• Nenhum resultado encontrado

Sensitivity of photoelectron energy loss spectroscopy to surface reconstruction of microcrystalline diamond films

N/A
N/A
Protected

Academic year: 2021

Share "Sensitivity of photoelectron energy loss spectroscopy to surface reconstruction of microcrystalline diamond films"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Surface

Science

jo u rn a l h om epa g e :w w w . e l s e v i e r . c o m / l o ca t e / a p s u s c

Sensitivity

of

photoelectron

energy

loss

spectroscopy

to

surface

reconstruction

of

microcrystalline

diamond

films

Denis

G.F.

David

a

,

Marie-Amandine

Pinault-Thaury

b

,

Dominique

Ballutaud

b

,

Christian

Godet

c,∗

aInstitutodeFísica,UniversidadeFederaldaBahia,CampusUniversitáriodeOndina,40.210-340Salvador,Bahia,Brazil bGEMaC,UMR8635CNRS,1placeAristideBriand,92195MeudonCedex,France

cPhysiquedesSurfacesetInterfaces,InstitutdePhysiquedeRennes(CNRSUMR6251),UniversitéRennes1,BeaulieuBât.11E35042Rennes,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12November2012

Receivedinrevisedform1February2013 Accepted19February2013

Available online 27 February 2013 Keywords:

XPS

Electronenergyloss Plasmon

Diamond

Surfacereconstruction

a

b

s

t

r

a

c

t

InX-rayPhotoelectron Spectroscopy(XPS),binding energiesandintensitiesofcorelevelpeaksare

commonlyusedforchemicalanalysisofsolidsurfaces,aftersubtractionofabackgroundsignal.This

backgroundduetophotoelectronenergylossestoelectronicexcitationsinthesolid(surfaceandbulk

plasmonexcitation,interbandtransitions)containsvaluableinformationrelatedtothenearsurface

dielectricfunctionε(ω).Inthiswork,thesensitivityofPhotoelectronEnergyLossSpectroscopy(PEELS)

isinvestigatedusingamodelsystem,namelythewell-controlledsurfacereconstructionofdiamond.

Boron-dopedmicrocrystallinethinfilmswithamixtureof(111)and(100)preferentialorientations

werecharacterizedintheas-grownstate,withapartiallyhydrogenatedsurface,andafterannealingat

1150◦Cinultrahighvacuum.Afterannealing,thebulk(␴+␲)plasmonofdiamondat34.5eVisweakly

attenuatedbutnoevidenceforsurfacegraphitizationisobservednear6eV,asconfirmedbyelectronic

properties.Unexpectedfeatureswhichappearat10±1eVand19±1eVintheenergylossdistribution

arewelldescribedbysimulationofsurfaceplasmonexcitationsingraphite-likematerials;alternatively,

theyalsocoincidewithexperimentalinterbandtransitionlossesinsomegraphenelayers.This

compar-ativestudyshowsthatthePEELStechniquegivesaclearsignatureofweakeffectsinthediamondsurface

reconstruction,evenintheabsenceofgraphitization.ItconfirmsthesensitivityofPEELSacquisitionwith

standardXPSequipmentasacomplementarytoolforsurfaceanalysis.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

InX-rayPhotoelectronSpectroscopy(XPS)studies,kinetic

ener-giesandintensitiesofcorelevelphotoelectronsemittedfromthe

differentatoms locatedinthe subsurfaceregion arecommonly

usedforchemicalanalysisofsolidsurfaces,aftersubtractionofa

backgroundsignalarisingfromenergylossestoelectronic

excita-tionsinthesolid[1–4].Duringtheirtransportandescapethrough

thesolidsurface,photoelectronsexperienceelasticandinelastic

interactionswhichoccurbothinthebulkandatthesurface;such

extrinsicenergylossesrelatedtointerbandtransitionsand

plas-monexcitationsinduce,respectively,atailingoftheprimarycore

levelpeakoverseveraleVand abroadenergydistributionover

severaltensofeV,onthelowkineticenergyside[1–6].Hencethe

energylossdistributioninPhotoelectronEnergyLossSpectroscopy

∗ Correspondingauthorat:EPSI–IPR(Bât.11E–Beaulieu),UniversitéRennes1, 35042RENNES,France.Tel.:+33223235706;fax:+33223236198.

E-mailaddress:christian.godet@univ-rennes1.fr(C.Godet).

(PEELS)containsvaluableinformationrelatedtothenearsurface

dielectricfunctionε(ω).

ItisemphasizedthatXPSandPEELSacquisitionsareperformed

inthesamerunandatthesamelocationofthesample(although

withpossiblydifferentenergyresolutionandsignal-to-noiseratio)

incontrastwithstudiescombiningXPSandreflectionEELS(REELS).

Inaddition,angularPEELSanalysiscanbereadilyperformedusing

conventionallaboratoryXPSspectrometers,whileforspecific

stud-ies,synchrotronlightsourcesprovidebetterspatialandspectral

resolutions.Thephysicsandsurfacesensitivityofplasmonlosses

inPEELSandREELSaresimilarinprinciple,exceptforthepresence

oftheelectron–holeinteractionandthelackofacollimatedbeam

inphotoelectronspectroscopy.However,theREELStechniqueuses

aprimaryelectronbeamgeneratedbyafieldemissiongunwhich

maydamagefragilesamples.

Thisworkaims atassessing thesensitivity ofPEELS usinga

modelsystem,namelythewell-controlledsurfacereconstruction

ofdiamondfilmsuponannealinginultrahighvacuum.Diamondis

awidebandgapsemiconductorwhichhasbeenextensivelystudied

foritsoutstandingrobustnessandsurfaceelectronicproperties.A

truenegativeelectronaffinityisfoundforthehydrogenatedsurface

0169-4332/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.apsusc.2013.02.087

(2)

[7]makingdiamondanefficientphotoemitterwhileafairlyhigh

p-typesurfaceconductivityisobservedafterairexposure[8].The

negativeelectronaffinityisrelatedtosurfaceC Hdipoleswhile

thehighsurfacedensityofholesisexplainedbyelectrontransfer

fromthediamondvalencebandtothedeeperchemicalpotential

intheadsorbedwaterlayercontainingprotons,screenedbywater

moleculesandtheircorrespondingcarbonateanions[8,9].

Photoelectron spectroscopy studies have been performed in

order to characterize the electron affinity and work function

of hydrogen-terminated diamond surfaces, for both (111) and

(100) orientations[10]. XPS and UPS were used to study the

partialhydrogencoverageandthevarietyofoxygencontaining

chemical functionalitiesin the as-grownstate,after intentional

surfacehydrogenationandafterliquidphaseorgasphase

oxida-tion[11–14].Alternatively,HighResolutionEELShasbeenusedto

followchangesinsurfacechemicalbondsafterhydrogenationor

annealingsteps[15].

Energylossspectroscopyofphotoelectronsemittedfromthe

C1scorelevelhasbeenusedpreviouslyeitherforinvestigationsof

theroleofsurfacehydrogenandoxygenatomcoverage[11,12]as

wellasforthestudyofseedingandgrowthofnano-and

micro-crystallinediamondfilms[16–19].Fortheassessmentofthenon

diamondresidualphase,theratioofthebulk(␴+␲)plasmonloss

ofthediamondphasetothemainC1sline(characteristicofthe

near-surfaceovertypically5nm)wastentativelycorrelatedtothe

ratioofGandDlinesinRamanspectra(characteristicofabulk

depth>100nm)[17].

Surfacereconstructionofdiamondfilmshasbeenwidely

stud-ied,bothexperimentally[20,21]andtheoretically[22,23].Some

atomistic modelshave beenproposedto takeinto accountthe

incompleteremovalofoxygenatomsalongwiththesp3tosp2

car-bonatomconversion.Onboth(100)and(111)surfaces,whichare

thedominantorientationsinourmicrocrystallinediamondfilms,

removalofterminating Hatoms leadstoa 2×1reconstruction

(dimerisationoftwodanglingbondsonCatoms,formingaC C

bond)[23].

Previousstudiesshowthatahigherannealingtemperatureis

requiredformicrocrystallinediamondreconstruction[14]as

com-paredwithnanodiamondfilms [15,24]. In this work,annealing

conditionsat1150◦CinUltraHighVacuum(UHV)werechosen

toobtaincompletedesorptionofhydrogenatthediamond

sur-facewhichleadstosomesurfacereconstructionofcarbonatom

bonding,asshown previously[14];in theabsenceofextensive

graphitization,suchweaksurfacechangesare notdetectablein

bulkRamanspectraandmakethisreconstructionprocesssuitable

forassessingthesensitivityofPEELSanalysis.Interpretationofthe

plasmonlossfeaturesexperimentallyobservedinPEELSdifference

spectraistentativelyperformedbycomparisonwithsurfaceand

bulkplasmonlossfunctionscalculatedusingthetabulated

dielec-tricfunctionsofsinglecrystaldiamond[25]andgraphite[26].

2. Experimental

2.1. Diamondfilmssynthesisandcharacterization

Microcrystallineborondopeddiamondfilms([B]=1019cm−3)

were deposited on silicon substrates by hot filament chemical

vapordecompositionofhydrocarbons.Thesampleswerekeptin

air.Theas-grownsamplesweresubmittedtoannealunderUHV

at1150◦Cduring6h.Whileaonehourannealingat850◦C(under

10−9Torr)issufficienttoremovemostofhydrogenatoms

cova-lentlybonded to the surface [7],annealing at1150◦C leadsto

completeeffusionofbothsurfaceandbulkhydrogen.

Thediamond structure ofthesamples wascharacterizedby

Ultraviolet (UV) Ramanspectroscopy (laserexcitation: 325nm)

beforeandafterannealing.TheXPSmeasurementswerecarried

outinaVG220iXLsystem,withabasepressureof5×10−10Torr,

usingamonochromatizedAlK␣(1486.5eV)X-raysourcewitha

passenergy of 20eV (analyzer resolution 0.2eV). Energylevels

werecalibratedwithaAusinglecrystal.Thespectrawereprocessed

usingtheVGEclipseDatasystemsoftware,usingVoigtprofilesanda

Shirleybackgroundcontribution[1]whichisincludedinthefitting

process.

2.2. PEELSanalysis

Incarbonbasedmaterials,theC1scorelevelpeakatabinding

energyEB≈285eVisfollowedbyastructuredbackground

extend-ing toward higher binding (lower kinetic)energies. This broad

lossspectrumcorrespondstoC1sphotoelectronsthat have

suf-feredenergylossesontheirwaytothesamplesurface(andacross

thesample surface)and itis thus characteristicfor thesample

underinvestigation.Plasmonlossesareadirectconsequenceofthe

dielectricresponseofthefilmtotheexternalelectromagnetic

radi-ation.Collectiveexcitations(plasmons)runaslongitudinalcharge

densityoscillationsthroughthevolumeofthesolidandalongits

surface.

Thesensitivityofsurfaceandbulkplasmonexcitationto

sur-facereconstructionofdiamondthinfilmsisinvestigatedbyPEELS,

overtheenergyrange0–90eV.Thezerooftheenergylossscale

istakenattheenergyoftheC1speak(zero-losspeak)maximum

andthespectraarenormalized toa commonheightofthis

so-calledzero-losspeak.Fermilevelchangesarethuscompensated

bythePEELSanalysisprocedure.Aconstantbackground

subtrac-tionisperformedforsettingtozerothehighkineticenergyside

oftheC1speak.Sincethisstudyisperformedwitha

monochro-matized X-raysource, subtraction of the satellite signal is not

required.

Single(34.5eV)andmultiplebulkplasmonexcitationsof

dia-monddominateatlargelossenergies,whilesurfaceexcitations

andinterbandtransitionsareexpectedtodominatetheenergy

loss distribution at lower energies. Note that loss features at

very low energies are difficult toobserve in PEELSdue tothe

broad C1s line resulting from a variety of chemical

environ-ments (ether, carbonyl) of C atoms. This is the case, e.g. for

transitionsfromvalencebandtounoccupiedsurfacedefect

lev-elswithinthebandgap,previously observedbyEELSnear2eV

[27].

Apracticalmethodhasbeenproposed[28]toderivethesingle

plasmonloss distributionIm[−1/ε(ω)]from XPSdata,

follow-ingthetechniquedeveloped byEgerton[6]and Werner[5]for

ElectronEnergyLossSpectroscopy(EELS).SuchanalysisofPEELS

experimentalspectraincludesdeconvolutionofmultipleplasmon

lossesandseparationofbulkvssurfaceplasmonexcitations.

Care-fulremovalofsingle-electronscattering(e.g.interbandtransitions)

atlowlossenergyisaprerequisitesteptoderivethesingleplasmon

lossdistribution.

Inrecentwork[28],severalmethodswerecomparedtoseparate

interbandtransitionsfrombulk orsurfaceplasmonsexcitation,

takingamorphoussiliconasawell-knownreferencematerial.In

diamondfilms,theanalysisismorecomplicatedbecauseinterband

transitionsoccurathigherenergies(ω<25eV)withapeakaround

12eVinthedielectricfunctioncalculatedfromtabulatedoptical

indexdata[25].Sinceitdeservesmoredetaileddevelopments,the

dielectricfunctionobtainedfromPEELSdatausingourinversion

algorithm willbereported elsewhere[29].Hence, this studyis

focusedonqualitativeinformationderivedfromthedifferencein

energylossfunctions,beforeandafterannealing,inthelossenergy

range(smallerthan25eV)wheremultiplescatteringeventscanbe

(3)

Fig.1.Scanningelectronmicroscopyimageofthemicrocrystallinediamondfilm grownonaSi(100)substrate,withamixtureof(111)and(100)preferential orientations(pyramidsandbiplanes,respectively).

3. Experimentalresults

Hydrogenation/thermal desorption experiments have been

repeatedseveraltimesinordertoperformelectrochemical

charac-terizationswithmicrocrystallinediamondelectrodes,withagood

reproducibilityoftheirsurfacechemistryandelectronicproperties

afterhydrogenationandannealing.ThePEELSresultspresented

here correspondto a typical microcrystalline diamond sample,

whichhasbeencharacterizedindetailinapreviouspublication

(Ref.[14]).ScanningElectronMicroscopy(SEM) imagesof2␮m

thickmicrocrystallinediamondfilmsshowanaveragegrainsize

of0.5␮mwithmainly(100)and(111)texture(Fig.1).Secondary

IonMassSpectrometry(SIMS)profilesexhibituniformbulk

hydro-gencontent(1×1020at.cm−3)whichisremovedafterUHVanneal

(1150◦C).

3.1. Raman

UV Ramanspectroscopy (laser excitation:325nm) doesnot

showobviouschangesinthebulkdiamondstructureafterUHV

annealingat1150◦C(Fig.2).Comparisonoftheintensityofthe

1332cm−1diamondlinewiththeintensityofthebroadDandG

1000 1500 2000 2500 3000 3500 0 1 2 3 4 5

G (1565 cm

-1

)

D (1350 cm

-1

)

Diamond

(1332 cm

-1

)

Raman UV (325 nm)

Raman scattering intensity (arb. units)

Wavenumber (cm

-1

)

As-grown Annealed

Fig.2.UVRamanspectraofmicrocrystallinediamond,as-grownandafterthermal annealing(1150◦C)inUHV.

290

289

288

287

286

285

284

283

282

0

1

2

3

As G Diamondrown

a)

XPS intensity (10

4

CPS)

Bind

ing

en

erg

y (eV)

C ex C env C1 C2 C-O-C COOH

290

289

288

287

286

285

284

283

282

0

1

2

3

Annealed

b)

1150°C

XPS intensity (10

4

CPS)

Bind

ing

en

erg

y (eV)

C ex C env C1 C2 C-O-C COOH

Fig.3.DecompositionoftheXPSC1sspectraofmicrocrystallinediamond,as-grown (a)andafterthermalannealing(1150◦C)inUHV(b).

linesat1350and1565cm−1showsthatcarbonsp2bond

concen-trationinthebulkislessthan1%[30].Suchsp2graphiticdefects

maybepresentatmicrocrystallinediamondinternalsurfaces,due

toahighdensityofgrainboundariesanddislocations.

3.2. XPS

Chemical modifications and reconstruction of the diamond

surface whichappear afterUHV annealing(Figs.3 and4)were

discussedpreviously[14]intermsofcarbonandoxygenbonding

andbandbending(holeaccumulationlayer)inducedbyadsorbed

water.

TheC1s XPSspectrumfortheas-grown sample(keptat the

ambientatmosphere)isreportedinFig.3a.Itisdecomposedinto

fourlinesatrespectively283.8eV(labeledC1),284.5eV(labeled

C2),286.0and288.7eV.Ithasbeensuggested[14]thatthese

dif-ferentlinesare theresultofa partlyhydrogenatedsurface.The

componentsat286.0and288.7eVareattributedtoC O Cether

bonds(286.0eV)andtoCOOHcarboxylfunctions(288.7eV).The

mainpeak(C2)correspondingtoC Csp3isfoundat284.5eVbelow

theFermilevel(beforeandafterUHVanneal)becausestrongboron

dopinginducesashiftoftheFermileveltowardthevalenceband.

AfterUHVannealing,componentC1(283.9eV)hasdisappeared

(Fig.3b);thisisexplainedbyavanishingoftheholeaccumulation

layer(electrontransferfromdiamondtothephysisorbedwater

layer)andlossofthechemisorbedsurfacehydrogenatoms(C H

(4)

538

537

536

535

534

533

532

531

530

529

-2

-1

0

1

2

microcrystalline

diamond

film

O1s

H

2

O ads.

OH ads.

XPS signal (10

4

CPS)

Bind

ing en

erg

y (eV)

As-grown Annealed Difference

Fig.4. XPS O1s spectra of as-grown andannealed (1150◦C)microcrystalline

diamond;thedifferenceO1sspectrumshowsthatbothadsorbedH2OandOH

envi-ronmentsarepartiallydesorbedafterUHVannealing.

theCOOHcomponent (288.4eV) andanincrease oftheC O C

component(285.9eV)areobserved.

TheO1sXPSspectra,beforeandafterannealing,arereported

inFig.4.AlthoughtheO1scorelevelisweaklysensitivetooxygen

atombindingenvironment,weobserveatleasttwocomponents,

withpeak positions which coincide with adsorbed H2O/OH as

measuredrecentlyonoxidizedsilicon surfaces[31].The

differ-encespectrumisconsistentwiththeremovalofbothphysisorbed

waterandeitherphysisorbedorchemisorbedR OHhydrocarbons

(includingacidandalcoholfunctionalities).

3.3. PEELS

ThenormalizedPEELSspectraarereportedinFig.5,forthe

dia-mondfilmmeasuredatnormalemissionanglebefore(crosses)and

after(fulldots)UHVannealing.Theobservationofweakchanges,

ontheorderof1%ofthemainC1speakintensity,illustratesthe

requirementofaverygoodsignal-to-noiseratioforPEELSanalysis.

Thefirstplasmonlossofas-growndiamondappearsnear34eV,

alongwithcontributionsofmultiplebulkplasmonlossesuptothird

orderovertherange0–90eV.Usingadeconvolutionmethodgiven

-10 0 10 20 30 40 50 60 70 80 90 -0.2 -0.1 0.0 0.1

A

(x 4)

Bulk plasmon

α

= 0

°

Normalized XPS intensity

Loss e

nerg

y (eV)

As-grown Annealed _______ Difference

D

C

B

Fig.5. NormalizedenergylossdistributionofC1sphotoelectronsescapingthe diamondsurfaceatnormalemissionangle:as-grown(crosses)andafterthermal annealing(circles).Thedifferencespectrum(fullline)showsattenuationofthebulk (␴ +␲)plasmon(D)at34eVandenhancementofsurfacecomponentsat10±1eV (peakB)and19±1eV(peakC).NegativepeakAcorrespondstoadecreaseof O C OHfunctionalities. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0.0 0.5 1.0 1.5 2.0

B

(

E

) Loss Function

As-grown microcrystalline diamond film

Palik PEELS

Energy (e

V)

Fig.6. Bulklossfunction(fulldots)derivedfromPEELSdatafortheas-grownstate ofmicrocrystallinediamond(Fig.5)ascomparedwithB(E)derivedfromoptical data(Palik,Ref.[25])(fullline).Thepeakinthesingle(␴ +␲)bulkplasmonloss distributionislocatedat34.5eV.

inRef.[5],thefunctionB(E)=Im[−1/ε(ω)],relatedtothesingle

bulk(␴+␲)plasmonlossdistribution,ispeakedat34.5±0.5eV

(Fig.6);abroadeningofthelossdistributionisobservedas

com-paredwithB(E)calculated fromopticaldata [25].In Fig.5,the

shoulderfoundnear21eVisattributedtothecorresponding

sur-faceplasmon;itispossiblyenhancedbyoff-normalphotoelectron

emissionatindividualcrystallitesurfaces(typically45◦–55◦).As

emphasizedbefore,determinationofthe(␴+␲)surfaceplasmon

lossdistribution,centeredat20.5±1eV,remainsquitesensitiveto

theaccurateremovalofinterbandtransitions.

Thedifferencespectrum(fulllineinFig.5)clearlyshows

vari-ouspositiveandnegativecontributions:(i)somecarboxyl(O C O)

moietiesareeliminatedatthefilmsurface(negativepeakAat4eV);

(ii)thebulk(␴+␲)plasmonofdiamond(negativepeakDat34eV)

is weaklyattenuated; (iii) characteristicfeatures near 10±1eV

(positivepeakB)and19±1eV(positivepeakC)appearintheloss

distributionafterannealing;(iv)incontrast,thelackofanyfeature

at6–7eV,takenasasignatureofgraphitizationin␲-bonded

sys-tems,isanimportantresultwhichrevealstheabsenceofspatially

extendedandorderedgraphiticstructures[15,32,33].

ThesequalitativeresultsshowthatthePEELStechniquegivesa

clearsignatureofweakeffectsinthediamondsurface

reconstruc-tion,evenintheabsenceofgraphitization.Thepossibleoriginof

theunexpectedpeaksBandCisdiscussedinthenextSection.

4. Discussion

Inthiswork,thesensitivityofPEELStoreconstructionof

micro-crystallinediamondfilmsurfacesisaddressedanddiscussedinthe

broadercontextofcarbon-basedmaterials.

4.1. Carbon-basedmaterials

Incarbon-basedmaterials,theenergydistributionofplasmon

excitationsis expected tobe sensitivetoa variety of chemical

modifications:(a)somesp3–sp2 conversioninthecarbon atom

hybridizationmightaffectbothsurfaceandbulk(grainboundaries)

(␴+␲)plasmonexcitationduetoachangeintheatomdensity[34];

(b)spatialextensionandorderingingraphiticstructuresmayaffect

theintensityofthe␲–␲*transitionfeaturenear6eV[27];(c)the

surface(+␲)plasmonexcitationprobability(SEP)isdependent

ontheallotropicformofcarbon[35]anditcouldalsobesensitiveto

(5)

dipolecoverageortovariationsintheholeaccumulationlayerat

thediamondsurface.

SucheffectshaveindeedbeenobservedinpreviousPEELS

stud-iesofamorphouscarbon(a-C)films:(i)severalworkshaveshown

thattheplasmonenergyincreasesmonotonouslyasafunctionof

theaveragesp3 hybridization[36–38],(ii)UHVannealingofa-C

above600◦C producesa␲–␲*transitionfeatureat5.5eV

with-out affecting the bulk plasmon loss distribution (Fig. 3 in Ref.

[39]), (iii)angular PEELSanalysisofsp3-rich amorphouscarbon

films, grown by pulsed laser deposition, hasgiven evidence of

asignificantincrease oftheSEPafterimmobilizationofa dense

molecularmonolayer,usingeitherperfluorinatedorester

function-alizedorganicmolecules,withoutaffectingthebulkplasmonloss

distribution[39].

Inthecontextofcarbon-basedmaterials,modelingoftheloss

distributionmaythusbehelpfulforanaccurateinterpretationof

thisbroadrangeofenergylosseffects.

4.2. Diamondsurfacereconstruction

Wehaveusedthediamondsurfacereconstructionprocessto

estimatethesensitivityofthePEELStechniqueforsurface

analy-sis.ThisprocesshasbeenwidelycharacterizedbyXPSbut,toour

bestknowledge,thisisthefirstqualitativeanalysisbyPEELS,which

limitscomparisonwithpreviouswork.

Inthisstudy,XPSresultsindicatethattheas-grown

microcrys-tallinediamondfilmispartlyhydrogenated.IntheC1scorelevel

(Fig.3),thelargeC1peakat283.9eVisattributedtoanupward

surfacebandbending(holeaccumulationconsistentwithprevious

studiesofair-exposedsamples[8,14]).PeakC2at284.6eVisdueto

sp3Catomsbelowthisnanometer-thickregion.PeakC1disappears

afterannealing,consistentwiththeobservedremovalofthep+

sur-facelayerandtheso-called“transferdopingmodel”proposedby

Maieretal.[8]toexplainthesurfaceconductivity.

ItisstressedthatXPS(Fig.3)showsnoevidenceforasurface

sp2C1scomponentafterannealing,whichsetsanupperlimitfor

sp2 C smallerthan onemonolayer.Independentelectrical

char-acterizationsafterannealingshowthat:(i) thep+ surface layer

isnolongerobservedinHallconductivityand(ii)thewide

elec-trochemicalwindowtypicalofpurediamondismaintained[40],

whichwouldnotbethecaseifagraphiticlayerwerepresentat

thesurface.BothXPSandelectricalresultsarethusconsistentwith

PEELSdatawhichgivenoevidenceofgraphitization,inthesenseof

someformationofa“conductivesurface”madeofnanometer-size

layer.

InordertoproposeaninterpretationtotheunexpectedpeaksB

andC(Fig.5),thedielectrictheorywasusedtocalculatebulkand

surfaceplasmondistributions,respectivelyproportionalto

B(ω)=Im[−1/ε(ω)] (1a)

and

S(ω)=Im[(ε(ω)−1)2/ε(ω)(1+ε(ω))]

=Im[(1/ε(ω))−(4/1+ε(ω))], (1b)

whereε(ω)isthedielectricfunction.Thesurfaceandbulkloss

functions(Eqs.(1a)and(1b))werecalculatedusingtabulated

opti-cal dielectric functionsof diamond[25] and graphite(ordinary

index)[26].TheresultsareshowninFig.7wherewehavealso

marked asgray areas the positions of peaks Band C obtained

experimentally(Fig.5).Inclusionofmultiplelosseswouldnot

sig-nificantlyaffectthemaincalculatedfeaturesintheenergyrange

below30eVshowninFig.7.

Notethattheshouldernear21eVobservedpreviouslyin

exper-imentalenergylossdistributionofdiamondhasbeenattributed

eithertointerbandtransitions[41]ortoasurfaceplasmonmode

0 5 10 15 20 25 30 -3 -2 -1 0 1 2 3 4

Surface Loss function

Loss e

nerg

y (e

V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

a)

Bulk Loss function

A

B

C

Diamond

0 5 10 15 20 25 30 -3 -2 -1 0 1 2 3 4

Surfa

c

e Loss function

Loss e

nerg

y (e

V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

b)

Bulk Loss function

B

A

C

Graphite

Fig.7.EnergylossprobabilitiescorrespondingtothesurfaceS(ω)(dashedlines) andbulkB(ω)(fulllines)plasmonexcitations,calculatedusingEqs.(1a)and(1b) andtabulatedopticalindexvalues:(a)diamond[25],(b)graphite(ordinary refrac-tiveindex)[26].Experimentalpeaksinthedifferencespectrum(Fig.5)aredepicted bytheshadedareas;peaksBandCcoincidewithsurfaceplasmonexcitationdueto somesp2phase.

[18,27,42];however,Fig.7showsthatthisfeaturealonecannotbe

takenasasignatureofthesurfaceplasmonbecausethecalculated

surfaceplasmonpeakofdiamond(at21.2eV)overlapstheshoulder

at22.5eVinthebulkplasmon(Fig.7a).

Fig. 7a also shows that the calculated surface plasmon of

diamond (21.2eV) matches the shoulder observed at 21eV in

experimentalspectraforas-grownandannealeddiamondfilms;

incontrastitislocatedatalargerlossenergyvalueascompared

withpeakC(19eV)inthedifferencespectrumofFig.5.Hence,we

believethatpeakCinthedifferencespectrumisnotthesignature

ofasurfaceplasmonofdiamond.

Incontrast,theexperimentallossfeaturesnear10±1eVand

19±1eVarewelldescribed bythesurfaceplasmonofgraphite

(Fig.7b).AlthoughpeakBisratherweak,consideredtogetherpeak

BandCareconsistentwiththecalculatedsurfaceplasmonusing

thegraphitedielectricfunction;interestingly,Fig.7bshowsthat

thesurfaceplasmoncontributionatthelocationofpeakBmustbe

smallerthanthatatpeakCposition.

Since thematching of PEELSdata withthesurface plasmon

ofgraphite apparentlycontradictstheabsenceofa “conductive

surface” made of nanometer-size graphitized layer, alternative

explanationscouldbeinteresting.Ontheonehand,someincrease

inthe␴–␴*interbandtransitionstrength,expectednear12–13eV

[43],seemstoohighinenergytoaccountforpeakB.Ontheother

hand,somelossfeaturesnear11eVand19eVwereobservedin

theelectron energyloss distributionofa graphene singlelayer

(6)

bythermalannealingat300◦C,whichisbelievedtoremovedefects

andmetastable sp3 sites[44].Thesefeatures were respectively

attributedto␲→␴*and␴→␲*singleelectrontransitions,which

mayrevealdistortedenvironmentsofcarbonatoms.

Furtherworkwithsinglecrystalratherthanmicrocrystalline

diamond may be helpful to address the PEELS signature and

toinvestigatelossdistributionbroadening andsurface plasmon

enhancementeffects.

5. Conclusion

ThesensitivityofPhotoelectronEnergyLossSpectroscopyhas

beeninvestigated using thewell-controlled surface

reconstruc-tionofmicrocrystallinediamondthinfilmsuponUHVannealing

at1150◦C.ThiscomparativestudyshowsthatPEELSdetects

sur-faceeffectswhicharenotseenbyUVRamanspectroscopy.After

annealing,thebulk(␴ +␲)plasmonofdiamondat34.5eVisweakly

attenuatedbutnoevidenceforsurfacegraphitizationisobserved

near6eV.Characteristicfeaturesat10±1eVand19±1eVinthe

energylossdistributionmatchthecalculatedopticalsurface

plas-monsingraphite-likematerials;alternativelytheyalsocoincide

withexperimentalplasmonlossesinsomegraphenelayers.This

workshowsthatPEELSacquisitionwithstandardXPSequipment

givesasensitivesignatureofweakeffectsinthediamondsurface

reconstruction,evenintheabsenceofgraphitization.Itconfirms

thatPEELSisasensitivetoolforsurfacedielectricfunctionanalysis,

complementarytoXPSchemicalanalysis.

Acknowledgment

Oneofus(C.G.)is gratefultotheCNPqagency(Brazil)for a

visitingresearchergrantintheCiênciaSemFronteirasprogramme.

References

[1] AugerandX-rayPhotoelectronSpectroscopy,in:D.Briggs,M.P.Seah(Eds.), PracticalSurfaceAnalysis,vol.1,seconded.,JohnWileyandSons,Chichester, UK,1990.

[2]S.Tougaard,PhysicalReviewB34(1986)6779.

[3] S.Tougaard,SurfaceandInterfaceAnalysis11(1988)453–472.

[4]A.CohenSimonsen,F.Yubero,S.Tougaard,PhysicalReviewB56(1997)1612. [5]W.S.M.Werner,SurfaceandInterfaceAnalysis31(2001)141–176.

[6]R.F.Egerton,ElectronEnergy-LossSpectroscopyintheElectronMicroscope, SecondEdition,PlenumPress,NewYork,1996.

[7]J.B.Cui,J.Ristein,L.Ley,PhysicalReviewLetters81(1998)429.

[8]F.Maier,M.Riedel,B.Mantel,J.Ristein,L.Ley,PhysicalReviewLetters85(2000) 3472.

[9]J.Ristein,F.Maier,M.Riedel,M.Stammer,L.Ley,DiamondandRelatedMaterials 10(2001)416.

[10]L.Diederich,O.M.Küttel,P.Aebi,L.Schlapbach,SurfaceScience418(1998)219. [11]P.K.Bachmann,W.Eberhardt,B.Kessler,H.Lade,K.Radermacher,D.U.Wiecher,

H.Wilson,DiamondandRelatedMaterials5(1996)1378.

[12]C.H.Goeting,F.Marken,A.Gutierrez-Sosa,R.G.Compton,J.S.Foord,Diamond andRelatedMaterials9(2000)390.

[13]J.I.B.Wilson,J.S.Walton,G.Beamson,JournalofElectronSpectroscopyand RelatedPhenomena121(2001)183.

[14]D.Ballutaud,N.Simon,H.Girard,E.Rezpka,B.Bouchet-Fabre,Diamondand RelatedMaterials15(2006)716.

[15]Sh. Michaelson, A. Hoffman, Diamond and Related Materials 15 (2006) 486–497.

[16]B.R.Stoner,G.H.M.Ma,S.D.Wolter,J.T.Glass,PhysicalReviewB45(1992) 11067.

[17]S.Haq,D.L.Tunnicliffe,S.Sails,J.A.Savage,AppliedPhysicsLetters68(1996) 469.

[18]M.S.Haque,H.A.Naseem,J.L.Shultz,W.D.Brown,S.Lal,S.Gangopadhyay, JournalofAppliedPhysics83(1998)4421.

[19]J.C.Arnault,S.Saada,M.Nesladek,O.A.Williams,K.Haenen,P.Bergonzo,E. Osawa,DiamondandRelatedMaterials17(2008)1143.

[20]R.Klauser,J.M.Cheng,T.J.Chuang,L.M.Chen,M.C.Shih,J.C.Lin,SurfaceScience 356(1996)L410–L416.

[21]F.Maier,R.Graupner,M.Hollering,L.Hammer,J.Ristein,L.Ley,SurfaceScience 443(1999)177–180.

[22] T.Frauenheim,U.Stephan,P.Blaudeck,D.Porezag,H.G.Busmann,W. Zimmer-mannedling,S.Lauer,PhysicalReviewB48(1993)18189–18202.

[23]G.Kern,J.Hafner,J.Furthmuller,G.Kresse,SurfaceScience352–354(1996) 745.

[24]T.Petit,J.C.Arnault,H.A.Girard,M.Sennour,P.Bergonzo,PhysicalReviewB84 (2011)233407.

[25]D.F.Edwards,H.R.Philipps,in:E.D.Palik(Ed.),HandbookofOpticalConstants ofSolids,Academic,SanDiego,1985,p.665.

[26]A.Borghesi,G.Guizzetti,in:E.D.Palik(Ed.),HandbookofOpticalConstantsof Solids,vol.2,Academic,NewYork,1991,pp.449.

[27]S.Waidmann,M.Knupfer,B.Arnold,J.Fink,A.Fleszar,W.Hanke,Physical ReviewB61(2000)10149.

[28]D.David,C.Godet,H.Sabbah,S.Ababou-Girard,F.Solal,V.Chu,J.P.Conde, JournalofNon-CrystallineSolids358(2012)2019–2022.

[29]D.David,C.Godet,unpublished.

[30] K.M.McNamara,K.K.Gleason,D.J.Vestyk,J.E.Butler,DiamondandRelated Materials1(1992)1145.

[31]A.B.Fadjie,S.Ababou-Girard,C.Godet,JournalofAppliedPhysics112(2012) 113701.

[32] S.Waidmann,M.Knupfer,J.Fink,B.Kleinsorge,J.Robertson,Diamondand RelatedMaterials9(2000)722–727.

[33]M.L.Theye,V.Paret,Carbon40(2002)1153.

[34]R.Haerle,E.Riedo,A.Pasquarello,A.Baldereschi,PhysicalReviewB65(2001) 045101.

[35] N. Pauly, M.Novak, S. Tougaard, Surface and Interface Analysis(2013), http://dx.doi.org/10.1002/sia.5167.

[36]A.C.Ferrari,A.Libassi,B.K.Tanner,V.Stolojan,J.Yuan,L.M.Brown,S.E.Rodil,B. Kleinsorge,J.Robertson,PhysicalReviewB62(2000)11089.

[37] P.Reinke,M.G.Garnier,P.Oelhafen,JournalofElectronSpectroscopyand RelatedPhenomena136(2004)239.

[38]A.Zebda,H.Sabbah,S.Ababou-Girard,F.Solal,C.Godet,AppliedSurfaceScience 254(2008)4980–4991.

[39] C.Godet,D.David,H.Sabbah,S.Ababou-Girard,F.Solal,AppliedSurfaceScience 255(2009)6598.

[40]N.Simon,H.Girard,D.Ballutaud,S.Ghodbane,A.Deneuville,M.Herlem,A. Etcheberry,DiamondandRelatedMaterials14(2005)1179.

[41]S.V.Pepper,SurfaceScience123(1982)47.

[42]Y.Wang,H.Chen,R.W.Hoffman,J.C.Angus,JournalofMaterialsResearch5 (1990)2378.

[43]L.Calliari,S.Fanchenko,M.Filippi,Carbon45(2007)1410–1418.

[44]A.Siokou,F.Ravani,S.Karakalos,O.Frank,M.Kalbac,C.Galiotis,AppliedSurface Science257(2011)9785.

Referências

Documentos relacionados

Negative correlation of the width of the muscle with cooking loss was also observed, that is, meat cooking loss is reduced when the degree of carcass

Major threat to the quality of frozen meat is the reduction of water-holding capacity (WHC), which is manifested as loss of exudate (drip loss) upon thawing. Drip loss has a

Figure 9 - Loss on ignition – LOI (%) used as an estimative of organic matter in the samples of the sediment core from Lake Diamond, South Georgia. Percentage numbers of total

Según los datos arrojados por la “5° Encuesta Nacional en Hogares sobre Consumo de Drogas del Observatorio Uruguayo de Drogas (OUD)” (JND, 2006), la pre- valencia en Montevideo

xvii Projeto Pronaf-Cootaquara – denominação neste trabalho para o projeto que recebeu recursos da linha do PRONAF-INFRA na Cootaquara Projeto Pronaf-Sítio Novo-1 - denominação

The measured surface roughness allowed us to quantify the ion energy loss straggling in these samples for different deposition parameters and as a function of the incident ion

 Há situações de exclusão social que resultam de doenças psiquiátricas, bem como do consumo excessivo e/ou dependência de álcool e drogas, nomeadamente nos