• Nenhum resultado encontrado

Houseflies speaking for the conservation of natural areas: a broad sampling of Muscidae (Diptera) on coastal plains of the Pampa biome, Southern Brazil

N/A
N/A
Protected

Academic year: 2021

Share "Houseflies speaking for the conservation of natural areas: a broad sampling of Muscidae (Diptera) on coastal plains of the Pampa biome, Southern Brazil"

Copied!
12
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Biology,

Ecology

and

Diversity

Houseflies

speaking

for

the

conservation

of

natural

areas:

a

broad

sampling

of

Muscidae

(Diptera)

on

coastal

plains

of

the

Pampa

biome,

Southern

Brazil

Ândrio

Zafalon-Silva

a,∗

,

Frederico

Dutra

Kirst

b

,

Rodrigo

Ferreira

Krüger

c

aUniversidadeFederaldoParaná,DepartamentodeZoologia,Curitiba,PR,Brazil

bUniversidadeFederaldeMinasGerais,DepartamentodeZoologia,MinasGerais,MG,Brazil cUniversidadeFederaldePelotas,DepartamentodeMicrobiologiaeParasitologia,Pelotas,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received9February2018 Accepted10September2018 Availableonline5October2018 AssociateEditor:GustavoGraciolli Keywords: Atlanticforest Diptera Ecology Guilds Grasslands Muscidae

a

b

s

t

r

a

c

t

TheBrazilianCoastalPlainofthePampaBiome(CPPB),hassufferedfragmentationcausedbyresource extractionandcattleraising.Inturn,conservationproposalsareneededtopreventtheanthropisationof Pampanaturalareas.Thefirststeptowardsconservationproposalsbyusinginsectsisfaunainventories, providingdatasupportforlegislators.Thus,weundertookaregionalandbroad-scalesamplingsurvey toinvestigatethediversityofMuscidaefliesinprotectedandnon-protectedareasofCPPB.Inaddition, wecarriedoutanecologicalguilddiversityanalysisasametricapproachofbioindication.TheMuscidae samplingresultedin6314specimens,98speciestaxain31genera.Basedondiversityestimators,our samplingrepresents70–86%ofallmuscidsofCPPB.ThehighestdiversityoccursinPelotasstreams (non-protected)andTaimEcologicalStation(ahugeprotectedarea).Despitethefacttheseareasare morediversifiedandpresentmorepredatorymuscidspeciesthanothers,invasivespeciesassociated withlivestockwereobservedatahigherlevel,providingevidenceoftheimpactoflivestockproximity toprotectedareas.BasedonbiologicalcharactersofMuscidaespeciesandecologicalguildanalysis, wewereabletoidentify:(i)highdiversityofcarnivorousspeciesassociatedwithforestedandmore preservedareasand(ii)ahighlevelofafewsaprophagousspeciesasindicatorofanthropisationprocess. Ingeneral,ourresultsrepresentasignificantsteptowardsunderstandingMuscidaeinSouthernBrazil, andwedemonstratehowthepopulationecologyofmuscidfliessupportsdatatoconservationproposals. ©2018SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Theconversionoftropicalforests,naturalfields,andgrasslands intoagriculturalandurbanareasistheprimarydriverofthe biodi-versitycrisiscurrentlyobserved(Foleyetal.,2005).Approximately 43%oftheterrestrialworldsurfacehasbeendisturbed,andthe originalvegetationhasbeenconvertedinto anthropogenicnew habitats(Barnoskyetal.,2012).Tropicalcountries,suchasBrazil, followthesamepatternshowinganincreasingtrendasagricultural frontiersarestillexpanding(Ferreiraetal.,2012).Extinctionrates inthiscenturyareestimatedtobemorethandoubleincomparison topreviousones(Pereiraetal.,2010).

InthestateofRioGrandedoSul(RS),thePampabiomeis sub-jectedtohighanthropicpressure(Pillaretal.,2009),andknowledge onbiodiversity isparticularlyneglected(Overbecket al.,2007).

∗ Correspondingauthor.

E-mail:andrio.zafalon@gmail.com(Â.Zafalon-Silva).

Amongareasofbiologicalimportance,wecanhighlighttheCoastal PlainofthePampaBiome(CPPB)whichhasagreatdiversityof habi-tats(wetlands,floodplains,riparianforests,andsands)(Overbeck etal.,2007).

Fragmentation process in the CPPB mainly occurs via the replacementofnativegrasslandswithagricultureandexotic pas-tures and the destruction of wetlands by drainage or barring. Additionally,frequentfires,mischaracterisationofhabitatby live-stockovergrazingandtrampling,hunting,andbiologicalinvasions arealsosignificant(Bencke,2009;Fontanaetal.,2003;Machado et al.,2008; Mikich and Bérnils,2004).In recent years, habitat losshasintensified(Bencke,2009;Crawshawetal.,2007), influ-encingsomegroupsofbirdsandmammals(Bilencaetal.,2012; FilloyandBellocq,2006;GonzalezandMerino,2008;Krapovickas and DiGiacomo, 1998).However,knowledge abouttheimpact oninsectcommunitiesinPampabiomeisincipient,despitethe effortstosurvey thediversity ofLepidoptera(Pazet al.,2013), Coleoptera (Da Silva et al., 2013), Formicidae (Hymenoptera) (Rosado et al., 2012, 2013), and Diptera. Among studied flies

https://doi.org/10.1016/j.rbe.2018.09.002

0085-5626/©2018SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

diversity we can list the following families: Drosophilidae (Hochmülleretal.,2010;Poppeetal.,2012,2013)Muscidae(Krüger etal.,2010),Sciomyzidae(Kirstetal.,2015),Syrphidae(Kirstetal., 2017)andTabanidae(KrügerandKrolow,2015).

The Pampa biome is a highly significant area for biodiver-sityconservation(MMA,2004), butamongtheregionsofCPPB, dataoninsectbiodiversityarescarce, withtheexception ofthe municipalityofPelotasandCapãodoLeão,forMuscidae, Calliphori-dae,andTabanidaeflies(AzevedoandKrüger,2013;Krügerand Krolow,2015;Krügeretal.,2010).Studiesonthespeciesrichness ofSciomyzidae(Kirstetal.,2015)andthediversityofSyrphidae (Kirstetal.,2017)werethefirsttoreportdataoninsectfaunain mostprotectedareasintheCPPB.

The first step towards insect conservation proposals is to increaseknowledgeonfauna,mainlybyspeciesinventories.Thus, thisstudyinvolvedaregionalandbroadsamplingsurveyto deter-minethediversityofMuscidaeonCPPB(includingthetransition zonetotheAtlanticforestinthenorthofRS).Furthermore,this studyaimedtoestablishmeasuresofdiversity(Magurran,2004)to evaluatethesuccessofsamplinginprotectedandnon-protected areas.Alimitationoftheseestimatesisthehighdependenceon samplingeffort,mainlyinthemeasuresusingabundanceand rich-ness (Bungeand Fitzpatrick, 1993). Therefore, for conservation proposals,determinationofspeciesrichnessisasessentialasthe numberofspeciestobediscovered(Santoset al.,2010).In this regard,nonparametricestimatorsofdiversitywereusedto extrap-olatespeciesrichnessinthestudiedhabitats(GotelliandColwell, 2001;Willieetal.,2012).

TheimportanceofMuscidaetotheCPPPhabitatsisthatthis familypresentsanevolutionaryhistoryinthePampabiome,its Southernforestswereanareaofhighdiversificationofthis fam-ily(Löwenberg-NetoandCarvalho,2009), andtodayalong with theAtlanticforest,ithasmanyareasofendemism(Carvalhoetal., 2003;NiheiandCarvalho,2005).Furthermore,theMuscidaeshow excellenttaxaproperties,whichmakethemsuitablefordiversity studiesinthisbiome.Theypresentbroadoccupancy,highspecies richness (Carvalhoet al., 2005)and wide habitatrange (Ferrar, 1987;Skidmore,1985).Duetothese reasons,onecanconsider muscidsfliesassemblagescomprisingmanyspecieswith funda-mentalsofbioindicatortaxa. Theexpression‘bioindicator’ isan aggregatetermreferringtoallsourcesofbioticandabiotic reac-tionstoecologicalchanges.Insteadofmerelyworkingasgaugesof naturalchange,taxaareutilisedtoshowtheimpactsofsurrounding naturalchanges,orenvironmentalchanges(Parmaretal.,2016).In thissense,thefollowingmaybeexpectedfromMuscidae:the pres-enceofsynanthropicspeciesasindicatorofdisturbanceinnative forestedareas(e.g.MuscadomesticaLinnaeus,Hydrotaea Robineau-Desvoidyspecies,Stomoxys calcitrans(Linnaeus), amongothers) (Greenberg,1971;Krügeretal.,2010;Skidmore,1985; Zafalon-Silvaetal.,2014).Ontheotherhand,thepresenceofspeciesthatdo nottoleratehabitatanthropisationcouldbeanindicatorofforested “healthy”environments(e.g.CyrtoneurinaGiglio-Tos,Limnophora Robineau-Desvoidy,NeomuscinaTownsend,NeodexiopsisMalloch, amongothers)(Krügeretal.,2010;Skidmore,1985;Wernerand Pont,2006).

We can argue towardsthe ecological guilds as a bioindica-torapproachinMuscidaeastheefficientlydiscretedelimitation oftrophiclevelsaremainlybasedondataoflarvalmorphology (Skidmore,1985),and bythediscussiongatheredin Rodríguez-Fernándezetal.(2006)andKrügeretal.(2010).Thissurveyaims atcomplementingtheguilddescriptionsbyanalyzingthenumber ofspeciesperguildineachregion.

Italsoaimsatansweringthefollowingquestions:(i)whichisthe diversityofMuscidaeassemblagesinprotectedandnon-protected areasofCPPB?(ii)IsitpossibletouseecologicalguildsofMuscidae asatooltocheckenvironmentalaspects?

Materialandmethods

Studysites

The forested areas surveyed includedthe Grasslands of the Pampabiome,andforestsinthenortheasternCoastalPlainofthe PampaBiome(CPPB)inthetransitionzonetotheAtlanticforestof theRioGrandedoSulstate(RS),Brazil.Thesamplingareasinthe CPPB(Table1andFig.1)werechosenaccordingtothehighpriority indicatedfortheconservationofinvertebrates(MMA,2000).The MinistryofEnvironment(MMA)indicatesareasaroundthecoastal lagoonsofthePatos,Mirim–Mangueiracomplex,andthelagoons ofNorthCoastofRS(MMA,2000).

Fig.1andTable1showthestudysites.Region1ismadeupof areasaroundthePelotasstream(points1–3),Corrientesstream (points4and 5),and Turuc¸ustream(points6and 7).Region2 contains theLamiBiologicalReserve(points8and 9),Camaquã river(point10),andtheprivatenaturalheritagereserve(RPPN) BarbaNegra(points11–14).Region3containstheTaim Ecologi-calStation(points15–21),whichisasignificantareaofnational protection.TheItapuãStatePark(points22–24),TupancyNatural MunicipalityPark(point25),JoséLutzenbergerStatePark(known asGuardhousePark,point26),andItapevaStatePark(points27 and28)makeupRegion4onthenortherncoastofCPPB.Region5 istheLagoadoPeixeNationalPark(points29–35).

Thecharacterizationsofthesampledareasandtheirprotection statusbylawaresummarisedinTable1.Foracomplete charac-terisationofallareas,includingconservationunities,thereaderis referredtoWaechter(1985,2002),IBGE(1986,2004),Mello-Filho etal.(1992),SEMA(1996,2013),MeiraandPorto(1998),ICMBIO (1999),Burger(2000),Leite(2002),CeluloseRiograndense(2012),

Venzke(2012),andWitt(2013).

Samplingdesign

TheMuscidaeflieswerecollectedinfiveregionsoftheCPPB using140Malaisetraps,modelTownes(1972)withamodified col-lectioncontainer(Duarteetal.,2010).Sevenareasweresampledin eachregion(Table1andFig.1)andfourtrapswereinstalledineach area.Thetrapsremainedinthefieldforeightdays.Ontheeighth day,collectorcontainerscarryingmaterialpreservedin70% alco-holweresenttotriageandpinninginthelaboratory.Theperiods ofcollectioncampaignswerethefollowing:(i)region1between OctoberandNovemberof2011;(ii)region2inNovemberof2011; (iii)region3inDecemberof2011;(iv)region4inJanuaryof2012; (v)region5inFebruaryof2012.

The flies were identified with specific keys of Neotropical Muscidae (Carvalhoand Couri, 2002; Costacurta and Carvalho, 2005;Costacurtaetal.,2005;CouriandCarvalho,2002;Marques andCouri,2007;Nihei,2005;NiheiandCarvalho,2007; Pereira-Colavite andCarvalho, 2012;Schüehliand Carvalho, 2005), and fromtheoriginal descriptionsof somespecies.Identificationof manyspecimenswasconfirmedbycomparingwithmaterialfrom theColec¸ãodeEntomologiaPadreJesusSantiagoMoure,Universidade FederaldoParaná(DZUP).

ThevouchersaredepositedatDZUPandColec¸ãodeDipterado LaboratóriodeEcologiadeParasitoseVetores,UniversidadeFederal dePelotas(LEPAV).

Dataanalysis

All analyses were performed using the statistical program R (R Development Core Team, 2015) and with the statistical packagesveganandiNEXT(Hsiehetal.,2016;Oksanenetal.,2015). Thespecieswithspecimenswhichweremuchdamagedtoidentify

(3)

Table1

Descriptionofthe35pointssampledinfiveregionsoftheCoastalPlainonPampaBiome(CPPB).Locality:sampledareas(fourMalaisetrapperarea)insidetheregions;LP: law-protectedarea;coordinates:centralcoordinateofthesampledarea;sitedescription:ageneraldescriptionofthelocality,includingitphytophysiognomyandgeology; climate:averagetemperatureandrelativehumidityduringthesamplingperiod.APL,Pelotasstream;ACS,Corrientesstream;ATU,Turuc¸ustream;LAMI,LamiBiological Reserve;RCMQ,Camaquãriver;RPPN,privatenaturalheritagereserveBarbaNegrafarm;TAIM,TaimEcologicalStation;ITPA,ItapuãStatePark;PMTY,TupancyNatural MunicipalityPark;PEJL,JoséLutzenbergerStatePark;PEVA,ItapevaStatePark;LPXE,LagoadoPeixeNationalPark;points1–7,region1(Oct–Nov,2011);points8–14,region 2(Nov,2011);points15–21:region3(Dec,2011);points22–28,region4(Jan,2012);points29–35:region5(Feb,2012).

Point Locality LP Latitudeandlongitude Regionaldescription

1 APL No −31.72175 −52.25422

Atlanticforestremainswithpioneervegetationandfluvialinfluence.Thegeneral classificationisasemideciduousseasonalforest.Sandbank,riparian,andgalleryforests predominate.AbundantmarshesandriverstreamsfromPatosLagoonsystem.

2 APL No −31.67118 −52.21764 3 APL No −31.62781 −52.35285 4 ACS No −31.55675 −52.14568 5 ACS No −31.56435 −52.13951 6 ATU No −31.43295 −52.12173 7 ATU No −31.49678 −52.00834 8 LAMI Yes −30.23630 −51.09601

Riparianforestswithshrubbymarshes,herbaceousmarshes,sandbanks,andwetfields.

9 LAMI Yes −30.25632 −51.10126

10 RCMQ No −31.12159 −51.79237 TransitionborderbetweentheAtlanticforestandPampabiomes.Abundantriparian forests.Thegeneralclassificationisasemideciduousseasonalforest.

11 RPPN Yes −30.43135 −51.23704

Farmingforestscoveredbyabundantnon-indigenousEucalyptusspecies.Heavygrovesof nativespeciescoveringdunes,internalbeaches,andallbordersofRPPN.

12 RPPN Yes −30.41323 −51.21834

13 RPPN Yes −30.42993 −51.14240

14 RPPN Yes −30.39651 −51.12725

15 TAIM Yes −32.55568 −52.50060

Severalinternallagoonsandforestedmarshes.Thepredominantphytophysiognomyisa coastalfieldwithsavanna-likegrasses.Thelandscapeiscomposedofamosaicoflagoons, marshes,sandbankshrubberies,dunes,andriparianforests.Farmingandcattleraisingin thesurroundingparkarea.

16 TAIM Yes −32.53865 −52.53732 17 TAIM Yes −32.56059 −52.50975 18 TAIM Yes −32.53347 −52.52538 19 TAIM Yes −32.53845 −52.53713 20 TAIM Yes −32.59684 −52.56837 21 TAIM Yes −32.63511 −52.48655

22 ITPA Yes −30.38372 −51.02095 Severalwoodedfoothillswithherbaceousvegetationandshrubbyfields.The phytophysiognomyvariesfromshrubby/woodedfieldstodenseforests.Themosaic landscapeiscomposedofinternallagoonbeaches,riparianforests,andmobiledunes.

23 ITPA Yes −30.38291 −51.03008

24 ITPA Yes −30.36819 −51.02620

25 PMTY Yes −29.48945 −49.84442 Psammophileforestedarea,low-heightwoodprofile.Highesttreesareabout10-mtall. Generalphysiognomyischaracterisedbyasmallriparianforest,threeinternallagoons, oneduneof9mheight,andurbanareassurroundingthepark.

26 PEJL Yes −29.35508 −49.73529 Denseombrophilousforestinfluencedbyseaproximity.Paleodunesfixedbydenseforest cover.Mobiledunesarecoveredonlybyherbaceousandshrubvegetation.Several marsheswithswamp-likevegetation.

27 PEVA Yes −29.37978 −49.76215

28 PEVA Yes −29.37819 −49.75909

29 LPXE Yes −31.05366 −50.80873

Highseasonalvariationofsalinityinsoil,causingseasonalpatternsinphytophysiognomy. Lagooncomplexofdevelopedriparianforests,savanna-likefields,andxerophytic shrubberiesonfixedpaleodunes.Farmingandcattleraisinginthesurroundingparkarea.

30 LPXE Yes −31.05613 −50.81078 31 LPXE Yes −31.06581 −50.81776 32 LPXE ? −31.21367 −50.96057 33 LPXE ? −31.21715 −50.96621 34 LPXE ? −31.21911 −50.97516 35 LPXE ? −31.43412 −51.17502

ortorecogniseasmorphospecies(e.g.Coenosiasp.,Polietinasp., Pseudoptilolepissp.)wereremovedfromdataanalyses.

Dissimilarityinthesouthernassemblagesofflies

Thedissimilarityofflycommunitiesbetweenregions(1–5)and betweenSouthernBrazilmuscidassemblages(Costacurtaetal., 2003;Krügeretal.,2010;Rodríguez-Fernándezetal.,2006;and thepresent study)weresubjectedtomultivariateanalysiswith agglomerativehierarchicalclassificationbyunweightedpair-group methodusingarithmeticaverages(UPGMA),withcompletelinkage (Borcardetal.,2011;SneathandSokal,1973).

TheUPGMAclusteringmethodwasselectedbythebest Pear-son’scorrelationsindex(Table2)forverificationbetweenregions (1–5).Theindexwasobtainedcomparingthecophenetic matri-ces of various hierarchical clustering methods. The abundance wasstandardisedbyHellinger’stransformation,anddissimilarities betweenpairsofsampleswerecalculatedusingtheBray–Curtis dissimilaritycoefficient(Borcardetal.,2011).UPGMAclustering ofMuscidaeassemblagesfromstudiesinSouthernBrazilwas per-formedbyJaccardindexofdissimilarityusingthebinarymatrices,

Table2

Resultsofthecopheneticmatricestest.Thechoiceofclustermethodwasbased onthehighestscore inthePearson’scorrelationsindex.UPGMA,unweighted pair-groupmethodusingarithmeticaverages;UPGMC,unweightedpair-group methodusingcentroids;WARD,Ward’sminimumvarianceclustering;WPGMA, weightedpair-groupmethodusingarithmeticaverages;WPGMC,weighted pair-groupmethodusingcentroids;PCI,Pearson’scorrelationindex.

Clustermethod PCI

UPGMA 0.8846567

WPGMA 0.8842323

WARD 0.8827867

WPGMC 0.7437148

UPGMC 0.6925564

asnotatalltheanalysed studiescontaineddataonabundance. Thisclusterwasgeneratedbycomparingonlyspecieswithspecific nameswithmorphospecieswhicharenotconsideredinallstudies. Samplingeffort

Samplingsufficiency wasverified usinga species accumula-tioncurve(SAC),whichwasbuiltusingtheveganpackage,with

(4)

10 11-14 8-9 22-24 29-35 1-7 25 26-28 15-21

Fig.1. PartialmapofSouthAmerica,withdetailsoftheCoastalPlainofPampaBiome,RioGrandedoSul(Brazil).Themarkedpointsrefertoall35collectionareas(groups offourtraps).DescriptionsofeachareaareprovidedinTable1.Stars:region1;squares:region2;pentagons:region3;circles:region4;triangle:region5.

thespecaccum function. This function produces theSAC or the numberofspeciesatagivennumberofsampledpoints(Malaise trap).Withinthespecaccumfunction,the“exact”methodwasused, whichobtainedtheexpected(mean)speciesrichness.The“exact” methodfindstheexpectedSACusingthemethodindependently developedbyUglandetal.(2003),Colwelletal.(2004),andKindt etal.(2006).

Toestimatespeciesrichness(S),whichisspecificforeach treat-ment,Rarefaction,andChao2wereused(Chao,1987;Chaoetal., 2009;Chiuetal.,2014;ColwellandCoddington,1994;Gotelliand Colwell,2001).Thesearenon-parametricmethods,usedto esti-mateSbasedontheincidenceofspecies(presence/absence).The individual-based rarefactioncomputes the expected number of speciesinasubsampleof“n”individualsdrawnatrandomfrom asinglerepresentativesamplefromanassemblage.Thevaluesof RarefactionsandChao2wereobtainedusingthefunction “Poolac-cum,”which estimates theextrapolatedrichness index, as well asthenumberofspeciesfortherandomordinationofsampling units.

EcologicalguildsinMuscidae

Beforedefiningtheecological guilds,it isessential to deter-minehowmuscidfliesexploreenvironmentalresources.Themost notablestudyonMuscidaebiologywasSkidmore(1985),inwhich theauthorindicatedlarvalhabitmainlybythemorphologyofthe cephalo-pharyngealskeletonandtheanalspiracles.Basedonthe anatomicalfeaturesoflarvae,wecansuggestthreedefinitionsfor thebiology ofMuscidae.The firstone isthe saprophagous lar-vae,characterisedbywell-developedsuctionmechanisms,lacking oralaccessorysclerites,andlargeanalspiracles.Thesecondone isthesaprophagouslarvaewithpredatoryfacultativebehaviour in the third instar or parasitic behaviour, as in some genera

(e.g.CharadrellaWulp,PhilornisMeinert),characterisedby well-developedoralhooks,thepresenceoforalaccessorysclerites,the presenceofasuctionmechanism,andlargeanalspiracles.Thethird istheobligatecarnivorouslarvae,characterisedbywell-developed andwell-sclerotisedoralhooksandaccessorysclerites,theabsence of suctionmechanisms,and smallanal spiracles.For additional detailsofthespecies,morphology,andsubstratesusedby imma-turesseeSkidmore(1985)andFerrar(1987).

Thehabitsofadultscouldbeidentifiedbythehematophagous withlabiummodifiedforpenetrationandsuction.Thesecondtype islickersinsaprophagousspecies,withlabellathatarenotreduced andwithamoreconsiderablelateralexpansionmembranous.The lastoneisthepredators,withreducedlabella,developedprestomal teeth,andsclerotisedprementumtopenetratetheexoskeletonof theirprey(Coelho,1997;McAlpine,1981).

Therefore,wedefinedanecologicalguildasagroupofspecies which exploit the sameclass of resources in a similar manner (Root,1967).InMuscidae,werecognisefourecologicalguildsor functionalgroups (sensuBlondel,2003)combiningtrophicroles of larvae and adult stages (Krüger et al., 2010).The species of CPPBareclassifiedaccordingtothefollowing:saprophagouslarvae and saprophagic/hematophagousadultsspecies (SS);facultative predators/parasiticlarvaeandsaprophagousadultsspecies(SPS); predatorylarvaeandsaprophagousadultsspecies(OS):predatory larvaeandadultsspecies(PP).

Region-guilddiversityproportionality

WetestedtheinfluenceofregionandguildofMuscidaeonthe proportionalrichnessandproportionalabundanceusingANOVA andFtest,consideringP<0.05assignificant.

(5)

Table3

ListofMuscidae(Insecta,Diptera)speciescollectedinfiveregionsoftheCoastalPlainofPampaBiome(CPPB),RioGrandedoSul,Brazil.SampledCPPBareasincludeR1: region1,where:APL:Pelotasstream;ACS:Corrientesstream;ATU:Turuc¸ustream.R2:region2,where:LAMI:LamiBiologicalReserve;RCMQ:CamaquãRiver;RPPN:private naturalheritagereserveBarbaNegrafarm.R3:region3,where:TAIM:EcologicalStationofTaim.R4:region4,where:ITPA:ItapuãStatePark;PMTY:TupancyNatural MunicipalityPark;PEJL:JoséLutzenbergerStatePark;PEVA:ItapevaStatePark.R5:region5,whereLPXE:LagoadoPeixeNationalPark.

Taxa R1 R2 R3 R4 R5 (



)

APL ACS ATU RPPN RCMQ LAMI TAIM ITPA PEVA PMTY PEJL LPXE Biopyrelliabipuncta(Wiedemann,1830) 0 0 0 0 4 0 13 8 0 0 0 3 28 BithoracochaetaannulataStein,1911 0 0 0 0 0 1 0 0 0 0 0 33 34 BithoracochaetacalopusBigot,1885 120 44 98 7 43 6 160 0 1 0 0 26 505 BithoracochaetaflavicoxaaMalloch,1934 1 12 2 0 10 1 4 1 0 3 0 0 34

BithoracochaetaplumataAlbuquerque,1955 0 0 0 0 0 0 0 1 0 0 0 0 1

Bithoracochaetasp.2 0 0 0 0 0 0 0 1 0 0 0 6 7

Coenosiasp. 1 0 0 0 0 0 0 1 0 0 0 0 2

Coenosiasp.1 1 0 0 0 0 0 1 0 0 0 0 0 2

CoenosiiniGenusA 3 0 0 0 0 0 2 0 0 0 0 0 5

CoenosiiniGenusB 0 0 0 0 0 0 1 0 0 0 0 0 1

Cyrtoneurinacostalis(Walker,1853) 5 3 0 0 10 0 2 2 0 0 0 1 23

Cyrtoneuropsisbrunnea(Hough,1900) 1 0 0 0 2 1 1 0 0 0 0 1 6

Cyrtoneuropsismaculipennisa(Macquart,1843) 10 4 4 11 0 10 0 0 0 1 11 0 51

Cyrtoneuropsispararescita(Couri,1995) 0 0 0 0 0 0 1 0 0 0 0 9 10

Cyrtoneuropsisincognitaa(Snyder,1954) 1 0 0 2 0 17 0 18 4 0 0 0 42

Cyrtoneuropsissp.2 0 0 0 2 0 6 0 0 0 0 0 0 8

Dolichophaoniacacheutaa(Snyder,1957) 0 0 0 0 0 1 0 0 0 0 0 0 1

Dolichophaoniaplaumanni(Carvalho,1983) 0 0 0 0 0 0 0 0 0 0 0 1 1

Dolichophaoniatrigona(ShannonandDelPonte,1926) 0 5 1 0 0 0 1 1 0 0 0 0 8

Dolichophaoniaelongataa(Albuquerque,1958) 0 0 0 0 0 0 1 0 0 0 0 1 2

GraphomyaauricepsMalloch,1934 2 0 1 0 0 0 21 0 0 0 0 0 24

Gymnodiadelecta(Wulp,1896) 0 0 0 0 0 0 15 0 0 0 0 0 15

Gymnodiaquadristigma(Thomson,1869) 0 0 0 0 0 0 9 1 0 0 0 0 10

Gymnodiasp. 0 0 0 0 0 0 1 0 0 0 0 0 1

Haematobiairritans(Linnaeus,1758) 0 0 0 0 0 0 20 0 0 0 0 11 31

Helinasp.1 1 5 2 0 0 0 2 0 0 0 0 0 10

Helinasp.2 26 4 3 0 2 0 6 0 0 0 0 0 41

Helinasp.3 8 0 1 0 0 1 4 1 0 1 0 0 16

Helinasp.4 0 6 1 0 0 0 4 0 0 0 0 0 11

Helinasp.6 2 5 1 5 0 4 1 5 0 0 0 24 47

LimnophoraaurifaciesStein,1911 14 7 7 3 5 15 19 0 0 0 0 0 70

Limnophorasp.1 4 0 0 0 1 1 12 0 0 0 0 1 19 Limnophorasp.2 13 2 2 0 1 0 50 1 0 0 0 0 69 Limnophorasp.3 3 0 0 0 0 0 7 0 0 0 0 0 10 Limnophorasp.4 99 11 8 6 5 5 155 2 0 1 4 2 298 Limnophorasp.5 59 36 22 8 9 3 216 1 1 0 1 0 356 Limnophorasp.6 0 1 0 0 0 0 2 0 0 0 0 0 3

LispeserotinaWulp,1896 1 0 0 0 0 2 0 0 0 0 0 0 3

Micropotamiaminuscula(Albuquerque,1955) 7 8 0 2 0 0 16 0 0 0 1 0 34

Morelliahumeralis(Stein,1918) 0 0 0 0 0 0 2 17 0 0 0 0 19

MorelliapaulistensisPamplonaandMendes,1995 0 0 0 8 58 5 40 6 1 0 0 1 119

Morelliasp.1 0 2 1 0 8 0 3 0 0 0 0 0 14

Morelliasp.2 1 1 0 1 2 0 1 0 0 0 0 0 6

MuscadomesticaLinnaeus,1758 0 0 0 0 0 0 0 0 0 1 0 0 1

MydaeaplaumanniSnyder,1941 29 20 5 2 3 0 1 2 0 0 0 0 62

Myospilaobscura(ShannonandDelPonte,1926) 1 7 0 1 6 0 13 5 1 0 2 0 33

Myospilasp.1 4 1 0 0 0 0 4 0 0 1 1 1 12

NeodexiopsiserectaCostacurta,CouriandCarvalho,2005 0 0 0 0 0 0 0 0 0 1 0 0 1

NeodexiopsisrusticaAlbuquerque,1956 2 20 0 1 0 0 1 0 0 0 0 1 25

Neodexiopsissp. 0 0 0 0 0 0 0 1 0 0 0 0 1 Neodexiopsissp.1 3 2 0 0 0 0 75 0 0 0 0 0 80 Neodexiopsissp.2 0 1 0 0 2 0 2 0 0 0 0 0 5 Neodexiopsissp.3 1 0 4 0 0 1 108 0 0 0 1 0 115 Neodexiopsissp.4 98 29 79 0 1 1 101 0 0 0 0 0 309 Neodexiopsissp.5 2 13 3 5 0 0 18 0 1 0 0 0 42 Neodexiopsissp.6 0 0 0 0 0 0 1 0 0 0 0 0 1 Neodexiopsissp.7 28 14 5 6 9 3 7 5 0 0 1 0 78 Neodexiopsissp.8 0 0 0 0 0 0 2 1 0 0 0 0 3 Neodexiopsissp.9 154 88 86 4 31 8 259 3 5 0 2 4 644 Neodexiopsissp.10 0 0 0 0 0 3 1 0 0 0 0 0 4 Neodexiopsissp.11 12 5 1 0 3 2 0 0 0 0 0 4 27

Neodexiopsissp.12affvulgarisaCouriandAlbuquerque,1979 0 0 0 1 0 0 0 0 0 0 0 0 1

Neodexiopsissp.13 0 0 1 0 0 0 0 0 0 0 0 0 1

NeomuscinaaffdouradensisaLopesandKhouri,1996 1 0 0 0 0 0 0 0 0 0 0 0 1 Neomuscinaaff.GoianensisaLopesandKhouri,1995 0 0 0 0 1 0 0 0 0 0 0 0 1

Neomuscinainflexa(Stein,1918) 0 0 0 0 0 0 0 0 0 0 0 1 1

NeomuscinaneosimilisSnyder,1949 0 0 0 0 0 0 0 1 0 0 3 0 4

Neomuscinapictipennispictipennis(Bigot,1878) 1 0 0 0 2 0 0 2 1 0 4 0 10

(6)

Table3(Continued)

Taxa R1 R2 R3 R4 R5 (



)

APL ACS ATU RPPN RCMQ LAMI TAIM ITPA PEVA PMTY PEJL LPXE Neomuscinazosteris(ShannonandDelPonte,1926) 33 89 4 0 4 0 9 1 0 0 0 4 144

Neomuscinasp.1 0 0 0 1 0 0 0 0 0 0 0 0 1

Neomuscinasp.2 2 1 0 1 0 0 0 0 0 0 0 0 4

Neomuscinasp.3 1 0 0 1 1 0 0 0 0 0 0 0 3

Neomuscinasp.4 1 1 0 0 0 0 0 0 0 0 0 0 2

Neomuscinasp.5 0 0 0 0 0 0 0 1 1 0 1 0 3

Neurotrixafelsina(Walker,1849) 3 0 0 0 1 0 21 0 0 0 0 0 25

NeurotrixamarinoniiaCostacurtaandCarvalho,2005 1 9 2 0 0 0 5 2 0 0 0 4 23

NeurotrixasulinaCostacurtaandCarvalho,2005 1 3 0 1 0 0 8 1 0 0 0 0 14

PhaoniaadvenaSnyder,1957 0 0 0 4 0 0 0 3 2 1 0 0 10

Phaoniaannulata(Albuquerque,1957) 9 21 0 0 0 0 0 4 0 0 1 0 35

Phaoniabigotia(Albuquerque,1957) 0 0 0 0 0 0 0 1 0 0 0 0 1

Phaoniagrajauensis(Albuquerque,1957) 6 13 1 10 2 7 1 10 2 0 5 0 57

Phaonianigriventris(Albuquerque,1954) 18 18 0 8 3 1 160 20 1 0 2 69 300

Phaoniapraesuturalis(Stein,1904) 0 0 0 0 2 0 0 9 0 0 0 0 11

Phaoniasimilata(Albuquerque,1957) 1 0 0 8 4 3 1 3 2 0 3 1 26

Phaoniatrispila(Bigot,1885) 7 20 18 2 50 0 64 0 0 0 0 7 168

Phaoniasp.1 8 10 1 2 5 5 24 5 11 2 10 9 92

Phaoniasp.2 0 4 1 1 0 3 316 0 0 0 0 13 338

Phaoniasp.3 22 0 6 1 9 2 0 0 0 0 0 0 40

Phaoniasp.4 0 0 0 0 0 1 0 0 0 0 0 0 1

PhilornisseguyiaGarcia,1952 1 0 0 0 0 0 0 0 0 0 0 0 1

Philornissp.2 0 0 0 0 1 0 0 0 0 0 0 0 1

Plumispinasp.1 0 0 0 0 0 0 1 0 0 0 0 0 1

Polietinaorbitalis(Stein,1904) 21 16 5 3 9 0 16 4 2 0 3 17 96

PseudoptilolepisnudapleuraaSnyder,1949 0 0 0 5 0 0 0 0 0 0 0 0 5

Pseudoptilolepissp. 2 0 1 0 0 0 0 0 0 0 0 0 3

Sarcopromuscapruna(ShannonandDelPonte,1926) 5 2 3 0 43 1 903 0 0 0 0 18 975

Stomopogonargentina(Snyder,1957) 10 30 3 0 1 1 398 0 0 0 0 0 443

Stomoxyscalcitrans(Linnaeus,1758) 0 0 0 0 0 0 2 0 0 0 0 3 5

Trichomorelliaseguyia(Pamplona,1983) 0 0 0 0 1 0 22 0 0 0 0 0 23

(



) 871 593 383 123 355 121 3337 151 36 12 56 276 6314

aNewrecordforRSstate.

Results

MuscidaeoftheCoastalPlainofPampaBiome

We collected 6314 specimens, 98 species in 31 genera of Muscidae on the CPPB (Table 3). The most abundant species were Sarcopromusca pruna (Shannon and Del Ponte) (n=934), Neodexiopsis sp. 9 (n=641), Bithoracochaeta calopus (Bigot) (n=503), Stomopogon argentina (Snyder) (n=388), Limnophora sp.5 (356),Phaonia sp. 2(n=338), Neodexiopsissp. 4 (n=309), Phaonia nigriventris (Albuquerque) (n=300), Limnophora sp. 4 (n=298).

Amongthe 98 identifiedspecies of Muscidae,41 didnot fit descriptionsofvalidspecies,indicatingthattheremaybemany newspeciesinthestudiedregions.Otherdatashowthat34taxa wereuniquetoatleastonelocation(Table3).Thegeographical distributionof13 species ofMuscidaewasexpanded, and they wereregisteredforthefirsttimeinthestateofRioGrandedoSul, basedonthedistributionalcatalogueofSouthAmericanmuscids (Löwenberg-NetoandCarvalho,2013).

Regardingthenumberofspeciesasafunctionofthesamples (areas)inCPPB,theSACexhibitedanupwardtrend(Fig.2),although theChao2diversityestimatorreportwascollectedbetween70% and86%MuscidaeofCPPB(Table4).

ThediversityofmuscidfliesthroughCPPBregionsand dissimilaritywithSouthernBrazilfauna

Thespeciesrichnesswasthehighestinregions1and3,where therewasagreaterabundanceofflies.Whenrarefactionbyregion was applied, computing the expected number of species in a

subsample ofnindividuals(n=255,correspondingtoregion4), regions2and4hadthehighestestimatedrichness(Table4). Rar-efactionbyareawascomputedtoasubsampleofn=8individuals, andthehighestrarefiedrichnesswasobservedinareasofregions 2,4,and1(Table4).

Themostabundantspecieswerefoundtovaryineachregion. Inregion1,themostabundantspecies wereNeodexiopsissp.9, Neodexiopsissp.4,andB.calopus,whicharesmallpredatorsin lar-vaeandadultstages,andtheircombinedabundancerepresented 38%ofthecollectedspecimensfromthisregion.Singletonsand doubletonsaccountedfor 31.9%ofthetotal speciesgatheredin thisregion.Inregion2,themostabundantspecies(28.9%)were MorelliapaulistensisPamplonaandMendes,Phaoniatrispila(Bigot), and B.calopus. Inthis region,44.4%of thespecieswere single-tonsand doubletons. More than52% of thetotal abundanceof speciesintheCPPBwasinregion3(TaimEcologicalStation).In this region,46.8% of thespecimens wereS. pruna,S. argentina, andPhaoniasp.2.Wecollected26species(36.62%)ofsingleton anddoubletonsinthisregion.Inregion4,Phaoniasp.1,Phaonia nigriventris (Albuquerque),and Cyrtoneuropsis incognitaMalloch werethemostabundantspecies(28.6%).Region4contained48.9% ofsingletonand doubletonspecies.Inregion5 (Lagoado Peixe NationalPark),themostabundantspecies,correspondingto55.5%, wereP.nigriventris,B.calopus,B.annulataSteinandHelinasp.6. Singletonanddoubletonspeciesaccountedfor40%ofthespecies richness(Table3).

Differencesinspeciescompositionbetweenregionsareshown by the cluster analysis(Fig.3).The first cluster group is com-posedbyregions1,2,and3.Theassemblagedissimilaritybetween groups from regions 1 and 2 was more than 40%. The differ-encebetweentheclusterformedbyregions1and2andformed

(7)

60 50 40 30 20 10 0 60 50 40 40 30 30 20 20 10 10 0 0 30 100 80 60 40 20 0 25 20 15 10 5 0 60 50 40 30 20 10 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 5 10 15 20 25 30 35 1 2 3 4 5 6 7 Number of samples Number of samples

Number of samples Number of samples

Number of samples Number of samples

Number of species

Number of species

Number of species Number of species

Number of species

Number of species

a

b

c

d

e

f

Fig.2.SamplecoveragecurvesbasedonthenumberofindividualsofMuscidaeperregionintheCoastalPlain(CPPB)ofRioGrandedoSul,Brazil.Thegreyshadedarea representstheconfidenceintervals.(a)region1;(b)region2;(c)region3;(d)region4;(e)region5;(f)CPPBtotal.

Cluster dendrogram Region 5 Region 4 Region 3 Region 1 Region 2 Dissimilar ity 0.65 0.65 0.55 0.50 0.45 0.40

Fig.3.CompositionaldifferencesbetweenMuscidae(Insecta,Diptera)assemblagesofallfiveregionsoftheCoastalPlainofPampaBiome(RioGrandedoSul,Brazil)shown bytheunweightedpair-groupmethodusingarithmeticaverages(UPGMA)clusteranalysis.

byregion3wasalsolow,atabout45%.Moresignificant differ-encesbetweenassemblageclusterswereobservedbetweengroup 1(regions1–3)andregions4and5,withmorethan60% dissimi-larity.AmongthespeciesofmuscidsinSouthernBrazil,including thoseinthisstudy,therewashighdissimilaritybetweenclusters witha trendtoincrease/decreasebasedongeographicdistance (Fig.4).

DiversitypatternbytrophicguildsofMuscidae

Theproportionofspeciesandabundancebyguildwasnot con-sistent throughout theCPPB; this difference wasinfluenced by collectionregion(Tables5and6).Inthefirstthree regions,the highestspeciesrichnesswasfoundinaguildofPPsettingsfollowed byOSsettings;intheformer,bothlarvaeandadultsarepredators,

(8)

Table4

Richnessestimatorsbylocationandregionofcollection.Nonidentifiedspecimenswereprunedfromdatamatricesbeforeanalysis.R1:region1,where:APL:Pelotasstream; ACS:Corrientesstream;ATU:Turuc¸ustream.R2:region2,where:LAMI:LamiBiologicalReserve;RCMQ:Camaquãriver;RPPN:privatenaturalheritagereserveBarbaNegra farm.R3:region3,where:TAIM:TaimEcologicalStation.R4:region4,where:ITPA:ItapuãStatePark;PMTY:TupancyMunicipalityNaturalPark;PEJL;JoséLutzenberger StatePark;PEVA:ItapevaStatePark.R5:region5,whereLPXE:LagoadoPeixeNationalPark.CPPB,CoastalPlainsonPampaBiome;Traps,numberoftrapsperlocation;S, speciesrichness;Abund,abundance;Chao2,Chao2non-parametricdiversityestimator;Srar,rarefaction;SE,standarderror.Intherarefactiondatabylocation,thestandard numberofindividualswas12(PMTY),andbyregionthestandardnumberofindividualswas254(R4).

Traps S Abund Chao2±SE Srar±SE

R1 APL 12 55 870 81.96±17.6 8.08±1.36 ACS 8 42 592 46.49±4.79 8.80±1.34 ATU 8 34 383 51.95±14.35 6.22±1.35 TotalR1 28 62 1845 104.23±38.5 38.40±2.65 R2 LAMI 8 31 121 54.8±20.03 9.07±1.27 RCMQ 4 39 355 46.12±5.88 8.04±1.36 RPPN 16 32 123 40.26±6.85 9.62±1.17 TotalR2 28 60 599 72.78±8.36 46.15±2.60 R3 TAIM 28 62 3333 74.5±8.46 30.11±2.59 R4 ITPA 12 37 150 72.88±25.7 9.01±1.30 PMTY 4 9 12 31.45±28.54 9.00 PEVA 8 15 36 22.77±7.29 7.62±1.26 PEJL 4 18 56 26±8.13 8.08±1.26 TotalR4 28 46 254 86.34±28.44 46 R5 LPXE 28 29 276 78.82±59.37 28.19±0.84 CPPBtotal 140 98 6307 181.65±58.58 – 50 55 60 65 70 75 Dissimilarity %

Fig.4.TheUPGMAclusterbetweenMuscidae(Insecta,Diptera)assemblagesofSouthernBrazil.ThedissimilarityanalysiswasperformedusingtheJaccardindexwithbinary matrices.InParanástate:greendiamonds,Rodríguez-Fernándezetal.(2006);pinkcircles,Costacurtaetal.(2003).IntheRioGrandedoSulstate:redstars,currentstudy; bluesquares,Krügeretal.(2010).

(9)

25 400 300 200 100 0 20 15 10 5 0 1 2 3 4 5 1 2 3 4 5 Richness Ab undance OS PP SPS SS

a

b

Fig.5.Graphicalrepresentationofproportionalrichness(a)andabundance(b)bytheguildinthefiveregionsofCoastalPlainofPampaBiome(RioGrandedoSul,Brazil).SS, saprophagouslarvaeandsaprophagic/hematophagousadults;SPS,facultativepredators/parasiticlarvaeandsaprophagousadults;OS,predatorylarvaeandsaprophagous adults;PP,predatorylarvaeandadults.

Table5

Analysisofvariance(ANOVA)andFtest,testingtheinfluenceofregionandecological guildsofMuscidaeontheproportionalrichness.Df,degreesoffreedom;SumSq, sumofsquares;MeanSq,meanofsquares.

Df SumSq MeanSq Fvalue P Guild 3 1.51893 0.50631 61.9787 <0.001 Region 4 0.00010 0.00002 0.0030 1.000 Guild:region 12 0.51359 0.04280 5.2392 <0.001 Residuals 120 0.98029 0.00817 – –

Table6

Analysisofvariance(ANOVA)andFtest,testingtheinfluenceofregionandecological guildsofMuscidaeontheproportionalabundance.Df,degreesoffreedom;SumSq: sumofsquares;MeanSq:meanofsquares.

Df SumSq MeanSq Fvalue Pr(>F) Guild 3 1.8376 0.61254 21.9057 <0.001 Region 4 0.0048 0.00119 0.0426 0.997 Guild:region 12 2.0160 0.16800 6.0079 <0.001 Residuals 120 3.3555 0.02796 – –

andinthelatter,larvaearepredatorsandadultsaresaprophagous (Fig.5A).Inregions4and5,thisrelationshipwasreversed,witha predominanceofOSsettingsspeciesfollowedbyPPguild(Fig.5A). Inallregions,guildspecieswithsaprophagoushabitsinthelarval andadultstagesispresentinthelowestproportionofthetotal fauna,exceptinregion3(Taim),whichexhibitedincreased rich-nesscomparedwiththeSPSguild(Fig.5A).Thesamepatternwas observedfortherelativeabundancewithineachguildbyregion. Contrarytotherelationshipbetweentheproportionofspeciesper guildandregion,theabundanceoftheSSguildgreatlycontributes tothefaunainregions3and5(Fig.5B).

Discussion

TheMuscidaeinSouthernBrazil,faunasimilarity,andpossible areasofendemism

InSouthernBrazil,majortaxonomicsurveysofMuscidaewere carriedout,andatrendofgreaterorlessersimilaritybetweenthe areasofcollectionswasobservedwithincreasingordecreasing dis-tance.Therewasgreatersimilaritybetweenthedatacollectedin CPPBandthoseinventoriedbyKrügeretal.(2010)intheRioGrande doSulovera1-yearcollectionperiod.Weshare36specieswithout

themorphospecies,andtherewasatendencyofsimilarityamong themostabundantspeciesinthetwostudies.Surveysconducted intheParanástate(Costacurtaetal.,2003;Rodríguez-Fernández etal.,2006),whichisabout1000kmfromthestudysiteinthe CPPB,foundthattheproportionofspecieswaslower,with17and 23species,andthereisahighdissimilaritywithCPPB(Fig.4).Some studies(Löwenberg-NetoandCarvalho,2009;NiheiandCarvalho, 2005)have indicated areasofendemism and diversificationfor MuscidaeintheParanaenseForest(Paranástate)andthePampa. Therefore,ourdataindicatethattheCPPBregionsmayrepresent newareasofendemism,sincethereis:(i)significantMuscidae rich-ness;(ii)newrecordsofoccurrence;(iii)highratesofparticular speciesperregion;(iv)highdissimilaritieswiththeParanáForest communities.

SamplingeffortintheareasandconservationunitsintheCPPB DifferencesbetweenthesamplingsbyCostacurtaetal.(2003),

Rodríguez-Fernándezetal.(2006),andKrügeret al.(2010)and thoseinthepresentstudyincludetheexposuretimeofMalaise trapsversus thenumber oftraps installed byarea. Thestudies byCostacurtaetal.(2003),Rodríguez-Fernándezetal.(2006),and

Krügeretal.(2010)addressedthesamplingofMuscidaeassemblies onatemporalscaleattheexpenseofaspatialscale.Incontrast,we soughttodirectlysampleonaspatialscaleovertime,withmany replicates(traps)andashortperiodofexposure.

Whilerepresentingaconsiderablesamplingeffort(140Malaise trapsin35areas),ourspeciesaccumulationcurvepossesses no asymptote.We can argue that (i) therestricted useof Malaise trapsisnotproblematicforthesamplingofMuscidaediversity,as oncecomparedwithtrapscontainingdecomposingbait(Carvalho etal.,1984),theMalaisetraphashigherefficiencyinthecapture ofDipterarichness(Brown,2005;Costacurtaetal.,2003;Duarte etal.,2010;Krügeretal.,2010;Rodríguez-Fernándezetal.,2006). Speciescollectedwithbaitsareoften,thoughnotalways,gathered inMalaisetraps;(ii)theascendingpatternoftheSACshowsthat morefocusshouldbeplacedontrapsinthelargefragmentsthanin thesmallfragments.Itispossiblethattherichnesshasbeen under-estimatedinlargerareasasthecollectioneffortwasthesamein largeandsmallareas.Therefore,smallareasshowedmorerichness intheCPPB(e.g.,PelotasandCorrientesstreams,Camaquãriver, TaimecologicalStation,Itapuãstatepark).(iii)Inregions4and5, anincreaseinthenumberoftrapspersecannotreversetheupward trendoftheSAC.Insuchareas,itisnecessarytomovethecollection

(10)

periodbeforeJanuary(thebeginningofsummerintheSouthern Hemisphere)duetoclimaticconditionsofhightemperaturesand lowrelativehumidity.Theseconditionshaveprobablyprevented themovementofadultspecimens,orelsecausedtheirdeath, pre-ventingthemfrombeingcollectedbyMalaisetraps.Despitethis fact,analysiswithChao2revealedthat75%ofMuscidaespecies werecollectedinsomeregions(Table4),suchastheareasaround thePelotas,Corrientes,andTuruc¸ustreams.Therewasmore rich-nessinregion1thanattheTaimEcologicalStation(Tables3and4). Theareasinregion1arenotprotectedandsufferhighexploitation duetoextractivepracticeandagriculturalproductionpracticesin theirsurroundings.

Ingeneral,singletonsanddoubletonsspeciesrepresent29.7% oftherichness,andtheirproportionrangesfrom31.9to48.9%of thespeciescollectedindifferentregions,whichisatypicalpattern forinsectcommunitiesintropicalforests(Erwin,1998;Bassetand Kitching,1991;Novotn ´y,1993).

Muscidaeecologicalguildsasindicatorsofpriorityareasfor conservation

Ecological/trophic guilds of Muscidae can beused to assess environmental health as theyrespond to specific features. For example,oneofthefactorscloselylinkedtotheconservationof natural areasis theabundanceof predatoryspecies of Neodex-iopsisandLimnophora.Thespeciesofthesegeneraoccurinareas wherethereishighavailabilityoffreshwatersourcesforthe devel-opmentof larvae,and a highabundanceof preyfor thelarvae andadultsof thesespecies (WernerandPont, 2006).Thepreys recordedintheliteratureincludechironomids,simulids,andother smallfliesthatdonottoleratedisturbedareas(WernerandPont, 2006).ThePPguild,whichincludesthepredators,wasdominant inmostareas,especiallyinregions1–3(Fig.4).Intheseregions, therearemanymarshes,smallrivers,streams,andotherflooded areas,whicharethesurroundingphysiognomyofthePatoslagoon andMirim–Mangueiralagoon,andpriorityareasforconservation accordingtoMMA(2000).Therefore,thehighrichnessand abun-dance proportional to thePP guild indicate potential areas for permanentprotection,suchasthePelotasstreams(Pelotas, Cor-rientes,Turuc¸u)andtheCamaquãriver.

Otherguildsmaybeindicationsofadisturbanceinnaturalareas, specificallytheSSguild,containinglarvaeandsaprophagousadults. ThespeciesintheSSguilddevelopedpreferentiallyinwildand domesticanimalfaeces;therefore,thiswouldbeexpecteda pri-oriforhighdiversity andabundancein TaimEcological Station, whichisarefugeforawidevarietyofbirds,reptiles,and mam-mals.ProportionalityanalysisshowedthattheSSguildcontainsa higherabundanceinregion3.Thisresultisnotinconsistentwith expectations,asthedominantspeciesinthisguildisSarcopromusca pruna.Thelarvaeofthisspeciesareassociatedwithanimalfaeces (Pedroso-De-Paiva,1996),whileadultsfeedonwoundsinduced bybloodsuckingspeciessuchashorseflies,hornflies (Haemato-biairritans),and stableflies(Stomoxyscalcitrans). Thesespecies arecommonlyassociatedwithandrecognisedasvectorsofmany pathogensandeggsofparasites(Azevedoetal.,2007).The biol-ogyofthehornflyshouldbenoted,wherebytheadultconstantly remainsonthehosttofeed,andfemalesmoveawayfromthehost onlyforovipositiononnewlydepositedfaeces,astheyare depen-dentonhighhumidityindungpats(McLintockandDepner,1954). ThispeculiarbehaviourshouldlimittheircaptureinMalaisetraps sinceH.irritansdo notoftenfly, confirmingthetrafficofcattle withinfragmentsofTaim.ThepresenceofspeciesoftheSSguild, S.pruna,H.irritans,and S.calcitrans,alongwiththeoccurrence ofGymnodiaspecies(OSguild),whichalsooccursinthestoolsof productionungulates,areanindicationofdisturbance.

The OS guild containingpredatory larvaeand saprophagous adultsgenerallycontainsgeneralistpredatorylarvaeintheir micro-habitats (Phaonia, Helina, Graphomya), and often the faeces of herbivorousvertebrates(Gymnodia)(Skidmore,1985).The pres-enceofspeciesofthisgenusindicatesadisturbanceinthenatural environmentduetotheassociationwithcattledung,unlike indige-nousspeciesofPhaonia,Helina,andGraphomya,wherethelarvae arepredatorsinhumusandmosses.Thehighproportionofthe OSguildinLagoadoPeixe(region5),withouttheoccurrenceof Gymnodiaspecies,isindicativeofareasofdiverseresources, con-sistentlowanthropisedarea.

Closingremarks

OurresultsshowingeneralthatsomehabitatsofCPPBare suf-feringfrominvasionsbynon-indigenousspeciescloselyassociated with livestock. The invasions present a danger to the indige-nous species which occupy the same space as these invaders, suchasherbivorousfaeces.Thistopicraisesdiscussionaboutthe implementation of buffer zones and monitoring the anthropic activitiessurroundingprotectedareas(Allanetal.,2017;Weisse andNaughton-Treves,2016).

Conversely, the non-protected areas in Pelotas streams and CamaquãRiverneedmorelegalattentionbylegislatorstobecome protected areas due to the high diversity of flies and high proportionalityofguildsofpredators(indicatorsforhealthy envi-ronments).DespiteoursamplingeffortsinCPPB,theresultsreveal theneedforadditionalsurveysin theseregions,asmanymore speciesremaintobediscovered.TheCPPBmaybeconsidereda hotspot for theconservationof Muscidae species,in turn, new biogeographicalapproaches areneededtoidentifynewareasof endemisminthePampabiome.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Allauthorshavecontributedsubstantially totheconception, design,analysis,and/orinterpretationofthedatainthismanuscript andwilltakepublicresponsibilityforthecontent.AZSwas sup-portedbyCoordenac¸ãodeAperfeic¸oamentodePessoaldeNível Superior(CAPES)andbytheNationalCouncilofTechnologicaland ScientificDevelopment(CNPq)(processno.161907/2015-6).We alsothankCNPqforfinancingtheproject“Efeitodareduc¸ãodaárea nadiversidadedeMuscidae(Insecta:Diptera)daplaníciecosteira do Rio Grande do Sul” (processno.473949/2010-5). We thank JulianoLessaPintoDuarte,PhD,forassistanceinthegenus sort-ingofmaterial;ClaudioJoséBarrosdeCarvalho,PhD(Universidade FederaldoParaná)forprovidinghelpwithidentification.Wealso thanktheadministratorsofprotectedareaswherecollectingwas conductedandto“SistemadeAutorizac¸ãoeInformac¸ãoem Biodi-versidade”(SISBIO)forprovidingthecollectionlicense(processno. 29229).RFKissupportedbyCNPq(processno.308908/2016-3).

References

Allan,J.R.,Venter,O.,Maxwell,S.,Bertzky,B.,Jones,K.,Shi,Y.,Watson,J.E.M.,2017. RecentincreasesinhumanpressureandforestlossthreatenmanyNatural WorldHeritageSites.Biol.Conserv.206,47–55.

Azevedo,R.R.,Krüger,R.F.,2013.Theinfluenceoftemperatureandhumidityon abundanceandrichnessofCalliphoridae(Diptera).Iheringia.Ser.Zool.103, 145–152.

Azevedo,R.R.,Duarte,J.L.P.,Ribeiro,P.B.,Krüger,R.F.,2007.Occurrenceof Sarco-promuscapruna(Diptera)inSouthernBrazilasavectorofDermatobiahominis (Diptera)eggs.Arq.Bras.Med.Vet.Zootec.59,1348–1350.

(11)

Barnosky,A.D.,Hadly,E.A.,Bascompte,J.,Berlow,E.L.,Brown,J.H.,Fortelius,M.,Getz, W.M.,Harte,J.,Hastings,A.,Marquet,P.A.,Martinez,N.D.,Mooers,A., Roopnar-ine,P.,Vermeij,G.,Williams,J.W.,Gillepsie,R.,Kitzes,J.,Marshall,C.,Matzke,N., Mindell,D.P.,Revilla,E.,Smith,A.B.,2012.ApproachingastateshiftinEarth’s biosphere.Nature486,52–58.

Basset,Y.,Kitching,R.L.,1991.Speciesnumber,speciesabundanceandbodylengthof arborealarthropodsassociatedwithanAustralianrainforesttree.Ecol.Entomol. 16,391–402.

Bencke,G.A.,2009.Diversidadeeconservac¸ãodafaunadosCamposdoSuldoBrasil. In:Pillar,V.P.P.,Müller,S.C.,Castilhos,Z.M.S.,Jacques,A.V.A.(Eds.),Campos Sulinos:Conservac¸ãoeUsoSustentáveldaBiodiversidade.MinistériodoMeio Ambiente,Brasília,pp.101–121.

Bilenca,D.,Codesido,M.,González-Fischer,C.,Carusi,L.P.,Zufiaurre,E.,Abba,A., 2012.Impactosdelatransformaciónagropecuariasobrelabiodiversidadenla provinciadeBuenosAires.Rev.Mus.Argent.Cienc.Nat.14,189–198. Blondel,J.,2003.Guildorfunctionalgroups:doesitmatter?Oikos100,223–231. Borcard,D.,Gillet,F.,Legendre,P.,2011.NumericalEcologywithR.NewYork,

Springer-Verlag,http://dx.doi.org/10.1007/978-1-4419-7976-6.

Brown,B.V.,2005.Malaisetrapcatchesandthecrisisinneotropicaldipterology.Am. Entomol.513,180–183.

Bunge,J.,Fitzpatrick,M.,1993.Estimatingthenumberofspecies:areview.J.Am. Stat.Assoc.88,364–373.

Burger, M.I., 2000. Situac¸ão e ac¸ões prioritárias para a conservac¸ão de ban-hados e áreas úmidas da zona costeira. ANP, Brasília, Available at: https://www.brasil-rounds.gov.br/round7/arquivosr7/PERFURACAOR7/ refere/Banhados.pdf(accessed14.02.17).

Carvalho,C.J.B.,Couri,M.S.,2002.PartI.Basalgroups.In:Carvalho,C.J.B.(Ed.), Mus-cidae(Diptera)ofNeotropicalRegion:Taxonomy.EditoraUniversidadeFederal doParaná,Curitiba,pp.17–132.

Carvalho,C.J.B.,Almeida,J.R.,Jesus,C.B.,1984.DípterossinantrópicosdeCuritibae arredores(Paraná,Brasil).I.Muscidae.Rev.Bras.Entomol.28,551–560. Carvalho,C.J.B.,Bortolanza,M.,Silva,M.C.C.,Soares,E.D.G.,2003.Distributional

pat-ternsoftheNeotropicalMuscidae(Diptera).In:Morrone,J.J.,Bousquets,J.L. (Eds.),UnaperspectivaLatinoamericanadelaBiogeografía.,1ed.LasPrensas deCiencia,FacultaddeCienciasUniversidadAutónomadeMéxico,México,pp. 263–274.

Carvalho,C.J.B.,Couri,M.S.,Pont,A.C.,Pamplona,D.,Lopes,S.M.,2005.Acatalogue oftheMuscidae(Diptera)oftheNeotropicalRegion.Zootaxa860,1–282. Celulose Riograndense, 2012. Plano de Manejo da RPPNBarba Negra,

Avail-ableat:http://www.celuloseriograndense.com.br/responsabilidade/(accessed 26.06.15).

Chao,A.,1987.Estimatingthepopulationsizeforcapture–recapturedatawith unequalcatchability.Biometrics43,783–791.

Chao,A.,Colwell,R.K.,Lin,C.W.,Gotelli,N.J.,2009.Sufficientsamplingforasymptotic minimumspeciesrichnessestimators.Ecology90,1125–1133.

Chiu,C.H.,Wang,Y.T.,Walther,B.A.,Chao,A.,2014.Animprovednonparametric lowerboundofspeciesrichnessviaamodifiedgood-turingfrequencyformula. Biometrics70,671–682.

Coelho,S.M.P.,1997.AspectosmorfológicosdaProbóscidedeMuscoidea(Diptera, Muscomorpha).Rev.Bras.Zool.14,245–253.

Colwell,R.K.,Coddington,J.A.,1994.Estimatingterrestrialbiodiversitythrough extrapolation.Philos.Trans.R.Soc.LondonSer.B345,101–118.

Colwell,R.K.,Mao,C.X.,Chang,J.,2004.Interpolating,extrapolating,andcomparing incidence-basedspeciesaccumulationcurves.Ecology85,2717–2727. Costacurta,N.C., Carvalho,C.J.B.,2005. TaxonomyofNeurotrixa ShannoneDel

Ponte(Diptera:Muscidae)withdescriptionofnewspeciesfromsouthernBrazil. Neotrop.Entomol.34,927–932.

Costacurta,N.C.,Couri,M.S.,Carvalho,C.J.B.,2005.Descriptionsofnewspecieswith akeytoidentificationofthegenusNeodexiopsisMalloch(Diptera,Muscidae)in Brazil.Rev.Bras.Entomol.49,353–366.

Costacurta,N.C.,Marinoni,R.C.,Carvalho,C.J.B.,2003.FaunadeMuscidae(Diptera) emtrês localidades doEstado doParaná,Brasil,capturadaporarmadilha Malaise.Rev.Bras.Entomol.47,389–397.

Couri,M.S.,Carvalho,C.J.B.,2002.PartII.Apicalgroups.In:Carvalho,C.J.B.(Ed.), Mus-cidae(Diptera)ofNeotropicalRegion:Taxonomy.EditoraUniversidadeFederal doParaná,Curitiba,pp.133–286.

Crawshaw,D.,Dall’agnol,M.,Cordeiro,J.L.P.,Hasenack,A.,2007.Caracterizacão doscampossul-rio-grandenses:umaperspectivadaecologiadapaisagem.Bol. GaúchoGeogr.33,233–252.

DaSilva,P.G.,Vaz-De-Mello,F.Z.,DiMare,R.A.,2013.Diversityandseasonalityof Scarabaeinae(Coleoptera:Scarabaeidae)inforestfragmentsinSantaMaria,Rio GrandedoSul,Brazil.An.Acad.Bras.Cienc.85,679–697.

Duarte,J.L.P.,Krüger,R.F.,Carvalho,C.J.B.,Ribeiro,P.B.,2010.Evidenceofthe influ-enceofMalaisetrapageonitsefficiencyinthecollectionofMuscidae(Insecta, Diptera).Int.J.Top.Insect.Sci.30,115–118.

Erwin,T.L.,1998.Thetropicalforestcanopy.Theheartofbioticdiversity.In:Wilson, E.O.(Ed.),Biodiversity.NationalAcademyPress,Washington,pp.109–127. Ferrar,P.,1987.AGuidetotheBreedingHabitsandImmatureStagesofDiptera

Cyclorrhapha.ScandinavianSciencePress,Copenhagen.

Ferreira,J.,Pardini,R.,Metzger,J.P.,Fonseca,C.R.,Pompeu,O.S., Sparovek,G., Louzada,J.,2012.TowardsenvironmentallysustainableagricultureinBrazil: challengesandopportunitiesforappliedecologicalresearch.J.Appl.Ecol.49, 535–541.

Filloy,J.,Bellocq,M.I.,2006.SpatialvariationsintheabundanceofSporophiia seedeatersinthesouthernNeotropics:contrastingtheeffectsofagricultural developmentandgeographicalposition.Biodivers.Conserv.15,3329–3340.

Foley,J.A.,DeFries,R.,Asner,G.P.,Barford,C.,Bonan,G.,Carpenter,S.R.,Chapin,F.S., Coe,M.T.,Daily,G.C.,Gibbs,H.K.,Helkowski,J.H.,Holloway,T.,Howard,E.A., Kucharik,C.J.,Monfreda,C.,Patz,J.A.,Prentice,I.C.,Ramankutty,N.,Snyder,P.K., 2005.Globalconsequencesoflanduse.Science309,570–574.

Fontana,C.S.,Bencke,G.A.,Reis,R.E.,2003.Livrovermelhodafaunaameac¸adade extinc¸ãonoRioGrandedoSul.EDIPUCRS,PortoAlegre.

Gonzalez, S., Merino, M.L., 2008. Ozotoceros bezoarticus. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2, Available at: http://www.iucnredlist.org(accessed18.03.14).

Gotelli,N.J.,Colwell,R.K.,2001.Quantifyingbiodiversity:proceduresandpitfallsin themeasurementandcomparisonofspeciesrichness.Ecol.Lett.4,379–391. Greenberg,B.,1971.FliesandDisease.Ecology,ClassificationandBioticAssociations.

PrincetonUniversityPress,NewJersey.

Hochmüller, C.J., Lopes-Da-Sila, M., Valente, V.L.S., Schmitz, H.J., 2010. The drosophilidfauna(Diptera,Drosophilidae)ofthetransitionbetweenthePampa andAtlanticForestBiomesinthestateofRioGrandedoSul,southernBrazil: firstrecords.Pap.AvulsosZool.50,285–295.

Hsieh,T.C.,Ma,K.H.,Chao,A., 2016.iNEXT:anRpackageforrarefactionand extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456.

IBGE–InstitutoBrasileirodeGeografiaeEstatística,1986.Vegetac¸ão,UsoPotencial daTerra.In:IBGE,LevantamentodeRecursosNaturais,RiodeJaneiro,pp.1–796. IBGE – Instituto Brasileiro de Geografia e Estatística, 2004. Mapa de vegetac¸ão do Brasil, Brasília, Available at: https://ww2.ibge.gov.br/ home/presidencia/noticias/21052004biomas.shtm(accessed30.01.18). ICMBIO – Instituto Chico Mendes de Conservac¸ão da Biodiversidade, 1999.

Plano de Manejo do Parque Nacional da Lagoa do Peixe, Available at: http://www.icmbio.gov.br/portal/images/stories/imgs-unidades-coservacao/ parnalagoa-do-peixe.pdf(accessed02.08.16).

Kindt,R.,Van-Damme,P.,Simons,A.J.,2006.TreediversityinwesternKenya: usingprofilestocharacterizerichnessandevenness.Biodivers.Conserv.15, 1253–1270.

Kirst,F.D.,Marinoni,L.,Krüger,R.F.,2015.Newdistributionrecordsfor Sciomyzi-daespecies(Insecta,Diptera)fromRioGrandedoSul,Brazil.CheckList11, 1–5.

Kirst,F.D.,Marinoni,L.,Krüger,R.F.,2017.WhatdoestheSouthernBrazilianCoastal Plaintellaboutitsdiversity?Syrphidae(Diptera)asamodel.Bull.Entomol.Res. 107,645–657.

Krapovickas, S., Di Giacomo, A.S., 1998. Conservation of pampas and campos grasslands in Argentina. Parks 8, 47–53, Available at: https://www.iucn.org/sites/dev/files/import/downloads/parksoct981.pdf (accessed30.01.18).

Krüger,R.F.,Krolow,T.K.,2015.Seasonalpatternsofhorseflyrichnessand abun-danceinthePampabiomeofsouthernBrazil.J.VectorEcol.40,364–372. Krüger,R.F.,Carvalho,C.J.B., Ribeiro, P.B.,2010.Assembly rulesinmuscid fly

assemblagesinthegrasslandsbiomeofSouthernBrazil.Neotrop.Entomol.39, 345–353.

Leite,P.F.,2002.Contribuic¸ãoaoconhecimentofitoecológicodosuldoBrasil.Ciência andAmbiente24,52–73.

Löwenberg-Neto,P.,Carvalho,C.J.B.,2009.Areasofendemismandspatial diversifi-cationoftheMuscidae(Insecta:Diptera)intheAndeanandNeotropicalregions. J.Biogeogr.36,1750–1759.

Löwenberg-Neto,P.,Carvalho,C.J.B.,2013.Muscidae(Insecta:Diptera)ofLatin AmericaandtheCaribbean:geographicdistributionandcheck-listbycountry. Zootaxa3650,1–147.

Machado,A.B.M.,Drummond,G.M.,Paglia,A.P.,2008.LivroVermelhodaFauna BrasileiraAmeac¸adadeExtinc¸ão.Biodiversidade19.

Magurran,A.E.,2004.MeasuringBiologicalDiversity.OxfordBlackwellScience, Oxford.

Marques,B.,Couri,M.S.,2007.Taxonomiaemorfologiadeespéciesneotropicais deGraphomyaRobineau-Desvoidy(Diptera,Muscidae).Rev.Bras.Entomol.51, 436–444.

McAlpine,J.F.,1981.Morphologyandterminology:adults.In:McAlpine,J.F., Peter-son,B.V.,Shewell,G.E.,Teskey,H.J.,Vockeroth,J.R.,Wood,D.M.(Eds.),Manual ofNearticDiptera.Ottawa,pp.9–63.

McLintock,J.,Depner,K.R.,1954.Areviewofthelife-historyandhabitsofthehorn fly,Siphonairritans(L.)(Diptera:Muscidae).Can.Entomol.86,20–33. Meira,J.R.,Porto,M.L.,1998.ReservaBiológicadoLami:avidanabeiradolago.In:

Menegat,R.(Ed.),AtlasAmbientaldePortoAlegre.EditoraUFRGS,PortoAlegre, pp.89–92.

Mello-Filho,L.E.,Somner,G.V.,Peixoto,A.L.,1992.CenturiaPlantarumBrasiliensium ExstintionisMinitata.SociedadeBotânicadoBrasil/Ibama,Brasília.

Mikich,S.B.,Bérnils,R.S.,2004.LivroVermelhodaFaunaAmeac¸adanoEstadodo Paraná,Availableat:http://www.meioambiente.pr.gov.br/arquivos/File/cobf/ livrofaunaextincao.pdf(accessed14.02.17).

MMA–MinistériodoMeioAmbiente,2000.Avaliac¸ãoeac¸õesprioritáriaspara aconservac¸ãodabiodiversidadedaMataAtlânticaeCamposSulinos, Avail-ableat:http://www.mma.gov.br/estruturas/sbfchmrbbio/arquivos/Sumario %20Mata%20Atlantica.pdf(accessed17.02.17).

MMA – Ministério do Meio Ambiente, 2004. Federal Decree n◦ 5.092, May

21, 2004 , Available at: http://www2.camara.leg.br/legin/fed/decret/2004/ decreto-5092-21-maio-2004-532394-publicacaooriginal-14437-pe.html (accessed14.02.17).

Nihei,S.S.,2005.AreviewoftheNeotropicalgenusSarcopromuscaTownsend (Diptera:Muscidae)withakeytospeciesandaredescriptionofS.sarcophagina (Wulp).Zootaxa1004,51–64.

(12)

Nihei,S.S.,Carvalho,C.J.B.,2005.DistributionalpatternsoftheNeotropicalflygenus PolietinaSchnablandDziedzicki(Diptera,Muscidae):aphylogeny-supported analysisusingpanbiogeographictools.Pap.AvulsosZool.45,313–326. Nihei,S.S.,Carvalho,C.J.B.,2007.SystematicsandbiogeographyofPolietinaSchnabl

andDziedzicki(Diptera,Muscidae):Neotropicalarearelationshipsand Amazo-niaasacompositearea.Syst.Entomol.32,477–501.

Novotn ´y,V.,1993.Spatialandtemporalcomponentsofspeciesdiversityin Auchen-orrhyncha(Insecta:Hemiptera)communitiesofIndochinese montanerain forest.J.Trop.Ecol.9,93–100.

Oksanen,J., Blanchet,F.G., Kindt, R., Legendre, P.,Minchin, P.R., O’Hara,R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Wagner, H., 2015. vegan:CommunityEcologyPackage.RPackageVersion2.3-0,Availableat: https://github.com/vegandevs/vegan(accessed07.08.18).

Overbeck,G.E.,Muller,S.C.,Fidelis,A.,Pfadenhauer,J.,Pillar,V.D.,Blanco,C.C., Boldrini,I.I.,Both,R.,Forneck,E.D.,2007.Brazil’sneglectedbiome:theSouth BrazilianCampos.PlantEcol.Evol.Syst.9,101–116.

Parmar,T.K.,Rawtani,D.,Agrawal,Y.K.,2016.Bioindicators:thenaturalindicatorof environmentalpollution.FrontLifeSci.9,110–118.

Paz,A.L.G.,Romanowski,H.P.,deMorais,A.B.B.,2013.DistributionofSatyrini (Lepi-doptera,Nymphalidae)inRioGrandedoSulState,southernBrazil.Ecol.Res.28, 417–426.

Pedroso-De-Paiva,D.,1996.AspectosdabiologiadeadultosdeSarcopromuscapruna (ShannonandDelPonte,1926)(Diptera:Muscidae).Rev.Bras.Biol.56,183–190. Pereira, H.M., Leadley, P.W., Proenc¸a, V., Alkemade, R., Scharlemann, J.P.W., Fernandez-Manjarrés,J.F.,Araújo,M.B.,Balvanera,P.,Biggs,R.,Cheung,W.W.L., Cini,L.,Cooper,H.D.,Gilman,E.L.,Guénette,S.,Hurtt,G.C.,Huntington,H.P., Mace,G.M.,Oberdorff,T.,Revenga,C.,Rodrigues,P.,Scholes,R.J.,Sumaila,U.R., Walpole,M.,2010.ScenariosforGlobalBiodiversityinthe21stCenturyScience. Science330,1496–1501.

Pereira-Colavite,A.,Carvalho,C.J.B.,2012.TaxonomyofNeomuscinaTownsend (Diptera,Muscidae)fromBrazil.Zootaxa3504,1–55.

Pillar,V.P.P.,Müller,S.C.,Castilhos,Z.M.S.,Jacques,A.V.A.,2009.CamposSulinos: Conservac¸ãoeUsoSustentáveldaBiodiversidade.MinistériodoMeioAmbiente, Brasília.

Poppe,J.L.,Valente,V.L.S.,Schmitz,H.J.,2012.StructureofDrosophilidaeassemblage (Insecta,Diptera)inPampaBiome(SãoLuizGonzaga,RS).Pap.AvulsosZool.52, 185–195.

Poppe,J.L.,Valente,V.L.S.,Schmitz,H.J.,2013.Populationdynamicsofdrosophilids inthepampabiomeinresponsetotemperature.Neotrop.Entomol.42,269–277. RDevelopmentCoreTeam,2015.R:ALanguageandEnvironmentforStatistical

Computing,Avaiableat:http://www.R-project.org(accessed26.11.13). Rodríguez-Fernández,J.I.,Carvalho,C.J.B.,Moura,M.O.,2006.Estruturade

assem-bléiasdeMuscidae(Diptera)noParaná:umaanálisepormodelosnulos.Rev. Bras.Entomol.50,93–100.

Root,R.,1967.Thenicheexplorationpatternoftheblue-graygnatcatcher.Ecol. Monogr.37,317–350.

Rosado,J.L.O.,Gonc¸alves,M.G.,Dröse,W.,Silva,E.J.E.,Krüger,R.F.,Feitosa,R.M., Loeck,A.E.,2012.Epigeicants(Hymenoptera:Formicidae)invineyardsand grasslandareasintheCampanharegion,stateofRioGrandedoSul,Brazil.Check List8,1184–1189.

Rosado,J.L.O.,Gonc¸alves,M.G.,Dröse,W.,Silva,E.J.E.,Krüger,R.F.,Feitosa,R.M., Loeck,A.E.,2013.Effectofclimaticvariablesandvinecropsontheepigeicant fauna(Hymenoptera:Formicidae)intheCampanharegion,stateofRioGrande doSul,Brazil.J.InsectConserv.17,1113–1123.

Santos,A.M.C., Whittaker,R.J.,Triantis,K.A.,Jones,O.R.,Borges,P.A.V.,Quicke, D.L.J.,Hortal,J.,2010.Arespecies–arearelationshipsfromentirearchipelagos congruentwiththoseoftheirconstituentislands?GlobalEcol.Biogeogr.19, 527–540.

Schüehli,G.S.,Carvalho,C.J.B., 2005.RevisionandcladisticsoftheNeotropical genus PseudoptilolepisSnyder(Diptera, Muscidae).Rev.Bras. Entomol. 22, 23–34.

SEMA–SecretariaEstadualdoMeioAmbiente,1996.PlanodeManejodo Par-queEstadualItapuã,Availableat:http://www.sema.rs.gov.br/upload/arquivos/ 201610/15171153-plano-manejo-peitapua.pdf(accessed14.02.17).

SEMA–SecretariaEstadualdoMeioAmbiente,2013.ParquesEstaduais,Availableat: http://www.sema.rs.gov.br/conteudo.asp?codmenu=174(accessed02.08.15). Skidmore,P.,1985.TheBiologyofMuscidaeoftheWorld.JunkPublishers,Dordrecht. Sneath,P.H.,Sokal,R.R.,1973.NumericalTaxonomy:ThePrinciplesandPracticeof

NumericalClassification.W.H.FreemanandCompany,SanFrancisco. Townes,H.A.,1972.Alight-weightMalaisetrap.Entomol.News83,239–247. Ugland,K.I.,Gray,J.S.,Ellingsen,K.E.,2003.Thespeciesaccumulationcurveand

estimationofspeciesrichness.J.Anim.Ecol.72,888–897.

Venzke,T.S.,2012.FlorísticadecomunidadesarbóreasnoMunicípiodePelotas,Rio GrandedoSul.Rodriguésia63,571–578.

Waechter,J.L.,1985.Aspectosecológicosdavegetac¸ãodeRestinganoRioGrande doSul,Brasil.Comun.Mus.Cienc.Tecnol.Pucrs.Ser.Bot.33,49–68.

Waechter,J.L.,2002.PadrõesgeográficosnafloraatualdoRioGrandedoSul.Ciência andAmbiente24,93–108.

Weisse,M.J.,Naughton-Treves,L.C.,2016.Conservationbeyondparkboundaries:the impactofbufferzonesondeforestationandminingconcessionsinthePeruvian Amazon.Environ.Manage.58,297–311.

Werner, D., Pont, A.C.,2006. Thefeeding and reproductive behaviour ofthe Limnophorinii(Diptera:Muscidae).In:ProceedingsoftheInternational Sym-posiumonSimuliidae.Supplement.Stud.Dipterol.14,pp.79–114.

Willie,J.,Petre,C.A.,Tagg,N.,Lens,L.,2012.Evaluationofspeciesrichnessestimators basedonquantitativeperformancemeasuresandsensitivitytopatchinessand samplegrainsize.ActaOecol.45,31–41.

Witt,P.B.R.,2013.FaunaeFloradaReservaBiológicaLamiJoséLützenberger. Sec-retariaMunicipaldoMeioAmbiente,PortoAlegre.

Zafalon-Silva,Â.,Hoffmeister,C.H.,Anjos,V.A.,Ribeiro,P.B.,Krüger,R.F.,2014. NecrophagousDipteraassociatedwithwildanimalcarcassesinsouthernBrazil. Rev.Bras.Entomol.58,337–342.

Referências

Documentos relacionados

Absolute number of individuals of anuran amphibians captured in dune and restinga habitats in the municipality of Rio Grande, coastal region of Rio Grande do Sul, southern

Félix Bugueño Miranda e Virginia Sita Farias, no trabalho In- formações discretas e discriminantes no artigo léxico, fazem uma análise do programa de informações da microestrutura

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

En otro contexto, Bass (2004) describe las características de las principales actitudes que deben tener los gerentes cuyo objetivo es tener el calificativo de líder

A imparcialidade do Poder Judiciário, ao contrário do que afirma Yokishawa, não pode ser considerada um empecilho para a desjudicialização da execução. Isso porque a

The aim of this study was to list road killed wild vertebrates found in a region of the Pampa Biome, in the state of Rio Grande do Sul, Brazil.. Material and methods

A administração do tempo é uma ferramenta gerencial que tanto pode ser utili- zada nas instituições quanto na vida do diretor escolar, permitindo a organização de metas e