• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número1"

Copied!
5
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Paniculatumoside

G,

a

new

C

21

steroidal

glycoside

from

Cynanchum

paniculatum

Hua

Gao,

Wei

Wang

,

Wenxi

Chu,

Kun

Liu,

Yang

Liu,

Xiaohong

Liu,

Huili

Yao,

Qi

Gao

SchoolofPharmacy,QingdaoUniversity,Qingdao,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16March2016 Accepted30June2016

Availableonline15September2016

Keywords:

Asclepiadaceae

Cynanchumpaniculatum

C21steroidalglycoside

NeocynapanogeninH 3-O-ˇ-d-oleandropyranoside

a

b

s

t

r

a

c

t

AnewC21steroidalglycoside,paniculatumosideG,togetherwithneocynapanogeninCisolatedforthe

firsttimefromthenaturalsourceandtwoknowncompoundswereisolatedandcharacterizedfromthe rootsandrhizomesofCynanchumpaniculatum(Bunge)Kitag.exH.Hara,Apocynaceae,acommonlyused TraditionalChineseMedicine.Onthebasisofspectroscopicanalysis,includingHR-ESI-MS,1Dand2D NMRspectraldata,thestructureofthenewC21steroidalglycosidewaselucidatedasneocynapanogenin

H3-O-ˇ-d-oleandropyranoside.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Cynanchumpaniculatum(Bunge)Kitag.exH.Hara,Apocynaceae, a perennial herb native to east Asia, is commonly called ‘Xu ChangQing’inChinese,andhasbeenusedasa Traditional Chi-neseMedicinefor thetreatmentofperatodynia, gastroenteritis, venomoussnake bite,and ascites(Jiangand Li,1977).Previous phytochemicalinvestigationsonC.paniculatumhaverevealedthe presenceofphenolicderivatives,alkaloids,flavonoids, polysaccha-rides,triterpenoids,andC21steroidalglycosides(Niuetal.,2015;

Fuetal.,2015).Thereportedbioactivitiesoftheplantextractsand isolatedconstituentsincludeanti-adipogenic (Jangetal., 2014), neuroprotective(Weonetal.,2013),anti-tumor(Kimetal.,2012), anti-inflammatory,anti-nociceptive,sedative(Choiet al.,2006), araricidal (Kim et al., 2013a), and herpes simplex encephalitis inducingimpairmentpreventiveactivities(Lietal.,2012).Our pre-viousphytochemicalinvestigationonethanolextractofthissource resultedintheisolationofnineC21steroidalaglyconesand

glyco-sides(Chuetal.,2015).Inourcontinuingstudyonthissource,one newsteroidalglycoside(1)togetherwiththreeknowncompounds (2–4)wereisolatedandidentified.Itshouldbenotedthat com-pound2wasisolatedforthefirsttimefromthenaturalsource.

Correspondingauthor.

E-mail:qddxwangwei@qdu.edu.cn(W.Wang).

TheirstructureswereelucidatedbydetailedinterpretationofNMR andMSdata.

Materialsandmethods

Generalexperimentalprocedures

OpticalrotationsweremeasuredbyusingaJASCOP-1020 auto-maticdigitalpolarimeter(JASCOCorporation,Tokyo,Japan).The

NMR spectral datawererecorded ona BrukerAV-500FT-NMR

(500MHzfor1Hand125MHzfor13C)inC

5D5N,usingvisualC5D5N

resonances(1Hı7.21,7.58,and8.73,13Cı123.5,135.5,and149.0)

for internalreference. Allchemical shifts (ı) aregiven in ppm.

HR-ESI-MSandESI-MSwereobtainedwitha BrukermicroTOFQ

massspectrometer(BrukerDaltonics,Bremen,Germany).Column

chromatographywasperformedwithmacroporousresinHPD100

(CangzhouBonAdsorberTechnologyCo.,Ltd,Cangzhou,China)and RP-18reversed-phasesilicagel(S-50mm,YMC,Kyoto,Japan).TLC analysiswascarriedoutonpre-coatedTLCplateswithsilicagel RP-1860F254 (Merck,Darmstadt,Germany,0.25mm).Detection

wasachievedbysprayingwith10%H2SO4inMeOHfollowedby

heating.PreparativeHPLCwasperformedonaNP7005Cpump con-nectedwithaSHODEXRI-102detector(ShokoScientificCo.,Ltd,

Tokohama,Japan),usingMegresODScolumn(250mm×10mm,

i.d.,5␮m,HanbangSci.&Tech.,Haian,China).HPLC-gradeMeOH waspurchasedfromMerck.HPLC-gradewaterwaspurifiedusing

http://dx.doi.org/10.1016/j.bjp.2016.06.010

(2)

aMilli-Qsystem(millipore,Boston,MA,USA).Allsolventsusedfor thechromatographicseparationsweredistilledbeforeuse.

Plantmaterial

The roots and rhizomes of Cynanchum paniculatum (Bunge)

Kitag.exH.Hara,Apocynaceae,wereobtainedinJingde Pharma-ceuticalCompany,Bozhou,AnhuiProvinceofChina,andidentified byProf.BaominFeng,DalianUniversity,China.Avoucher speci-men(CPXCQ-2014-03)wasdepositedattheCollegeofPharmacy, QingdaoUniversity,China.

Extractionandisolation

Theroots andrhizomesofC.paniculatum(10kg)werereflux extractedtwicewith90%ethanol for1.5hand thesolventwas evaporatedunderreducedpressuretogiveanEtOHextract(1.5kg). TheEtOHextract(1.2kg)wasdissolvedwithwaterandsubjected

tocolumnchromatographyonHPD-100macroporousresin and

elutedwithEtOH-H2O(0:100,30:70,70:30,and95:5),successively.

Thefractionelutedwith70%ethanol(100g)waschromatographed overaD941macroporousresincolumn,elutingwith95%ethanol andatotalof15gresiduewascollected.Theresiduewas chro-matographed further on a RP-C18 silica gel and eluted with a

gradient increasing MeOH (30–80%) in water to give sixteen

subfractions (Fr.C1–C16) on the basis of TLC analyses. Fr.C14 waspurified bypreparativeHPLCusingMeOH/H2O(60:40)ata

flow rate of 2ml/min (Megres C18 column, 250mm×10.0mm, 5␮m)toyieldcompound1(4.91mg,tR=41.0min).Compound2

(5.60mg,tR=16.0min)and compound 3(8.25mg, tR=60.0min)

wereobtainedfromFr.C13andFr.C12bypreparativeHPLC(Megres C18 column, 250mm×10.0mm, 5␮m; flow rate, 2.0ml/min)

employing MeOH/H2O (55:45) and MeOH/H2O (52:48) as the

mobilephase,respectively.Thefractionelutedwith95%ethanol (10g)wasseparatedchromatographicallyonaRP-C18silicagelto

getfivesubfractions(Fr.C1′–C5)onthebasisofTLCanalysis.Fr.C4

wasisolatedbypreparativeHPLCusingMeOH/H2O(60:40)ata

flowrateof1.6ml/min(MegresC18column,250mm×10.0mm, 5␮m)toyieldcompound4(62.29mg,tR=140min).

Spectraldata

NeocynapanogeninH3-O-ˇ-d-oleandropyranoside(1):An amor-phouspowder;[␣]D25+45.7(c0.01,MeOH);1H-(C5D5N,500MHz)

and 13C-NMR (C

5D5N, 125MHz) see Table 1; HR-ESI-MS m/z

573.2667[M+Na]+(calcdforC

29H42NaO10,573.2676).

NeocynapanogeninC(2):Anamorphouspowder;[␣]D25−65.4

(c 0.01, MeOH); 1H- (C

5D5N, 500MHz) and 13C-NMR (C5D5N,

125MHz)seeTable2;HR-ESI-MSm/z399.1783[M+Na]+(calcdfor

C21H28NaO6,399.1784).

Resultsanddiscussion

Compound1wasobtainedaswhiteamorphouspowder,and

showed positive Liebermann–Burchard and Keller–Kiliani reac-tions,suggestingittobeasteroidalglycosidewitha2-deoxysugar moiety(Zhuetal.,1999).Itsmolecularformulawasdeterminedas C29H42O10onthebasisofpositiveHR-ESI-MSadduction[M+Na]+at m/z573.2667(calcdforC29H42NaO10:573.2676),whichwas

fur-thersupportedbythe1H-and13C-NMRspectraldata(Table1).

The13C-NMRand DEPTspectrarevealed29 carbonsignals due

tofivemethylcarbons,sixmethylenecarbons,thirteenmethine

carbons, and five nonprotonated carbons, of which 22 carbons

wereassignedtotheaglyconepartincludingtwotertiarymethyl carbons(ıC20.6 and 24.3),onemethoxylcarbon (ıC55.0),one

oxygenatedmethylenecarbon(ıC70.4),fouroxygenatedmethine

carbons(ıC70.0,78.1,84.8,and104.3),fourolefiniccarbons(ıC

120.4,131.0,139.4and142.3),oneacetaliccarbon(ıC114.6),and

onecarbonylcarbon(ıC179.3),whichexhibitedthecharacteristics

of13,14:14,15-disecopregnane-type steroidalglycoside.The1

H-NMRspectrumoftheaglyconemoietyshowedtwoangularmethyl protonsatıH1.09(3H,s)and1.73(3H,s),twogeminalcoupled

oxygenated-methyleneprotonsatıH4.14(1H,dd,J=10.0,4.8Hz) and4.42(1H,dd,J=9.9,7.4Hz),fouroxygen-substitutedmethine protonsatıH3.69(1H,m),4.02(1H,ddd,J=12.6,9.0,4.6Hz),5.62

(1H,s),and5.74(1H,ddd,J=8.1,7.4,4.8Hz),togetherwithtwo olefinicprotonsatıH5.43(1H,m)and5.47(1H,m).Inaddition,

onemethoxygroupresonatedatıH3.50(3H,s)wasobservedin

(3)

Table1

1H-NMRand13C-NMRspectraldataofcompound1(500and125MHz,C

5D5N,ıppm,JinHz).

Position 1 PaniculatumosideAa

ıH ıC ıC

Aglycone

1˛ 1.40(t,J=12.2Hz) 45.5(t) 37.2(t)

1ˇ 2.42(dd,J=13.0,4.6Hz)

2 4.02(ddd,J=12.6,9.0,4.6Hz) 70.0(d) 29.7(t)

3 3.69(m) 84.8(d) 77.0(d)

4˛ 2.65(m) 37.5(t) 39.1(t)

4ˇ 2.59(m)

5 – 139.4(s) 140.3(s)

6 5.43(m) 120.4(d) 120.1(d)

7˛ 2.62(m) 29.2(t) 30.4(t)

7ˇ 2.50(m)

8 2.47(m) 40.9(d) 41.4(d)

9 2.13(td,J=11.4,5.2Hz) 51.9(d) 52.1(d)

10 – 38.6(s) 37.8(s)

11˛ 2.55(m) 30.4(t) 30.3(t)

11ˇ 2.29(ddd,J=11.9,7.4,4.4Hz)

12 5.47(m) 131.0(d) 133.2(d)

13 – 142.3(s) 139.4(s)

14 – 179.3(s) 179.4(s)

15˛ 4.42(dd,J=9.9,7.4Hz) 70.4(t) 70.5(t)

15ˇ 4.14(dd,J=10.0,4.8Hz)

16 5.74(ddd,J=8.1,7.4,4.8Hz) 78.1(d) 78.0(d)

17 3.29(d,J=8.1Hz) 56.1(d) 56.0(d)

18 5.62(s) 104.3(d) 107.3(d)

19 1.09(s) 20.6(q) 19.6(q)

20 – 114.6(s) 115.1(s)

21 1.73(s) 24.3(q) 24.3(q)

18-OCH3 3.50(s) 55.0(q)

Sugar

1′(Ole) 4.84(dd,J=9.8,1.8Hz) 99.3(d) 98.3(d)

2′˛ 2.59(m) 37.3(t) 37.5(t)

2′ˇ 1.78(ddd,J=12.0,9.8,4.5Hz)

3′ 3.51(m) 81.5(d) 81.7(d)

4′ 3.46(m) 76.1(d) 76.5(d)

5′ 3.65(m) 73.1(d) 72.9(d)

6′ 1.56(d,J=6.1Hz) 18.4(q) 18.8(q)

3′-OCH3 3.49(s) 57.1(q) 57.1(q)

aDatafromLietal.(2004).

aglyconespectraldataof1withthoseofneocynapanogeninC,the aglyconeofpaniculatumosideB(Lietal.,2004),themain differ-enceswerethepresenceofsignalforanadditionalmethoxyl(ıH/C

3.50/55.0)andthechangesofthechemicalshiftsinC-1(+8.2ppm), C-2(+39.7ppm),andC-3(+7.7ppm),aswellasinC-18(+5.6ppm) andC-13(−3.4ppm)intheNMRspectraof1.Theaglyconemoiety

ofcompound 1wastherefore proposedtobea

2-hydroxyl-18-methoxylderivativeofneocynapanogeninC,whichwereproved bytheHMBCcorrelationsfromıH1.40and2.42(H-1)toıC70.0

(C-2),84.8(C-3),139.4(C-5),38.6(C-10),20.6(C-19),fromıH2.59 and2.65(H-4)toıC70.0(C-2),84.8(C-3),139.4(C-5),120.4(C-6),

38.6(C-10),andfromıH3.50(18-OCH3)toıC104.3(C-18)(Fig.1).

Therelativeconfigurationoftheaglyconewaselucidatedbythe NOESYspectrumandthevicinalproton-protoncouplingconstant. ThecouplingconstantbetweenH-2andH-3(9.0Hz)wastypicalfor

Fig.1.KeyHMBCcorrelationsofcompound1.

trans-diaxialprotons,indicatingthatbothoxygenatedsubstituents wereequatorial.Observed1,3-diaxialNOEcorrelationsfor H-2/H-4␤,H-2/H-19,H-4␤/H-19andH-1␣/H-3(Fig.2)furthersupported the␤-orientationofH-2and␣-orientationofH-3andrevealedthe chairconformationoftheAring.Thetrans-diaxialrelationshipof H-8andH-9,namely,the␤-orientationofH-8and␣-orientation ofH-9,wassuggestedbythesplittingpatternofH-9(td,J=11.4, 5.2Hz)andtheNOESYcorrelationsforH-8/H-19andH-1␣/H-9(Bai etal.,2005).Inaddition,theNOEcorrelationfromthemethoxyl groupatC-18toH3-21confirmedthemethoxylgroupatC-18as ˛-orientation.Thusthestructurefortheaglyconeofcompound1

(4)

wasdeducedandatrivialnameneocynapanogeninHwasassigned. Protonsignalswerealsoassignedtoonesecondarymethylgroup atıH1.56(d,J=6.1Hz),onemethoxylgroupatıH 3.49(s),and

oneanomericprotonatıH4.84(dd,J=9.8,1.8Hz),whose

mul-tiplicities suggestedthepresenceof one2,6-dideoxy-sugarin a saccharidechainand␤-configurationofthehexoseunit.The13C

NMRandDEPTdataindicatedtheexistenceofone oleandropyra-nosylunit.ItwasconfirmedbytheobservedDQFCOSYandHMBC correlations.Forthedeoxysugars,sinceonlyd-formauthentic sam-plescouldbeobtained,theirabsoluteconfigurationscouldnotbe assignedbyGCanalysis,butdeterminedtobed-formsby compar-isonoftheir13C-NMRspectroscopicdatawiththosereporteddata.

Themostsignificantdifferencesinthe13C-NMRdatabetweend

-andl-configurationoleandropyranosylinvolvetheresonancesof C-2.ThechemicalshiftofC-2inthel-oleandropyranosylisless than35ppm,butthatofC-2inthed-oleandropyranosylappears above 36ppm. Therefore, the oleandropyranosyl unit of 1 was determinedtobed-configurationbasedonits13C-NMRchemical shiftofC-2at37.3ppm(Table1)(Lietal.,2004;Maetal.,2007; Yangetal.,2011;Kimetal.,2013b),anditslocationwas deter-minedtobeC-3bytheH-1′/C-3HMBCcorrelation(Fig.1).Thus,

thestructureof1wasfinallyestablishedasneocynapanogeninH 3-O-ˇ-d-oleandropyranoside.

Compound2wasobtainedaswhiteamorphouspowder,and

showed positive Liebermann–Burchard reaction. Its molecular

formulawasdeterminedasC21H28O6onthebasisofpositive

HR-ESI-MSadduction[M+Na]+atm/z399.1783(calcdforC

21H28NaO6:

399.1784),whichwasfurthersupportedbythe1H-NMRand13

C-NMRdata(Table2).The1H-NMRdatashowedtwoolefinicprotons

atıH5.34(1H,brd,J=4.6Hz)and5.55(1H,d,J=11.0Hz),three

oxygen-substitutedmethineprotonsatıH3.82(1H,m),5.77(1H,

ddd,J=8.1,7.7,5.2Hz),and6.33(1H,brd,J=6.0Hz),twogeminal coupledoxygenated-methyleneprotonsatıH4.16(1H,dd,J=9.8,

5.0Hz)and4.39(1H,dd,J=9.8,7.2Hz),twomethylsignalsatıH

1.04(3H,s)and1.84(3H,s).The13C-NMRspectrumshowed21

carbonsignals,includingtwotertiarymethylcarbons(ıC19.8and

25.0),anoxygenatedmethylenecarbon(ıC70.0),threeoxygenated

Table2

1H-NMRand13C-NMRspectraldataofcompound2(500and125MHz,C

5D5N,ı

ppm,JinHz).

Position ıH ıC

1 1.17(m) 37.6(t)

1.83(m)

2 1.74(m) 32.5(t)

2.08(m)

3 3.82(m) 70.7(d)

4 2.54(m) 43.1(t)

2.62(m)

5 – 141.1(s)

6 5.34(brd,J=4.6Hz) 119.4(d)

7 2.58(m) 29.1(t)

2.90(q,J=12.2Hz)

8 2.52(m) 41.6(d)

9 2.08(m) 52.2(d)

10 – 37.7(s)

11 2.27(m) 30.4(t)

2.51(m)

12 5.55(d,J=11.0Hz) 130.2(d)

13 – 145.5(s)

14 – 179.6(s)

15 4.16(dd,J=9.8,5.0Hz) 70.0(t)

4.39(dd,J=9.8,7.2Hz)

16 5.77(ddd,J=8.1,7.7,5.2Hz) 78.3(d)

17 3.38(d,J=8.1Hz) 56.8(d)

18 6.33(brd,J=6.0Hz) 98.7(d)

19 1.04(s) 19.8(q)

20 – 113.6(s)

21 1.84(s) 25.0(q)

methinecarbons(ıC70.7,78.3,and98.7),fourolefiniccarbons(ıC 119.4,130.2,141.1and145.5),anacetaliccarbon(ıC113.6),anda carbonylcarbon(ıC179.6),whichexhibitedthecharacteristicsof 13,14:14,15-disecopregnane-typesteroidalglycoside.Comparison ofthespectraldataof2withthoseofpaniculatumosideB,anewC21 steroidalglycosideisolatedfromthedriedrootofC.paniculatum(Li etal.,2004),thechangesofthechemicalshiftsinC-2(+2.5ppm), C-3(−6.4ppm),C-4(+4.0ppm)showedthatithasnolinkageofthe sugarmoietyattheC-3hydroxylgroupoftheaglycone.Thus,the structureof2wasestablishedasneocynapanogeninC,the agly-coneofpaniculatumosideB.Itshouldbenotedthatcompound2

wasisolatedforthefirsttimefromthenaturalsource.

Compounds3and4wereidentifiedbycomparingthe1H-and 13C-NMR,aswellasMSspectrawiththosereportedinthe

liter-atures.TheyweredeterminedtobecynapanosideA(3)(Sugama etal.,1986)andcynatratosideA(4)(Zhangetal.,1985).

Authors’contributions

HG,WXC,HLY,andQGperformedtheextraction,isolation,and elucidation of theconstituents. KL, YL,and XHL contributed to checkingandconfirmingalloftheproceduresoftheisolationand identification.WWdesignedthestudy,supervisedthelaboratory work,andcontributedtocriticalreadingofthemanuscript.Allthe authorshavereadthefinalmanuscriptandapprovedthe submis-sion.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

This projectwassupported by theNational Natural Science

FoundationofChinaunderGrant81273396;ShandongProvince

HigherEducationalScienceandTechnologyProgramunderGrant J15LM12.

References

Bai, H., Li, W., Koike,K., Satou, T., Chen,Y.J., Nikaido,T., 2005. Cynanosides A–J,tennovelpregnaneglycosidesfromCynanchumatratum.Tetrahedron61, 5797–5811.

Choi,J.H.,Jung,B.H.,Kang,O.H.,Choi,H.J.,Park,P.S.,Cho,S.H.,Kim,Y.C.,Sohn,D.H., Park,H.,Lee,J.H.,Kwon,D.Y.,2006.Theanti-inflammatoryandanti-nociceptive effectsofethylacetatefractionofcynanchipaniculatiradix.Biol.Pharm.Bull. 29,971–975.

Chu,W.X.,Liu,X.H.,Liu,K.,Huo,L.N.,Yao,H.L.,Gao,Q.,Gao,H.,Wang,W.,2015. ChemicalconstituentsfromactivefractioninrootsandrhizomesofCynanchum paniculatumwithreversalactivityofmultidrugresistance.Chin.Tradit.Herbal Drugs18,2674–2679.

Fu,M.,Wang,D.Y.,Hu,X.,Guo,M.Q.,2015.ChemicalconstituentsfromCynanchum paniculatum.J.Chin.Med.Mater.38,97–100.

Jang,E.J.,Kim,H.K.,Jeong,H.,Lee,Y.S.,Jeong,M.G.,Bae,S.J.,Kim,S.,Lee,S.K.,Hwang, E.S.,2014.Anti-adipogenicactivityofthenaturallyoccurring phenanthroin-dolizidinealkaloidantofineviadirectsuppressionofPPAR␥expression.Chem. Biodivers.11,962–969.

Jiang,Y.,Li,B.T.,1977.Angiospermae,Dicotyledonae,Apocynaceaeand Asclepi-adaceae.FloraofChinaEditorialCommitteeFloraofChina,vol.63.SciencePress, Beijing,pp.351–353.

Kim,C.S.,Oh,J.Y.,Choi,S.U.,Lee,K.R.,2013b.Chemicalconstituentsfromtherootsof Cynanchumpaniculatumandtheircytotoxicactivity.Carbohydr.Res.381,1–5. Kim,E.H.,Min,H.Y.,Chung,H.J.,Song,J.,Park,H.J.,Kim,S.,Lee,S.K.,2012.

Anti-proliferativeactivity and suppressionof P-glycoproteinby (−)-antofine,a naturalphenanthroindolizidinealkaloid,inpaclitaxel-resistanthumanlung cancercells.FoodChem.Toxicol.50,1060–1065.

Kim,M.G.,Yang,J.Y.,Lee,H.S.,2013a.Acaricidalpotentialsofactiveproperties isolatedfromCynanchumpaniculatumandacaricidalchangesbyintroducing functionalradicals.J.Agric.FoodChem.61,7568–7573.

(5)

Li,X.F.,Guo,Y.J.,Zhang,D.M.,Chen,Z.,Wei,X.,Li, Y.H.,Zhang,S.L.,Tao,J.Y., Dong,J.H.,Mei,Y.W.,Li,L.L.,Zhao,L.,2012.Protectiveactivityoftheethanol extractofCynanchumpaniculatum(Bunge)Kitagawaontreatingherpessimplex encephalitis.Int.J.Immunopathol.Pharmacol.25,259–266.

Ma,X.X.,Jiang,F.T.,Yang,Q.X.,Liu,X.H.,Zhang,Y.J.,Yang,C.R.,2007.Newpregnane glycosidesfromtherootsofCynanchumotophyllum.Steroids72,778–786. Niu,Y.L.,Chen,X.,Wu,Y.,Jiang,H.Q.,Zhang,X.L.,Li,E.T.,Li,Y.Y.,Zhou,H.L.,Liu,J.G.,

Wang,D.Y.,2015.ChemicalconstituentsfromCynanchumpaniculatum(Bunge) Kitag.Biochem.Syst.Ecol.61,139–142.

Sugama,K.,Hayashi,K.,Mitsuhashi,H.,Kaneko,K.,1986. Studiesonthe con-stituentsofAsclepiadaceaeplants.LXVI.Thestructuresofthreenewglycosides, cynapanosideA,B,andC,fromtheChinesedrugXU-ChangQing,Cynanchum paniculatumKitagawa.Chem.Pharm.Bull.34,4500–4507.

Weon,J.B.,Ko, H.J.,Ma,C.J.,2013. Theamelioratingeffectsof 2,3-dihydroxy-4-methoxyacetophenone on scopolamine-induced memory impairment in mice and its neuroprotective activity. Bioorg. Med. Chem. Lett. 23, 6732–6736.

Yang,Q.X.,Ge,Y.C.,Huang,X.Y.,Sun,Q.Y.,2011.CynanauriculosideC–E,threenew antidepressantpregnaneglycosidesfromCynanchumauriculatum.Phytochem. Lett.4,170–175.

Zhang,Z.X.,Zhou,J.,Hayashi,K.,Mitsuhashi,H.,1985.Studiesontheconstituentsof Asclepiadaceaeplants.LVIII.Theconstituentsoffiveglycosides, cynatratoside-A,-B,-C,-D,and–E,fromtheChinesedrugPai-Wei,CynanchumatratumBunge Chem.Pharm.Bull.33,1507–1514.

Zhu,N.Q.,Wang,M.F.,Kikuzaki,H.,Nakatani,N.,Ho,C.T.,1999.TwoC21-steroidal

Imagem

Fig. 1. Key HMBC correlations of compound 1.

Referências

Documentos relacionados

pounds β -sitosterol, stigmasterol, betulinic acid, linoleic acid, methyl-14-methylpentadecanoate, 13-epimanoyl ox- ide, and the depside atranorin ( 1 ), together with three

4 A large number of pharmacological activities has been associated to triterpenes isolated from species of the Maytenus genus, such as, 3,15-dioxo-21 α

In this study we report the chemical constituents and antimicrobial activity of the essential oil obtained from leaves of Hedyosmum brasiliense Miq., Chloranthaceae,

Principal peaks observed in the mass spectra ( m/z and relative intensity in parenthesis) of the triterpenes isolated from V. **Retention Time in minute... graminifolia and B)

Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity..

Natural Products Research Laboratory, School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand.. School of Science, University of Phayao, Maeka,

ISOLATION AND ANTITRICHOMONAL ACTIVITY OF THE CHEMICAL CONSTITUENTS OF THE LEAVES OF Maytenus phyllanthoides Benth.. Facultad

For the study of spatial chemical structure, the matrices of Euclidean distances from geographical coordinates and essential oil data sets (chemical constituents or oil