunwasperformedin1×Tris-acetate-EDTAbuffer at58◦Cataconstantvoltageof120Vfor16hour.TheDGGE gelsweresilver-stainedaccordingtoHeueretal.(2001).31

Statisticalanalysis

Thedenaturinggradientgelswerescannedinthe transmis-sivemode(Epson1680Pro,Seiko-EpsonCorp.Suwa,Nagano, Japan)athigh-resolutionsettings.TheGELCompar® IIv.4.0 softwarepackage(AppliedMathsBVBA,Sint-Martens-Latem, Belgium) was used to analyze the community fingerprints of each denaturing gradient gel as recommended in the literature,32 withmodified settings as described by Smalla

et al.(2001).33 Thecomparisonbetweensamplesloaded on

differentDGGEgelswasperformedusingnormalizedvalues derived from known standards. The relative abundanceof each phylotype(band)wasestimatedasthe relative inten-sityofindividualbandsforeachcommunity(Lane)andwas expressed asa proportionofthe totalcommunity volume, thusnormalizingthedataandstandardizingtheloading dif-ferences.Abinarymatrix ofidentifiedbandswasmadefor all gellanes:the term‘OTU’isusedtorefertoeach DGGE band.ThePearsoncorrelationindexforeachpairoflaneswas calculated asameasureofsimilarity betweenthe commu-nityfingerprints.Clusteranalysiswascarriedoutbyapplying

(4)

Results

Chemicalanalysisandsimilaritymatrix

Theconcentrationsofheavymetalsinsedimentsare given inTableS1.Alargevariationintheconcentrationsofheavy metalsinsedimentsampleswasfound.Theconcentrationsof metals,suchasZn,As,Pb,Cu,andCd,werehigherinheavily contaminatedLicunhe(LC)andmediumcontaminated Hai-bohe(HB)estuariesthanthoseinthelow-gradecontaminated controlstationShilaorenintertidalzone(SLR)(Fig.2).

Theresultsofcharacterizationofthemetalsobtainedat thethreesamplingstationsareshowninTable1.The con-centrationsofalloftheheavymetalsinvestigated,withthe exceptionofSbandAs,weresignificantlydifferentbetween the differentsampling stations (ANOVA, p<0.05). From the similaritymatrixoftheheavymetalparameters, verylarge differencesinthe sedimentsampleprofiles wereobserved. The17 samples obtainedwere classified into two clusters dependingon the presenceor absenceofhigh contamina-tion,andsampleswithinthe samesampling stationswere generallyclusteredintoagroup(Fig.2).Thesimilarity matri-ces ofthe heavy metal parametersin LC and HB samples were significantly more related to each other. The cluster ofhighlycontaminated sampleswasalso divided into two

Fig.2–Aheatmapofheavymetal(columns)occurrences ineachsedimentsample(rows).Thenumberofblueboxes indicatesthatagivenheavymetalhasahighoccurrencein thatsedimentsample.Dendrogramsrepresenthierarchical clusteringofsedimentsamplesorheavymetals.

sub-groups based on the stations from which they were obtained (LC and HB) and were characterizedby 84% pat-ternsimilarity(Fig.2).Thegreatestdifferenceswereobserved betweenthetwoheavilycontaminatedstations(LCandHB) andthelow-gradecontaminatedcontrolstation(SLR)(Fig.2). DCA ordinationofthe heavymetals(data notshown)also

Table1–Concentrationoftheheavymetalswithineachstation.

Heavymetals(ppm) LC HB SLR p

Mean SD Mean SD Mean SD

V 46.81 4.45 34.54 14.75 20.44 3.51 0.000 U 3.21 0.44 2.54 0.66 1.45 0.09 0.000 Sb 12.73 1.30 12.01 4.09 9.53 2.14 NS Cr 57.73 9.61 37.70 20.13 10.26 2.00 0.000 Co 10.12 1.31 5.36 2.69 2.48 0.42 0.000 Ni 22.70 1.83 13.13 7.60 4.14 0.53 0.000 Cu 57.05 10.75 30.51 15.56 4.58 0.50 0.000 Zn 564.91 266.02 83.44 47.82 18.66 3.18 0.003 Hg 1.53 0.91 0.76 0.76 0.03 0.00 0.009 As 13.65 0.87 10.89 4.33 13.22 0.68 NS Se 1.21 0.20 1.43 0.61 0.58 0.19 0.002 Mo 4.65 2.03 2.14 1.34 0.73 0.09 0.004 Cd 1.18 0.26 0.60 0.29 0.23 0.01 0.000 Pb 72.87 17.56 38.65 9.26 19.09 1.86 0.000

p,levelofsignificance(ANOVA,p<0.05)betweendifferentstations(LC,n=7;HB,n=5;SLR,n=5);NS,notsignificant;LC,Licunheestuary;HB,

(5)

Fig.3–AheatmapofDGGEband(columns)occurrencesineachsedimentsample(rows).Thenumberofblueboxes indicatesthatagivenDGGEbandwasobservedinalargerproportioninthatsedimentsample.Dendrogramsrepresent hierarchicalclusteringofsedimentsamplesorDGGEbands.

showedthatthesamplescouldbeclassifiedintothreegroups onthebasisofthestationfromwhichtheywereobtained.

CompositionofbacterialcommunitiesasdepictedbyDGGE SomeoverlapoccurredbetweenDGGEbandsobservedinthe heavily contaminated sediment samples (LC and HB) and thecontrol sample(SLR). Around100 definedDGGE opera-tionaltaxonomicunits(OTUs)wereobservedatagivensite across the sampleseries. Approximately 54 ofthese OTUs wereexclusivelyobservedintheheavilycontaminated sed-imentsamples(LCandHB),andonly15were foundinthe controlsamples(SLR).Theremaining31OTUswereobserved inboth,heavilycontaminated(LCandHB)andcontrol(SLR) sedimentsamples.Two-dimensionalhierarchicalclusteringof OTUsandsamples,combinedwithaheatmapofoccurrence frequency,revealedgroupsofsampletypesandOTUsthathad similarpatternsofoccurrence(Fig.3).ThedistributionofOTUs amongsampletypeswasuneven;themajorityoftheobserved OTUswerepredominantlydetectedineitherLCorHB sedi-mentsamples(groupsBandC,Fig.3).TheOTUsingroupA (Fig.3)weremostoftenfoundinSLRsedimentenvironments. Thecomparison ofprofiles through the construction of similaritydendrogramsrevealed higherdegreeofsimilarity withinonestationthanthatbetweenthesamplesfrom differ-entstations.Afactthatheavymetalcontaminationbelongs toaspecificgroupingofmicrobialcommunitieswaspreferred tovisible(groupsBandC,Fig.3).UPGMAclusteringofDGGE profilesrevealedthatthe17sampleswereseeminglydivided intotwo clustersdependingon thepresenceorabsence of highcontamination.DGGEpatternsinhighlypolluted sam-plesweresignificantlymorerelatedtoeachother.Thecluster ofhighlycontaminated sampleswasalso dividedinto two sub-groupsbasedontheirstations,whichwerecharacterized byapproximately25%patternsimilarity(Fig.3).CCA ordina-tionofthesamedataalsoconfirmedthesegroupings(Fig.4). Thesamples from each station formeda cluster that was markedlydifferentfromothers inboththeanalyses.These resultsshowedthatheavymetalvariablesinthesediments exertastronginfluenceonthecommunitycompositionatthe JiaozhouBay.

Communityordinationanalysis

Twelveheavymetalvariableswerefoundtobesignificantly related(p<0.05)tobacterialcompositioninhighly contami-natedsediments.CCAordinationofDGGEpatternsindicated

Fig.4–CCAordinationoftheOTU–environment relationships.Symbols:LC(),HB(䊉),SLR().Agroupof samplesinthesamesamplingstationsisdividedintothe sameenclosingenvelope.Thesamplesweredividedinto twogroups(groupAandgroupB)dependingonthe presence(HB,LC)orabsence(SLR)ofhighcontamination. ThegroupBincludedthesamplesfromlow-grade contaminatedcontrolstation(SLR).ThegroupAofhighly contaminatedsampleswasdividedintotwosub-groups (groupA1andA2)basedontheirstations(HBandLC). Arrowsindicatethedirectionofincreasingvaluesofthe metalvariable;thelengthofarrowsindicatesthedegreeof correlationofthevariablewithcommunitydata.

(6)

Mo −0.1019 −0.2265 0.2932 −0.4624 0.8483 0.3074 Cd −0.0784 0.4242 0.1914 −0.4372 0.0050 0.5001 Sb −0.0635 0.3020 0.0283 0.6048 −0.0301 0.2426 Pb 0.2412 −0.0013 0.4615 −0.4401 0.1233 0.5349 U 0.0022 0.0913 0.6078 −0.2582 −0.4108 0.6724 Eigenvalues 0.672 0.632 0.557 0.459 0.530 0.275 Cumulativepercentage varianceof OUT-environment relation 26.2 50.7 31.7 57.8 47.2 71.6

Heavilyandmediumcontaminatedstations:LC,Licunheestuary;HB,Haiboheestuary;Low-gradecontaminatedcontrolstation:SLR,Shilaoren

Beach.BoldtypeindicatesthethreestrongestfactorscorrelatedwiththefirsttwoCCAordinationaxes.

thatheavymetalsaffectthebacterialcomposition.TheCCA explained44.2%ofthevariationinthefirsttwoaxes. More-over,therewerestrongrelationshipsbetweentheOTUsand theheavymetalvariables(OTUsandheavymetalcorrelations ofthefirsttwoaxeswere0.999and0.997,respectively).

IntheCCAanalyses,50.7–71.6%ofthecumulativevariance oftheOTUs–heavymetalrelationshipwithineachstation wasexplainedbythe firsttwoCCAs(Table2).Heavy metal factorsthatcorrelatedstronglywiththegeneticdiversityof thebacterialcommunitiesdifferedamongthestations.The strengthsofthecorrelationsbetweenOTUsandheavymetal factorsexplainedbythefirsttwoaxesareshowninTable2. Thethreestrongestfactorscorrelatedwiththeaxes(shown inbold)generallydifferedamongthestations.The concen-trationsofCo, Zn,Hg, As, and Sewere stronglycorrelated withoneorbothoftheaxeswithineachstation. Addition-ally,theconcentrationsofAswerestronglycorrelatedwithall samplingstationsandplayedanimportantrole(Table2).

Discussion

DGGEbandsareconsideredtobedominantuniquesequence types (operational taxonomic units or OTUs) within the methodologicalconstraintsimposedbyPCR.20,22Asreported

earlier,two-dimensionalhierarchicalclusteringbasedonboth DGGEbandrelativeintensitiesandsamplechemistryresults wereusedtodeterminewhethermicrobialcommunitieswere relatedtoenvironmentalparameters.36,37Bycombiningwith

a heat map of occurrence frequency, the results revealed groups of samples from OTUs or heavy metal parameters thathad both consensusmatriceswithsimilar patterns of occurrence.ThemajorityofobservedOTUs(groupsBandC,

Fig.3)werepredominantlydetectedineitherofLCorHB sed-imentsamples.TheOTUs(groupA)weremostoftenfoundin

theSLRsedimentenvironment.Thissuggeststhatthe domi-nantmajorityofOTUs(groupsBandC)maybedispersedto beadaptedtothecontaminatedsediment.Theconsistently dispersedbacterialtaxaarestronglyselectedagainstheavy metals.Underthestressofcombinedheavymetalpollution, theshiftsinbacterialcommunitystructuresweresignificant betweenthe pollutedand thereference sedimentsamples. TheincreasedOTUsinheavymetalpollutedsedimentscould becausedbyanacquiredtolerancebyadaptation,andashift inspeciescomposition.Theorganismsthatwerealready tol-erantbecamemorecompetitiveandthusmorenumerous.We foundthattheseresults,similartootherinvestigators,further supportthehypothesisthatbacteriainheavymetal contam-inatedsedimentsareincreasedinnumber.38

DespitewidespreaduseofDGGEprofiledata,afewofthe studieshaveusedthesemultivariateapproachestodetermine relationshipsbetweencommunitycompositionand environ-mentalvariablesasappliedinthisstudy.Forexample,afew studiesidentifiedtherelationshipbetweencommunity com-positionandgeochemicalvariablesusingPCAorCCA.10,39,40

Theanalysis,presentedinthisstudy,allowedthecorrelation ofDGGEprofileswithawiderrange ofenvironmental vari-ables.Aconsiderablenumberofstudieshavereportedastrong relationshipbetweencommunitycompositionand environ-mentalchemistryinmarinesediments.10,39,41–45 Ourresults

alsosuggestthatcommunitycompositionisstronglyrelated toheavy metalvariables inthesediments ofJiaozhouBay. Therewere significantcorrelationsbetweenmicrobial com-munity profiles and the concentrations ofCo, Zn, Hg, As, and Se inthe sediments. In the CCA analyses, 50.7–71.6% ofthecumulativevarianceoftheOTUs–heavymetal rela-tionshipwithineach stationwasexplainedbythefirsttwo

CCAs(Table2).Now,itappearsreasonabletocombine

clus-teringanalysisofDGGEbandingpatternswithordinationof theheavymetalsusingtheCCAapproachtoanalyzemarine

(7)

sediments.Thebacterialcommunityprofilesinmetalpolluted sedimentsamplesweredissimilartothoseintheclean ref-erencesamples(Fig.4).Similarresultswerealsoreportedby Bradetal.(2008).46Ourresultsstronglysupportthehypothesis

thatenvironmentcontrolsthecompositionanddistributionof microbialcommunities.47,48

Inthisstudy,moleculartechniquesincombination with multivariate analysis were used to identify the associated microbialcommunitiesinbothpristineandheavymetals con-taminatedmarinesedimentsinJiaozhouBay.However,itis importanttobearinmindthatacausalconnectioncannot bedeterminedfromstatisticalanalysisalone.Inaddition,the obtainedcorrelation valuesmight bearesult ofother fac-tors,asCCAdisclosedonly44.2%ofthevariationonthefirst twoaxes; thus 55.8% ofthe variables remain unexplained. Itmustbenoted,however,thatDGGEhasits own method-ologicallimitations,anditsfingerprintingpatterns maynot perfectlyreflectthecommunities.49TheresultsoftheDGGE

andCCAanalyseswereintuitive,althoughtheconsequences maybeoversimplified.Duetotheseshortcomings,inherent toallmoleculartechniques,theparameterscalculatedfrom thefingerprintsmustbeinterpretedasanindicationandnot anabsolutemeasureofthedegreeofdiversityinabacterial community.50

Asreviewedinliterature,PCR-DGGEincombinationwith multivariate analysis isan efficient methodfor examining theeffectofmetalscontaminationonbacterialcommunity structure.23Thiswasalsoconfirmedbytheobservationthat

bacterialcompositionasdepictedbyDGGEwassubstantially relatedtoheavymetalscontamination.Anin-depthstudyof thefactors other than metalsmay explainthedistribution observed.However,theinformationpresentedheremightbe usefulinpredictingthelong-termeffectsofheavymetal con-taminationinthemarineenvironment.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisworkwassupportedbytheprogramforNational Natu-ralScienceFoundationofChina(31471812,31171809),andthe FundamentalResearchFundsforJiangsuAcademyof Agricul-turalSciences(ZX(15)4007).

r

e

f

e

r

e

n

c

e

s

1.ClarkRB.MarinePollution.5thed.Oxford,UnitedKingdom:

OxfordUniversityPress;2001.

2.KaciA,PetitF,FournierM,etal.Diversityofactivemicrobial

communitiessubjectedtolong-termexposuretochemical

contaminantsalonga40-year-oldsedimentcore.EnvironSci

PollutResInt.2016;23:4095–4110.

3.MullerAK,WestergaardK,ChristensenS,SorensenSJ.The

effectoflong-termmercurypollutiononthesoilmicrobial

community.FEMSMicrobiolEcol.2001;36:11–19.

4.BenoitJM,GilmourCC,HeyesA,MasonRP,MillerCL.

Geochemicalandbiologicalcontrolsovermethylmercury

productionanddegradationinaquaticecosystems.ACS

SympSer.2003;835:262–297.

5.SmithSV,HollibaughJT.Coastalmetabolismandtheoceanic

organic-carbonbalance.RevGeophys.1993;31:75–89.

6.HarrisGP.Comparisonofthebiogeochemistryoflakesand

estuaries:ecosystemprocesses,functionalgroups,

hysteresiseffectsandinteractionsbetweenmacro-and

microbiology.MarFreshwRes.1999;50:791–811.

7.StolzJF,OremlandRS.Bacterialrespirationofarsenicand

selenium.FEMSMicrobiolRev.1999;23:615–627.

8.CebronA,BertheT,GarnierJ.Nitrificationandnitrifying

bacteriainthelowerSeineRiverandestuary(France).Appl

EnvironMicrobiol.2003;69:7091–7100.

9.DangH,LiJ,ChenR,etal.Diversity,abundance,andspatial

distributionofsedimentammonia-oxidizing

Betaproteobacteriainresponsetoenvironmentalgradients

andcoastaleutrophicationinJiaozhouBay,China.Appl

EnvironMicrobiol.2010;76:4691–4702.

10.DangH,WangC,LiJ,etal.Diversityanddistributionof

sedimentnirS-encodingbacterialassemblagesinresponse

toenvironmentalgradientsintheeutrophiedJiaozhouBay,

China.MicrobEcol.2009;58:161–169.

11.AzconR,MedinaA,RoldanA,BiroB,VivasA.Significanceof

treatedagrowasteresidueandautochthonousinoculates

(ArbuscularmycorrhizalfungiandBacilluscereus)on

bacterialcommunitystructureandphytoextractionto

remediatesoilscontaminatedwithheavymetals.

Chemosphere.2009;75:327–334.

12.MuyzerG,deWaalEC,UitterlindenAG.Profilingofcomplex

microbialpopulationsbydenaturinggradientgel

electrophoresisanalysisofpolymerasechain

reaction-amplifiedgenescodingfor16SrRNA.ApplEnviron

Microbiol.1993;59:695–700.

13.OvreasL,ForneyL,DaaeFL,TorsvikV.Distributionof

bacterioplanktoninmeromicticLakeSaelenvannet,as

determinedbydenaturinggradientgelelectrophoresisof

PCRamplifiedgenefragmentscodingfor16SrRNA.Appl

EnvironMicrobiol.1997;63:3367–3373.

14.YanQY,YuYH,FengWS,DengWN,SongXH.Genetic

diversityofplanktoncommunityasdepictedbyPCR-DGGE

fingerprintinganditsrelationtomorphologicalcomposition

andenvironmentalfactorsinLakeDonghu.MicrobEcol.

2007;54:290–297.

15.YuYH,YanQY,FengWS.Spatiotemporalheterogeneityof

planktoncommunitiesinLakeDonghu,China,asrevealed

byPCR-denaturinggradientgelelectrophoresisandits

relationtobioticandabioticfactors.FEMSMicrobiolEcol.

2008;63:328–337.

16.KropfS,HeuerH,GruningM,SmallaK.Significancetestfor

comparingcomplexmicrobialcommunityfingerprintsusing

pairwisesimilaritymeasures.JMicrobiolMethod.

2004;57:187–195.

17.WilburJD,GhoshJK,NakatsuCH,BrouderSM,DoergeRW.

Variableselectioninhigh-dimensionalmultivariatebinary

datawithapplicationtotheanalysisofmicrobial

communityDNAfingerprints.Biometrics.2002;58:378–386.

18.SokalR,SneathPHA.PrinciplesofNumericalTaxonomy.

FreemanSanFrancisco;1963.

19.MorganCA,HudsonA,KonopkaA,NakatsuCH.Analysesof

microbialactivityinbiomass-recyclereactorsusing

denaturinggradientgelelectrophoresisof16SrDNAand16S

rRNAPCRproducts.CanJMicrobiol.2002;48:333–341.

20.FrominN,HamelinJ,TarnawskiS,etal.Statisticalanalysisof

denaturinggelelectrophoresis(DGE)fingerprintingpatterns.

EnvironMicrobiol.2002;4:634–643.

21.JohnsonAR,WichernDW.AppliedMultivariateStatistical

Analysis.5thed.UpperSaddleRiver,NJ:PrenticeHall; 2003.

(8)

changesreflectedbysedimentarygeochemistryinthelast

hundredyearsofJiaozhouBay,NorthChina.EnvironPollut.

2007;145:656–667.

27.LiuSM,ZhangJ,ChenHT,ZhangGS.Factorsinfluencing

nutrientdynamicsintheeutrophicJiaozhouBay,North

China.ProgOceanogr.2005;66:66–85.

28.CostaR,GotzM,MrotzekN,LottmannJ,BergG,SmallaKC.

Effectsofsiteandplantspeciesonrhizospherecommunity

structureasrevealedbymolecularanalysisofmicrobial

guilds.FEMSMicrobiolEcol.2006;56:236–249.

29.HeuerH,SmallaK.Applicationofdenaturinggradientgel

electrophoresisandtemperaturegradientgel

electrophoresisforstudyingsoilmicrobialcommunities.In:

vanElsasJD,WellingtonEMH,TrevorsJT,eds.ModernSoil

Microbiology.1997:353–373.

30.NubelU,EngelenB,FelskeA,etal.Sequenceheterogeneities

ofgenesencoding16SrRNAsinPaenibacilluspolymyxa

detectedbytemperaturegradientgelelectrophoresis.J

Bacteriol.1996;178:5636–5643.

31.HeuerH,WielandJ,SchonfeldJ,SchonwalderA,Gomes

NCM,SmallaK.BacterialcommunityprofilingusingDGGEor

TGGEanalysis.In:RouchelleP,ed.EnvironmentalMolecular

Microbiology:ProtocolsandApplicationsHorizon.Wymondham,

UK:ScientificPress;2001:177–190.

32.RademakerJLW,LouwsFJ,RossbachU,VinuesaP,deBruijn

FJ.Computer-assistedpatternanalysisofmolecular

fingerprintsanddatabaseconstruction.In:AkkermansADL,

vanElsasJD,deBruijnFJ,eds.MolecularMicrobialEcology

Manual.Dordrecht,TheNetherlands:KluwerAcademic

Publishers;1999:1–33.

33.SmallaK,WielandG,BuchnerA,etal.Bulkandrhizosphere

soilbacterialcommunitiesstudiedbydenaturinggradient

gelelectrophoresis:plant-dependentenrichmentand

seasonalshiftsrevealed.ApplEnvironMicrobiol.

2001;67:4742–4751.

34.GirvanMS,CampbellCD,KillhamK,ProsserJI,GloverLA.

Bacterialdiversitypromotescommunitystabilityand

functionalresilienceafterperturbation.EnvironMicrobiol.

2005;7:301–313.

35.RametteA.Multivariateanalysesinmicrobialecology.FEMS

MicrobiolEcol.2007;62:142–160.

36.HaackSK,FogartyLR,WestTG,etal.Spatialandtemporal

changesinmicrobialcommunitystructureassociatedwith

40.FryJC,WebsterG,CraggBA,WeightmanAJ,ParkesRJ.

AnalysisofDGGEproflestoexploretherelationshipbetween

prokaryoticcommunitycompositionandbiogeochemical

processesindeepsubseafloorsedimentsfromthe

PeruMargin.FEMSMicrobiolEcol.2006;58:86–98.

41.HenriquesIS,AlvesA,TacOM,AlmeidaA,CunhaA,Correia

A.Seasonalandspatialvariabilityoffree-livingbacterial

communitycompositionalonganestuarinegradient(Riade

Aveiro,Portugal).EstuarineCoastalShelfSci.2006;68:139–148.

42.LeyRE,HarrisJK,WilcoxJ,etal.Unexpecteddiversityand

complexityoftheGuerreroNegrohypersalinemicrobialmat.

ApplEnvironMicrobiol.2006;72:3685–3695.

43.SmithDCD,HondtS.Explorationoflifeindeepsubseafloor

sediments.Oceanography.2006;19:58–70.

44.SorensenKB,TeskeA.Stratifiedcommunitiesofactive

Archaeaindeepmarinesubsurfacesediments.ApplEnviron

Microbiol.2006;72:4596–4603.

45.WilmsR,SassH,KöpkeB,KösterJ,CypionkaH,EngelenB.

Specificbacterial,archaeal,andeukaryoticcommunitiesin

tidal-flatsedimentsalongaverticalprofileofseveralmeters.

ApplEnvironMicrobiol.2006;72:2756–2764.

46.BradT,vanBreukelenBM,BrasterM,vanStraalenNM,

RolingWF.Spatialheterogeneityinsediment-associated

bacterialandeukaryoticcommunitiesinalandfill

leachate-contaminatedaquifer.FEMSMicrobiolEcol.

2008;65:534–543.

47.BrakerG,Ayala-del-RioHL,DevolAH,FesefeldtA,TiedjeJM.

Communitystructureofdenitrifiers,bacteria,andarchaea

alongredoxgradientsinPacificNorthwestmarinesediments

byterminalrestrictionfragmentlengthpolymorphism

analysisofamplifiednitritereductase(nirS)and16SrRNA

genes.ApplEnvironMicrobiol.2001;67:1893–1901.

48.Castro-GonzalezM,BrakerG,FariasL,UlloaO.Communities

ofnirS-typedenitrifiersinthewatercolumnoftheoxygen

minimumzoneintheeasternSouthPacific.EnvironMicrobiol.

2005;129:8–1306.

49.MuyzerG.DGGE/TGGEamethodforidentifyinggenesfrom

naturalecosystems.CurrOpinMicrobiol.1999;2:317–322.

50.MarzoratiM,WittebolleL,BoonN,DaffonchioD,Verstraete

W.Howtogetmoreoutofmolecularfingerprints:practical

toolsformicrobialecology.EnvironMicrobiol.

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

A primeira ação de formação em serviço decorreu no dia 29-02-2012, sobre o Tema “Apresentação dos instrumentos orientadores da visita guiada pré- natal ao bloco de partos”

DGGE analysis showed a great variation in the struc- ture of the bacterial communities present in the water held in tank bromeliads: no cluster was observed in different seasons

objective, current heavy metal contamination levels in the sediment and water of the reservoir were investigated, and a histopathological examination was performed on the liver

Com o advento da internet, as pessoas procuram informações sobre suas doenças em várias fontes, o que as torna mais capazes de gerir seu próprio tratamento e

Com a Segunda Guerra Mundial a decorrer, Alfred Hitchcock realiza um filme com uma notória mensagem política, de leitura aparentemente simples e imediata, ainda que

Partimos da hipótese inicial de que quando as/os docentes possuem noções adequadas em relação à dinâmica do conhecimento científico, essa noção pode levá-los a compreender