• Nenhum resultado encontrado

Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis

N/A
N/A
Protected

Academic year: 2021

Share "Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis"

Copied!
7
0
0

Texto

(1)

ht t p : / / w w w . b j m i c r o b i o l . c o m . b r /

Genetics

and

Molecular

Microbiology

Selection

of

reference

genes

for

expression

analysis

in

the

entomophthoralean

fungus

Pandora

neoaphidis

Chun

Chen

a,∗

,

Tingna

Xie

a

,

Sudan

Ye

b

,

Annette

Bruun

Jensen

c

,

Jørgen

Eilenberg

c

aChinaJiliangUniversity,ZhejiangProvincialKeyLaboratoryofBiometrologyandInspection&Quarantine,Hangzhou310018,China bZhejiangEconomic&TradePolytechnic,Hangzhou310018,China

cDepartmentofPlantandEnvironmentalSciences,UniversityofCopenhagen,DK1871FrederiksbergC,Denmark

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4May2015 Accepted23August2015

AssociateEditor:AndréRodrigues

Keywords: Pandoraneoaphidis

Referencegenes QuantitativePCR

a

b

s

t

r

a

c

t

Theselectionofsuitablereferencegenesiscrucialforaccuratequantificationofgene expres-sionandcanaddtoourunderstandingofhost–pathogeninteractions.Toidentifysuitable referencegenesinPandoraneoaphidis,anobligateaphidpathogenicfungus,theexpression ofthreetraditionalcandidategenesincluding18SrRNA(18S),28SrRNA(28S)andelongation factor1alpha-likeprotein(EF1),weremeasuredbyquantitativepolymerasechain reac-tionatdifferentdevelopmentalstages(conidia,conidiawithgermtubes,shorthyphaeand elongatedhyphae),andunderdifferentnutritionalconditions.Wecalculatedtheexpression stabilityofcandidatereferencegenesusingfouralgorithmsincludinggeNorm,NormFinder, BestKeeperandDeltaCt.Theanalysisresultsrevealedthatthecomprehensiverankingof candidatereferencegenesfromthemoststabletotheleaststablewas18S(1.189),28S(1.414) andEF1(3).The18Swas,therefore,themostsuitablereferencegeneforreal-timeRT-PCR analysisofgeneexpressionunderallconditions.Theseresultswillsupportfurtherstudies ongeneexpressioninP.neoaphidis.

©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Pandora neoaphidis is one of the most important fungal pathogens of aphids and has great potential for use in biocontrol.1–4 Althoughthe lifecycle ofP.neoaphidis iswell

Correspondingauthor.

E-mail:aspring@cjlu.edu.cn(C.Chen).

known,adetailedmolecularunderstandingofgene expres-sionduringtheinfectionprocessisstilllacking. Adiversity ofgenescanbeup-ordownregulatedduringhost–pathogen interactions,5 however,littleisknownabouttheexpression ofreferencegenesinthisparticularentomophthoralean fun-gus.

http://dx.doi.org/10.1016/j.bjm.2015.11.031

1517-8382/©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

severalfungi.8–11However,anumberofcriticalaspectsmust beoptimizedforeffectiveqRT-PCRanalysis;theseincludethe efficiencyofRNAextraction,thequalityoftheRNA,the pres-enceofinhibitors,theefficiencyofthereversetranscription and the selectionofa suitable referencegene as an inter-nalcontrol.12Whilethemajorityofthesepotentialsourcesof errorcanbeavoidedbyadheringcloselytostandardized pro-tocols,selectionofappropriatereferencegenesisfrequently thegreatestchallengebecauseitrequiresaspecies-specific solution.13,14 Anidealreference geneshouldhaveconstant expressionacrossallsamplestobeinvestigated,regardlessof biotype,developmentalstageoranyotherbiologicalor exper-imentalvariability.

Selectionofaninappropriatereferencegenewithvariable expression,leadstoerroneouscalculationsoftheexpression oftarget genesand,therefore,incorrectassumptionsabout thefunctionofthosetargetgenes.15Identificationofsuitable referencegenesisessentialforaccuratetranscriptexpression analysis.Severalstatisticalalgorithmshavebeendeveloped toidentifythemostsuitableinternalcontrolswiththeleast variabilityinexpression;thesealgorithmsarebasedon qRT-PCRdatafromagivensetofcandidategenesandrankputative referencegenesaccordingtotheirexpressionstability,thereby indicatingthebestreferencegeneorcombinationofreference genesforaccuratenormalization.Thefourmostcommonly usedalgorithmsforassessingtheappropriateness of refer-encegenesare geNorm,16 NormFinder,17 Best-Keeper18 and Delta Ct.19 These software packagesare freely available to downloadfromtheauthors’websitesandhavebeenwidely usedtoidentifysuitablereferencegenes.20,21

Inthisstudy,threeputativehousekeepinggenes(18S,28S

andEF1)wereevaluatedaspotentiallyreliablereferencegenes inP.neoaphidisusingqPCR.Fungalinfectionofthehostusually involvesmultipledevelopmentalstages.22Therefore,profiling gene expression inmultiple development stages is impor-tantforunderstandingthemechanismsofpathogenesis.We testedfourdevelopmentalstagesincludingconidia,conidia with germ tubes, short hyphae and long hyphae. Profiling geneexpressionundervariousnutritionalconditionsisalso aroutineapproachtostudygenefunction.Weevaluatedthe stabilityofgeneexpressioninthreedifferentnutrientmedia. Theexpressionstabilityofeachgeneinallsampleswas ana-lyzedusingthegeNorm,NormFinder,Best-KeeperandDelta Ctprograms,andthemostsuitablereferencegeneforaccurate normalizationwasselected.

Material

and

methods

Isolateandcultureconditions

P.neoaphidisisolateARSEF5403wasobtainedfromtheUSDA CollectionofEntomopathogenicFungalCultures,Ithaca,NY. ItwassubculturedonSEMA(Sabourauddextroseagar[SDA]

Propagulesatdifferentstagesofgerminationwereprepared. Mycelialmats from liquidculturewereproduced usingthe methoddescribedbyXuandFeng.24Primaryconidiaactively dischargedfromthemycelialmatduringtheperiodofpeak sporulationwereharvestedinto0.01mol/Lsterilephosphate buffered saline (PBS) solution (130mmol/L NaCl, 7mmol/L Na2HPO4,3mmol/LNaH2PO4,pH7.3).25Theconidial

suspen-sionwasfilteredthroughglasswooltoremoveanymycelia and the conidia centrifuged at 4500rpmfor 10min before beinginoculatedintoGLENmediuminflasks26ata concen-trationof1010conidiapermilliliterfollowedbyincubationat 20◦Cand150rpmina12:12light:darkregimenfordifferent periodsoftime.2 Samplesweretakenafter∼0hforconidia, after∼6hforconidiawithgermtubes,after∼12hforearly, shorthyphae(i.e.thelengthofgermtubewasamaximum of200␮m),andafter24hforelongatedhyphae(i.e.hyphae that exceeded200␮m).Ateach stagethe fungalstructures wereobservedmicroscopicallytoensuretheyhadattainedthe correctdevelopmentalstage(Fig.1).Samplesofeach develop-mentalstagewerecollectedaftervacuumfiltrationthrough Whatman54paperandstoredat−80◦CuntiltotalRNAwas

isolated.Therewerethreereplicateflasksforeach develop-mentalstage,i.e.12flasksintotalweresetup.

Toprovidesamplesgrownunderdifferentnutritional con-ditions, themyceliumfrom halfaPetridish (agarmedium removedusingascalpel)wasaddedto100mLflasks contain-ing either30mLGLENmedium,2630mLofGrace’smedium (Invitrogen,USA)or30mLofOS-SDBmedium(Sabouraud Dex-troseBroth[SDB;Difco,BD,USA]supplementedwith0.5%(v/v) sesameoiland0.1%(w/v)sugarestersoffattyacids[Emulsifier E473,CASNo.37318-31-3,LiuzhouGaotongFoodChemicals Co.Ltd.,China]).Flaskswereincubatedat20◦Cand150rpmin a12:12light:darkregimenforthreedays.2Myceliumsamples grownunderdifferentnutritionalconditionswere collected byvacuumfiltrationthroughWhatman54paperandstored at−80◦CuntiltotalRNAwasisolated.Therewerethree

repli-cate flasksforeach nutritional conditioni.e.nine flasksin total.

Candidategeneandprimerdesign

Nucleotide sequences of the 18S and 28S genes (Genbank accessionnumbersHQ677591.1andEF392405.1,respectively), were downloaded from Genbank (http://www.ncbi.nlm.

nih.gov/genbank/),whiletheEF1genesequencewasacquired

through degenerate PCR. Primer pairs for each gene were designed using the Primer Premier 5.0 program (Table 1). Specificity of primer pairs for each candidate gene was confirmed using melting curve analysis and agarose gel electrophoresis.

TotalRNAisolationandcDNAsynthesis

RNAwaspreparedforeachsampleusingtheRNeasyMiniKit (QIAGEN,Cat.No.74104,Mississauga,Canada),andgenomic

(3)

Fig.1–ViewsofP.neoaphidispropagules.Topreparepropagulesatdifferentdevelopmentalstages,primaryconidia producedbyamycelialmatwereincubatedinGLENbroth.Thecultureswerecentrifugedtoharvestconidiaat0h(a), conidiawithgermtubesat6h(b),earlyhyphaeat12h(c)andelongatedhyphaeat24h(d).Propaguleswerestainedwith lactophenolandobservedunderamicroscope.Scalebar:50␮m.

DNAwaseliminatedbyloadingRNase-freeDNaseIintothe fil-tercolumn(QIAGEN).Nucleicacidextractionwasperformed accordingtothemanufacturer’sinstructions.Thequalityof theRNAwascheckedbyelectrophoresison1%agarosegels torevealany contaminatinggenomicDNAandintactrRNA subunits28Sand18S.Nucleicacidconcentrationswere mea-suredusingaNanodrop1000(ThermoScientific,Wilmington, DE,USA).

First-strand cDNA was synthesized using random hex-amerprimersandSureStartTaqDNApolymeraseaccording tothemanufacturer’sinstructions(AgilentTechnologies,Cat. No.20820,Santa Clara,CA, USA).Toavoiderrorscaused by contamination with genomic DNA, all RNA samples were treated with RNase-free DNase I before reverse transcrip-tion(AgilentTechnologies,USA).OnemicrogramoftotalRNA wasused forcDNA synthesis; thecDNA was subsequently dilutedwithnuclease-freewater(QIAGEN)to20ng/␮L.The cDNA mixtureswere diluted 1:10 withnuclease-free water

(QIAGEN)andstoredat−20◦CforsubsequentquantitativePCR

analysis. QuantitativePCR

Real time RT-PCR amplification mixtures (25␮L) contained 20ngtemplatecDNA,2×BrilliantIISYBRGreenmastermix buffer with fluorescein for dynamic well factor collection (12.5␮L; Agilent Technologies) and 400nmol/L each of the forwardandreverseprimers(EurofinsGenomics,Ebersberg, Bayern, Germany). The reaction was performed using a StratageneMx3000P®system.PCRwasaccomplishedaftera

10minactivation/denaturation stepat95◦C,followedby40 cycles of30seach at95◦C,60seach at60◦Cand30seach at72◦C.Fluorescencewasdetectedateach polymerization step.TotestthePCRefficiencyofeachprimerpair,acDNA mixturecontainingequalamountsofcDNAfromallsamples wasusedasthetemplate.Theten-folddilutionseriesofthe

Table1–PrimersequencesofselectedreferencegenesforqRT-PCRinP.neoaphidis.

Gene Accessionnumber Primerpairs Ampliconsize(bp)

18S HQ677591.1 F:CAAACCCGAGCAATAGTC R:GTAGGAGCCCGATAGTAAA 179 28S EF392405.1 F:TCTTATCAGTCTCAGCACCTTG R:TCTGTCAATCCTTACTATGTCTGG 181 EF1 DQ275343.1 F:GACGCACTCCTTGTTGAT R:CCTTGCCACTCTGGTTCT 82

(4)

Statisticalanalyses

Thesampleswere dividedintotwogroups: different devel-opmental stages (12 samples) and different nutritional conditions (9 samples). The expression levels of the can-didate reference genes were determined from the cycle threshold(Ct)value,thenumberofPCRcyclesatwhichthe quantity of amplified targets reached a specific threshold levelofdetection. Theexpressionstabilityofthereference genes was evaluated using the four programs, geNorm,16 NormFinder,17BestKeeper18andDeltaCt19toanalyzeallthe rawCtvaluesfromthetwogroups;inordertobalancethe rankingofthecandidatereferencegenesacrossthedifferent algorithms,expressionstabilitywasevaluatedintheprogram

http://www.leonxie.com/referencegene.php?type=reference,

to determine an overall comprehensive stability value for eachcandidatereferencegene.

Results

Expressionprofilingofcandidatereferencegenes

Thecalculatedexpressionlevels(Ctvalues)ofthethreegenes evaluatedvariedfrom10.65to28.75,whichrepresentsquite alargedegreeofvariation(Fig.2).The18Sgenewas iden-tified as the most abundant transcript in all samples; the meanCtvalueforthe18Sgenefromdifferent developmen-talstagesanddifferentnutritionalconditionswas12.62and 19.76,respectively.ThemeanCtvalueforthe28Sgenefrom differentdevelopmentalstagesanddifferentnutritional con-ditionswas15.67and23.74,respectively.Incontrast,themean CtvaluefortheEF1genefromdifferentdevelopmentalstages and different nutritional conditions was 24.25 and 25.65, respectively.

Cycle threshold (C

18

8

18S 28S EF1

Fig.2–MeanCtvalueofthecandidatereferencegenesat differentdevelopmentalstagesandunderdifferent nutritionalconditions.Errorbarsrepresentstandard deviations.nindicatesthenumberofsamples.

Candidategeneexpressionstabilityofdifferent developmentalstagesandunderdifferentnutritional conditions

UsingthealgorithmsgeNorm,NormFinderandDeltaCt,for developmentalstageandnutritionalconditions,the18Sgene wasthemoststableofthethreegenes,followedinrankorder bythe28SgeneandfinallytheEF1gene(Fig.3).However,using theBestKeeperalgorithm,the28Sgenewasmuchmorestable thanthe18SorEF1genes(Fig.3).

Specifically, using geNorm software analysis, the P. neoaphidis expression stability values at different develop-mentalstagesandunderdifferentnutritionalconditionsfor the three candidate reference genes(M value) were in the order:18S(0.457)>28S(0.534)>EF1(0.749)and18S(0.389)>28S

(0.557)>EF1(0.607),respectively.UsingNormFindersoftware analysis, theP. neoaphidis expressionstability valuesat dif-ferentdevelopmentalstagesandunderdifferentnutritional conditions for the three candidate reference genes (stable value)wereintheorder:18S(0.084)>28S(0.264)>EF1(0.509) and 18S (0.118)>28S (0.355)>EF1 (0.403),respectively. Using

18S

18S

18S

18S

28S

28S

28S

28S

EF1

EF1

EF1

EF1

18S

18S

18S

18S

28S

28S

28S

28S

EF1

Developmental stages geNorm Ranking order 1 Most stable 2 Intermediate stability 3 Least stable NormFinder BestKeeper Delta Ct Nutritional conditions

EF1

EF1

EF1

Fig.3–ComparisonoftherankinginexpressionstabilitycalculatedbygeNorm,NormFinder,BestKeeperandDeltaCt.The analysiswasperformedseparatelyforeachsamplegroupundertheconditionsexaminedandtherankingorderswere highlightedbydifferentgraytonesfromwhitetodark,darkergrayindicatesgreaterstability.

(5)

3 0 185 1.189 285 1.414

Comprehensive gene stability

≤= Most stable genes Least stable genes =≥

EF1 3 0.5 1 1.5 2 2.5

Fig.4–Comprehensiverankingofthecandidatereference genes.

DeltaCtsoftwareanalysis,theP.neoaphidisexpressionstability valuesatdifferentdevelopmentalstagesandunderdifferent nutritionalconditionsforthethreecandidatereferencegenes (stable value) were inthe order:18S (1.19)>28S (1.20)>EF1

(2.02)and18S(0.41)>28S(0.55)>EF1(0.59),respectively. Overallstabilityrankingofcandidatereferencegenes Therankingfromthecomprehensivegenestabilityanalysis ofcandidatereferencegeneswas18S(1.189)>28S(1.414)>EF1

(3.000)(Fig.4).The18Sgenecould,therefore,beselectedas themoststablereferencegenefornormalizationofqRT-PCR.

Discussion

qRT-PCRisbecomingmoreandmoreimportantasaresearch tooltoidentifyandcharacterizegenesthataredifferentially expressedduringdifferenttypesofgrowthand atdifferent developmentalstages.7Anappropriatereferencegeneorset of reference genes are required for accurate gene expres-sionanalysisand,beforethisstudy,werenotavailableforP. neoaphidis.

DuetoalackofsequencedataforthegenusPandora,we selectedthreehousekeepinggenes(18S,28SandEF1)as can-didatereferencegenesforexpressionstudiesinP.neoaphidis

(Table 1).Wedid notincludethe beta-tublin(␤-tublin)

ref-erence gene because the primers we developed forit also amplifiedthehostaphid’scDNAwhichwouldprecludeitsuse ingeneexpressionstudiesoftheinteractionbetweenthe fun-gusandthehostaphid(unpublisheddata).Priortodoingthe qPCR,wecheckedthespecificityofthedesignedprimers; anal-ysisofthemeltingcurvesshowedanabsenceofdimersinthe PCRamplifications.

Endogenouscontrols commonlyinclude the use of sin-gle,constitutivelyexpressed,housekeepinggenes.However, theexpressionofasinglehousekeepinggenecanvary con-siderablybetween samples27–29 and may not, therefore, be acceptablefornormalizationofreal-timeRT-PCR.Thisisthe reasonthatwewantedtoselectgeneswithreliableand accu-rate expression levels that were expressed consistently at differentdevelopmentalstages(primaryconidia,conidiawith germtubes,earlyhyphaeandelongatedhyphae)andunder

differentnutritional conditions(GLEN,Grace’smediumand OS-SDB).

Ifonlyonesoftwarepackage,withonealgorithm,isused to analyze the biological stability of expression in candi-datereferencegenesitisoftendifficulttoselecttheoverall bestreferencegene.30Therefore,inthisstudy,a comprehen-siveonlinetoolbasedonfourdifferentalgorithms(geNorm, NormFinder, BestKeeper and Delta Ct) was adopted. The resultsfor geNorm,Normfinder and Delta Ctwere all very similar and showed that, of the three candidate reference genes,expressionofthe18Sgenewasthemoststable;this resultisconsistentwithanumberofotherreports.31,32 How-ever, thestabilitycalculatedbyBestKeeperwasdifferentto theotheralgorithms;the28Sgenewasmorestablethanthe

18Sgene,andbothweremorestablethantheEF1gene.The reasonforthismaybebecausetheBestKeeperalgorithmuses theoriginalCtvaluesasinputdata,sothecalculated statis-tics canindicate false differences.33,34 However,the values forthecoefficientofvariation(CV)wereveryclose;0.77and 0.78,respectivelyforthedifferentdevelopmentalstages,0.45 and0.53,respectivelyforthedifferentnutritionalconditions. Therefore, weusedvaluesfromall fouralgorithmstorank candidatereferencegenestabilityunderalltheexperimental conditionsasacomprehensiveindicatorofthemeanstability ofgeneexpressionasdid;overallthe18Swasstillthemost stablereferencegeneintermsofexpression.

Throughstabilityanalysis,weidentifiedthatthe18SrRNA referencegenewassuitablefornormalization ofqPCRdata undermultipleexperimentalconditions.Ourstudywasbased onqPCR,sothefindingswillprovidedirectguidanceforfuture qPCRexperimentsonP.neoaphidis.Moreover,thesefindings mayalsobeusefulforNorthernblot andreverse transcrip-tion PCR, techniques that also require reference genes for normalization.8,35,36 Itisalso possiblethat, using a combi-nation of two reference genes might further improve the reliabilityofgeneexpressionbyRT-qPCRofP.neoaphidis.

Ineukaryotes,thegenesmostconservedandmostwidely usedare thosethat encoderibosomalRNA(rRNA).37 These genes encode small subunit ribosomal RNA (18S) and two largesubunitribosomalRNA(28S and5.8S),ina transcrip-tionunit,constitutingabout85–90%oftotalcellularRNA,and are veryuseful asinternalcontrols.38 Though 28Stogether with18SareallprocessedfromasingleprecursorRNAafter transcriptionfromtherRNAcistron,28Sand18Sare synthe-sizedrespectivelybyRNApolymeraseIandRNApolymeraseII; thesearecompletelydifferenttomRNAsynthesisand inde-pendentfromit.Thus,thereareonlyrare changesinrRNA levelswhilevariousconditionsaffectmRNAexpression.As aclassichousekeepinggene, the18Sgenehasbeenwidely usedasareferenceforgeneexpressionanalysis39;for exam-pleintheentomopathogenicfungusBeauveriabassiana,8,32,35

andotherspecies.9,40,41Forthisreasonwearenotsurprised thatitisalsousefulforgeneexpressionstudiesofP.neoaphidis.

However,ourunderstandingofP.neoaphidisdevelopmentand metabolismisstilllimited,soitislikelythatfurtherworkon thestabilityofgeneexpressioninother,asyetnot-cloned, ref-erencegenessuchasGAPDHand␤-actin,willalsobeuseful. Furthermore,theuseofseveralreferencegeneswouldallow moreaccurateandreliablenormalizationofgeneexpression data.16

(6)

based gene expression analysis ofthe entomophthoralean fungusP. neoaphidis. Ourresults suggest that the 18Sgene wouldbethemostreliablefornormalizingtheexpression lev-elsinmostsampleseries.Theseresultsprovideafoundation forthemoreaccurateandwidespreaduseofRT-qPCRinthe analysisofgeneexpressioninP.neoaphidis.

Normalization is a major issue when analyzing gene expressioninresponsetovariousexperimentalconditions, anduseofincorrectnormalizationtargetscouldleadto erro-neousinterpretationofquantitativedata.Thepresentstudy considered the issue of development and nutrition, thus the findings can aid in understanding the mechanisms of developmentandmetabolism.Fortheissueoffungus/insect interactions, it is more complicated since the condition involves fungal propagules and host tissue. Thus, further experimentsarerequiredtoassessandvalidatemore refer-encegenessuitableforevaluatingfungus/insectinteractions.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Thisstudy wasfunded by:the Natural ScienceFoundation ofChina(31461143030),theInternationalFoundationfor Sci-ence(C/4822-1),theScienceandTechnologyPlanningProject ofZhejiangProvince(2013C37087)andtheZhejiangNatural ScienceFoundation(LR12C03001).

r

e

f

e

r

e

n

c

e

s

1. PellJK,EilenbergJ,HajekAE,SteinkrausDC.Biology,ecology

andpestmanagementpotentialofEntomophthorales.In:

ButtTM,JacksonC,MaganN,eds.FungalBiologicalControl

Agents:Progress,ProblemsandPotential.Oxon:CABI

Publishing;2001:71–153.

2. ChenC,FengMG.Experimentalsimulationoftransmission

ofanobligateaphidpathogenwithaphidflightdispersal.

EnvironMicrobiol.2006;8:69–76.

3. JensenAB,HansenLM,EilenbergJ.Grainaphidpopulation

structure:noeffectoffungalinfectionsina2-yearfield

studyinDenmark.AgricForEntomol.2008;10:279–290.

4. ZhouX.Winterprevalenceofobligateaphidpathogen

PandoraneoaphidismycosisinthehostMyzuspersicae

populationsinsouthernChina:modelingdescriptionand

biocontrolimplication.BrazJMicrobiol.2012;43:325–331.

5. GrellMN,JensenAB,OlsenPB,EilenbergJ,LangeL.

Secretomeoffungus-infectedaphidsdocumentshigh

pathogenactivityandweakhostresponse.FungalGenetBiol.

2011;48:343–352.

6. GinzingerDG.Genequantificationusingreal-time

quantitativePCR:anemergingtechnologyhitsthe

mainstream.ExpHematol.2002;30:503–512.

MycolRes.2006;110(Pt10):1165–1171.

9.TesteMA,DuquenneM,Franc¸oisJM,ParrouJL.Validationof

referencegenesforquantitativeexpressionanalysisby

real-timeRT-PCRinSaccharomycescerevisiae.BMCMolBiol.

2009;10:99.

10.VieiraA,TalhinhasP,LoureiroA,etal.ValidationofRT-qPCR

referencegenesforinplantaexpressionstudiesinHemileia

vastatrix,thecausalagentofcoffeeleafrust.FungalBiol.

2011;115:891–901.

11.LianT,YangT,LiuG,SunJ,DongC.Reliablereferencegene

selectionforCordycepsmilitarisgeneexpressionstudies

underdifferentdevelopmentalstagesandmedia.FEMS

MicrobiolLett.2014;356:97–104.

12.HuggettJ,DhedaK,BustinS,ZumlaA.Real-timeRT-PCR

normalisation;strategiesandconsiderations.GenesImmun.

2005;6:279–284.

13.GuéninS,MauriatM,PellouxJ,VanWuytswinkelO,BelliniC,

GutierrezL.NormalizationofqRT-PCRdata:thenecessityof

adoptingasystematic,experimentalconditions-specific,

validationofreferences.JExpBot.2009;60:487–493.

14.Rocha-MartinsM,NjaineB,SilveiraMS.Avoidingpitfallsof

internalcontrols:validationofreferencegenesforanalysis

byqRT-PCRandWesternblotthroughoutratretinal

development.PLoSONE.2012;7:e43028.

15.DhedaK,HuggettJF,ChangJS,etal.Theimplicationsof

usinganinappropriatereferencegeneforreal-timereverse

transcriptionPCRdatanormalization.AnalBiochem.

2005;344:141–143.

16.VandesompeleJ,DePreterK,PattynF,etal.Accurate

normalizationofreal-timequantitativeRT-PCRdataby

geometricaveragingofmultipleinternalcontrolgenes.

GenomeBiol.2002;3:H0034.

17.AndersenCL,JensenJL,ØrntoftTF.Normalizationof

real-timequantitativereversetranscription-PCRdata:a

model-basedvarianceestimationapproachtoidentifygenes

suitedfornormalization,appliedtobladderandcolon

cancerdatasets.CancerRes.2004;64:5245–5250.

18.PfafflMW,TichopadA,PrgometC,NeuviansTP.

Determinationofstablehousekeepinggenes,differentially

regulatedtargetgenesandsampleintegrity:

BestKeeper−Excel-basedtoolusingpair-wisecorrelations.

BiotechnolLett.2004;26:509–515.

19.SilverN,BestS,JiangJ,TheinSL.Selectionofhousekeeping

genesforgeneexpressionstudiesinhumanreticulocytes

usingreal-timePCR.BMCMolBiol.2006;7:33.

20.YinR,LiuX,LiuC,etal.Systematicselectionof

housekeepinggenesforgeneexpressionnormalizationin

chickenembryofibroblastsinfectedwithNewcastledisease

virus.BiochemBiophysResCommun.2011;413:537–540.

21.KianianmomeniA,HallmannA.Validationofreference

genesforquantitativegeneexpressionstudiesinVolvox

carteriusingreal-timeRT-PCR.MolBiolRep.

2013;40:6691–6699.

22.HumberRA.Synopsisofarevisedclassificationforthe

Entomophthrales(Zygomycotina).Mycotaxon.1989;34:441–460.

23.WildingN,BrobynPJ.Effectsoffungicidesonthe

developmentofEntomophthoraaphidis.TransBrMycolSoc.

1980;75:279–302.

24.XuJH,FengMG.Thetime-concentration-mortalitymodeling

andvirulenceindicesfortwoentomophthoraleanspecies,

PandoradelphacisandP.neoaphidis,againstthegreenpeach

(7)

25.ChenC,YeSD,WangDQ,HattingJL,YuXP.Alginate

embeddingandsubsequentsporulationofinvitro-produced

Conidiobolusthromboideshyphaeusingapressurised

air-extrusionmethod.BiolControl.2014;69:52–58.

26.BeauvaisA,LatgeJP.Asimplemediumforgrowing

Entomophthoraleanprotoplasts.JInvertebrPathol.

1988;51:175–178.

27.ThellinO,ZorziW,LakayeB,etal.Housekeepinggenesas

internalstandards:useandlimits.JBiotechnol.

1999;75:291–295.

28.SuzukiT,HigginsPJ,CrawfordDR.ControlselectionforRNA

quantitation.Biotechniques.2000;29:332–337.

29.LiW,QianYQ,HanL,LiuJX,SunZY.Identificationofsuitable

referencegenesinbuffalograssforaccuratetranscript

normalizationundervariousabioticstressconditions.Gene.

2014;547:55–62.

30.MasciaT,SantovitoE,GallitelliD,CilloF.Evaluationof

referencegenesforquantitativereverse-transcription

polymerasechainreactionnormalizationininfectedtomato

plants.MolPlantPathol.2010;11:805–816.

31.KimBR,NamHY,KimSU,KimSI,ChangYJ.Normalizationof

reversetranscriptionquantitative-PCRwithhousekeeping

genesinrice.BiotechnolLett.2003;25:1869–1872.

32.ZhangY,ZhaoJ,FangW,etal.Mitogen-activatedprotein

kinasehog1intheentomopathogenicfungusBeauveria

bassianaregulatesenvironmentalstressresponsesand

virulencetoinsects.ApplEnvironMicrobiol.2009;75:

3787–3795.

33.LivakKJ,SchmittgenTD.Analysisofrelativegeneexpression

datausingreal-timequantitativePCRandthe2(-DeltaDelta

C(T))method.Methods.2001;25:402–408.

34.MehdiKhanlouK,VanBockstaeleE.Acritiqueofwidely

usednormalizationsoftwaretoolsandanalternative

methodtoidentifyreliablereferencegenesinredclover

(TrifoliumpratenseL.).Planta.2012;236:1381–1393.

35.JinK,ZhangY,FangW,LuoZ,ZhouY,PeiY.Carboxylate

transportergeneJEN1fromtheentomopathogenicfungus

Beauveriabassianaisinvolvedinconidiationandvirulence.

ApplEnvironMicrobiol.2010;76:254–263.

36.ZhangY,ZhangJ,JiangX,etal.Requirementofa

mitogen-activatedproteinkinaseforappressorium

formationandpenetrationofinsectcuticlebythe

entomopathogenicfungusBeauveriabassiana.ApplEnviron

Microbiol.2010;76:2262–2270.

37.EickbushTH,EickbushDG.Finelyorchestratedmovements:

evolutionoftheribosomalRNAgenes.Genetics.

2007;175:477–485.

38.PauleMR,WhiteRJ.Surveyandsummary:transcriptionby

RNApolymerasesIandIII.NucleicAcidsRes.

2000;28:1283–1298.

39.KozeraB,RapaczM.Referencegenesinreal-timePCR.JAppl Genet.2013;54:391–406,

http://dx.doi.org/10.1007/s13353-013-0173-x.

40.FoldagerCB,MunirS,Ulrik-VintherM,SøballeK,BüngerC,

LindM.Validationofsuitablehousekeepinggenesfor

hypoxia-culturedhumanchondrocytes.BMCMolBiol.

2009;10:94.

41.deAlmeidaMR,RuedellCM,RicachenevskyFK,SperottoRA,

PasqualiG,Fett-NetoAG.Referencegeneselectionfor

quantitativereversetranscription-polymerasechain

reactionnormalizationduringinvitroadventitiousrooting

Referências

Documentos relacionados

O cluster 1 e o cluster 2, com 18 e 16 clientes respectivamente, são os clusters de influência na caracterização deste perfil, onde á sua semelhança conecta este perfil como

Although no statistical analysis could be performed as a result of the data distribution, the expression of TGFB1 mRNA in platelets was higher when compared to its expression

Therefore, both the additive variance and the deviations of dominance contribute to the estimated gains via selection indexes and for the gains expressed by the progenies

To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus) under various conditions

(A) qRT-PCR analysis was performed to analyze SETD7 expression in 20 pairs of HCC tumor tissues and ANLTs, the data shown are the mean of – Δ CT, and the expression of SETD7 in HCC

Although such genes that regulate basic and ubiquitous cellular functions are frequently assumed as almost invariable between different samples, many other studies corroborate

The expressions of most genes display variable expression levels in prenatal and postnatal periods, and reference genes that are frequently used for other experiments are not

To investigate if the diurnal expression could be a source of variability on differential gene expression analysis in hippocampus of epileptic rats, we compared expression levels of