• Nenhum resultado encontrado

Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices

N/A
N/A
Protected

Academic year: 2021

Share "Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices"

Copied!
11
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Ethanol

production

from

sweet

sorghum

by

Saccharomyces

cerevisiae

DBKKUY-53

immobilized

on

alginate-loofah

matrices

Sunan

Nuanpeng

a

,

Sudarat

Thanonkeo

b

,

Preekamol

Klanrit

a,c

,

Pornthap

Thanonkeo

a,c,∗

aKhonKaenUniversity,FacultyofTechnology,DepartmentofBiotechnology,KhonKaen,Thailand bMahasarakhamUniversity,WalaiRukhavejBotanicalResearchInstitute,Mahasarakham,Thailand

cKhonKaenUniversity,FermentationResearchCenterforValueAddedAgriculturalProducts(FerVAAPs),KhonKaen,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27November2016

Accepted14December2017

Availableonline13March2018

AssociateEditor:AdalbertoPessoa

Keywords: Alginate-loofah-matrix Ethanolproduction Saccharomycescerevisiae Sweetsorghum Thermotolerantyeast

a

b

s

t

r

a

c

t

Ethanolproductionfromsweetsorghumjuice(SSJ)usingthethermotolerantSaccharomyces

cerevisiaestrainDBKKUY-53immobilizedinanalginate-loofahmatrix(ALM)was

success-fullydeveloped.Asfoundinthis study,an ALMwithdimensions of20×20×5mm3 is

effectiveforcellimmobilizationduetoitscompactstructureandlong-termstability.The

ALM-immobilizedcellsystemexhibitedgreaterethanolproductionefficiencythanthefreely

suspendedcellsystem.Byusingacentralcompositedesign(CCD),theoptimum

condi-tionsforethanolproductionfromSSJbyALM-immobilizedcellsweredetermined. The

maximumethanolconcentrationandvolumetricethanolproductivityobtainedusing

ALM-immobilizedcellsundertheoptimalconditionswere97.54g/Land1.36g/Lh,respectively.

TheuseoftheALM-immobilizedcellswassuccessfulforatleastsixconsecutivebatches

(360h)withoutanylossofethanolproductionefficiency,suggestingtheirpotential

applica-tioninindustrialethanolproduction.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Theuse of alternative energy resources has been

increas-ingly replacing the use of petroleum-based fossil fuels

due to a continuously decreasing fossil fuel reservoir and

Correspondingauthorat:KhonKaenUniversity,FacultyofTechnology,DepartmentofBiotechnology,KhonKaen,Thailand.

E-mail:portha@kku.ac.th(P.Thanonkeo).

environmental problems caused by the growing

consump-tion of oil and its derivatives.1,2 Bioethanol is one of

the high-potential alternative fuel energy sources, since

it isclean, renewable, carbon-neutral and environmentally

friendly.3–5 Bioethanolcanbeproducedfromvarious

renew-ableresources,suchassugar-basedmaterials(e.g.,sugarcane

https://doi.org/10.1016/j.bjm.2017.12.011

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

molasses,beetmolasses), starch-based materials(e.g.,

cas-sava,corn,potato),andlignocellulosic-basedmaterials(e.g.,

rice straw,sugarcane bagasse, corn stalk, grass, pineapple

peel). Apart from sugarcane and cassava, sweet sorghum

[(Sorghumbicolor(L.) Moench)]isoneofthemostpromising

alternativeenergycropsforindustrialbioethanolproduction

inThailand.6–8Itisconsideredahigh-potentialfeedstockfor

ethanol fuel production because it has high levels of

fer-mentablesugars,suchassucrose,glucoseandfructose,and

ahighyieldofgreenbiomass.9Sweetsorghumisalso

con-sideredahigh-efficiencyenergycropbecauseitrequiresless

fertilizerandwaterusage,hasawideadaptabilityfor

cultiva-tion,andhasashortgrowingperiodof3–4months.10,11

Conventional industrial bioethanol production is

gener-allycarriedoutusingafree-cellsystem.Thefree-cellsystem

hasseveraldisadvantages,suchasahighoperatingcostand

a low ethanol productivity.12 To improve ethanol

produc-tion efficiency,cell-immobilization hasbeen proposed.The

immobilized-cellsystem hasseveral advantages,suchas a

reducedriskofmicrobialcontaminationduetohighcell

densi-tiesandfermentationactivity,increasedsubstrateuptakerate,

increasedethanolproductivityandyield,prolongedactivity

andstability ofthecells,the abilitytorecyclethe

biocata-lysts,increasedtolerancetoahighsubstrateconcentration,

reduced inhibition ofend products, protectionof the cells

frominhibitors,easyproductrecovery,andminimal

produc-tion costs.1,13–17 Severaltechniques forcell immobilization,

suchasadsorption,entrapment,cross-linking,covalent

bond-ing,andencapsulation, havebeenreported.16Amongthese

techniques,entrapmentincalciumalginatebeadsisthemost

widelyusedbecause it iseasily prepared,inexpensive and

non-toxic.18 However,it also hassome disadvantages,e.g.,

gel degradation,lowmechanical strength and severe mass

transferrestriction.14,17Inaddition,thecomplexand

sophis-ticatedequipmentrequiredforthelarge-scalepreparationof

calciumalginatebeadscanleadtohighproductioncosts.19

Loofahsponge,alignocellulosicmaterialfromthegourdLuffa

cylindricacomposedmainlyofcellulose(60%),hemicellulose

(30%)and lignin (10%),20 isconsidered as oneof the most

promisingnaturalcarriersforcellimmobilizationinindustrial

ethanolproduction.Loofah spongehasseveral advantages,

suchaslowcost,abundance,chemicalstability,high

poros-ity, high surface area and non-toxicity.17 Ganguly et al.21

reported that the structure and shape of loofah sponges

remained unchanged under various pH conditions (1.1–14)

andremainedstableinhightemperaturesdespiterepeated

autoclavingat121◦Cfor20–40min.Thespongeissuitablefor

celladhesionbecauseitiscomposedofhighlyporousrandom

latticesofsmallcrosssections.15

Inrecentyears,statisticalexperimentaldesignshavebeen

widelyusedtooptimizeethanolproductionconditions.22–25

Thesetechniqueshaveseveraladvantages,suchasa

reduc-tionintimeconsumptionandareductioninoperatingcosts

due to fewer experimentalunits. The interaction between

independent variables can also be evaluated. In addition,

thesecondorderpolynomialequationcanbeusedto

deter-minetheoptimumconditions.26,27Manyfactors,suchasthe

incubationtemperature, the initialyeast cellconcentration

and the initial sugar concentration, affect the growth and

ethanolproduction offreeand immobilizedyeast cells.1,17

Althoughthereareanumberofstudiesonethanol

produc-tion using immobilizedcells,15,17,28,29 little isknown about

ethanolproductionusingyeastcellsimmobilizedspecifically

withinthealginate-loofahmatrix(ALM).Therefore,

optimiza-tion ofethanol productionfrom sweet sorghum juice(SSJ)

using yeast cells entrapped inALMwas performed in this

studyusingacentralcompositedesign(CCD).Theethanol

pro-ductionefficiencyduringrepeatedbatchfermentationusing

ALM-immobilizedcellswasalsoexamined.

Materials

and

methods

Yeaststrain,cellpreparationandrawmaterials

Saccharomyces cerevisiae DBKKUY-53, a high-yield

ethanol-producing thermotolerant yeast strain,7 was used in this

study. Itwas cultured ina yeastextract malt extract (YM)

medium(0.3%yeastextract,0.3%maltextract,0.5%peptone

and1%glucose)at30◦Cfor2daysandthenstoredat4◦Casa

stockculture.Forinoculumpreparation,aloopfulofthestock

culturewastransferredto100mLoftheYMbrothwithan

initialpHof5.0.Thepreculturewasgrowninacontrolled

tem-peratureincubatorshakerat30◦Candshakenat150rpmfor

18h.Then,thepreculturewastransferredintoSSJcontaining

sugarconcentrationof100g/Landsubsequentlyincubatedat

30◦Cwithshakingat150rpmfor18h.Thecellswerecollected

bycentrifugationat5000rpmfor10min,washedtwicewith

0.85%(w/v)NaClsolution,andthenresuspendedinthesame

solution.Theresultingcellswereusedasastarterculturefor

cellimmobilizationandethanolproduction.

ConcentratedSSJ(75◦Bx)obtainedfromtheDepartmentof

Agronomy,FacultyofAgriculture,KhonKaenUniversity,

Thai-land,wasusedasarawmaterialforethanolproductioninthis

study.Thejuicewasstoredat−18◦Cuntiluse.

Cellimmobilization

Loofahspongesusedinthisworkwerepurchasedfromalocal

market,KhonKaen,Thailand.Theywerecutintosmallthin

squarepieceswithdifferentdimensionsof10×10×5mm3,

15×15×5mm3 and 20×20×5mm3. S. cerevisiae

DBKKUY-53 was immobilizedon the alginate-loofah matrices using

theentrapmentmethod.Thestarterculturewasinoculated

intoasterile2%(w/v)sodiumalginatesolutionwithan

ini-tial cell concentration of 2×109cells/mL. Sterilized loofah

cubicspongeswithdifferentdimensionswereimmersedin

thealginate-cellsolution.Then,thealginate-loofahsponges

weredroppedintoa0.1MCaCl2solutionandgentlyagitated

for15min.Theresultingalginate-loofahmatrixorALMwas

washedwithasteriledistilled watertoremoveexcessCa2+

ionsandunentrappedcellsbeforebeingusedforethanol

pro-duction.

Ethanolproductionbyfreeandimmobilizedcellsusing

varioussizesofALM

SSJ containing sugar concentration of 200g/L was added

to a500-mL air-lockedErlenmeyer flaskwith afinal

(3)

Table1–KineticparametersofethanolproductionfromsweetsorghumjuicebythefreeandALM-immobilizedcellsofS. cerevisiaeDBKKUY-53at37C.

Conditions Kineticparameters

P(g/L) Qp(g/Lh) S(g/L) Yp/s(g/g) T(h)

Freecell 73.64±2.50a 1.53±0.05a 31.69±1.53a 0.44±0.01ab 48

10mm×10mmimmobilizedcell 75.14±2.74a 1.57±0.06a 13.94±0.83b 0.45±0.03a 48

15mm×15mmimmobilizedcell 76.75±1.11a 1.60±0.02a 14.82±1.94b 0.39±0.01bc 48

20mm×20mmimmobilizedcell 76.46±1.63a 1.59±0.03a 12.67±0.28b 0.38±0.01c 48

P,ethanolconcentration;Qp,ethanolproductivity;S,residualsugarconcentration;Yp/s,ethanolyield;andt,fermentationtime.Meanvalues±SD withdifferentlettersinthesamecolumnaresignificantlydifferentatp<0.05basedonDMRTanalysis.

Ethanol production was carried out by transferring the free cells and the cells immobilized in loofah sponges of variousdimensionsinto sterileSSJwithaninitialcell con-centration of 1×107cells/mL.30 The flasks were statically

incubatedat37◦Cinacontrolledtemperatureincubator.

Dur-ingethanolfermentation,sampleswerewithdrawnatcertain

timeintervals,and cells,sugar andethanolconcentrations

weredetermined.

Optimizationofethanolproductionconditionsduring

fermentationbyALM-immobilizedcellsusingacentral

compositedesign(CCD)

Basedonareviewoftheliterature,6,7,14,18threefactors,namely

the inoculum size, the initial sugar concentration and the

incubationtemperature,wereselectedasparametersforthe

optimizationofethanolfermentationusingaCCD.Thecodes

andactualvaluesoftheindependentfactorsfortheCCDare

showninadditionalinformationsection,Table1.The

relation-shipbetweenthecodeandactualvaluesisdescribedbythe

followingequation:

Xi=(XiX−X0), i=1,2,...,k (1)

whereXiisacodedvalueofthevariable;Xiistheactualvalue

ofthevariable;X0istheactualvalueofthevariablesatthe

centerpoint;andXisthestepchangeofthevariable.

Theexperimentaldatawereexplainedbyasecondorder

polynomialfunctionasfollows:

Y=ˇ0+



ˇ iXi+



ˇiiX2i +



ˇijXiXj, i=1,2,...,k (2)

where Y is the predicted response; Xi and Xj represent

the independent variables; ˇ0 is a constant term; ˇi

rep-resents the linear coefficients; ˇii represents the squared

coefficients; and ˇij represents the cross product

coeffi-cients.

The Design-Expert 7.0 Demo version (STAT EASE

Inc., Minneapolis, USA) was used for the experimental

designs and regression analysis. An analysis of variance

(ANOVA) was used to estimate the statistically significant

parameters. The quality of the quadratic model equation

was expressed as the coefficient of determination (R2).

The validation experiment was conducted using

opti-mized conditions determined from the response surface

plots.

Ethanolproductionbyrepeatedbatchfermentation

Repeatedbatchfermentationwasperformedina500-mL

air-lockedErlenmeyerflaskwithafinalworkingvolumeof300mL.

The fermentation conditions were based on the

optimiza-tionresultsobtainedfromtheCCD,aspreviouslydescribed.

Theflaskswerestaticallyincubatedfor60h,thefermentation

brothwas withdrawnat50% oftheworkingvolumeatthe

endofeachbatch,andthecells,sugarandethanol

concen-trationswereanalyzed.Freshfermentationmedium(150mL)

wasaddedtotheflasksforsubsequentbatchfermentation.8

Analyticalmethods

Theviableyeastcell numberswere determinedbyadirect

counting methodusing ahaemacytometerwithmethylene

blue staining technique.31 For immobilized cells, 10g of

wetALM-immobilizedcellsweredissolvedin0.05Msodium

citratebufferasdescribedbyBangraketal.,17Aftertheloofah

sponge was removed, viable cells were determined using

methylenebluestainingasmentionedearlier.31The

fermen-tation brothwas centrifuged at 12,000rpmfor 10min, and

the supernatantwasthen analyzedfortotalsugar

concen-trationsusingthephenol-sulphuricacidmethod.32Thetotal

solublesolidsofthefermentationbrothwereestimatedusing

hand-heldrefractometer.31Theethanolconcentration(P,g/L)

was analyzed by gas chromatography (Shimadzu GC-14B,

Japan)usingapolyethyleneglycol(PEG-20M)-packedcolumn

with aflame ionizationdetector. Thetemperatures forthe

injector,detectorand columnovenwere 180◦C,250◦C and

150◦C,respectively.Nitrogenwasusedasacarriergas,and

2-propanolwasusedasaninternalstandard.6Thepressure

of nitrogen gas was controlled at 200kPa. The volumetric

ethanolproductivity(Qp,g/Lh)wascalculatedbythe

follow-ing equation:Qp=P/t,wherePisthe ethanolconcentration

(g/L),andtisthefermentationtime(h),givingthegreatest

ethanolconcentration.Theethanolyield(Yp/s)wascalculated

astheactualethanolproducedand wasexpressedasgram

ethanolpergramsugarutilized(g/g).Theethanol

fermenta-tionefficiency(Ey,%)wascalculatedbythefollowingequation:

Ey=((Yp/s)/0.511)×100,whereYp/sistheethanolyield(g/g),and

0.511isthe theoreticalmaximum ethanolyieldperunitof

glucosefromglycolyticfermentation(g/g).

TheScanningElectronMicroscope(SEM,Hitachimodel

S-3000N,Tokyo, Japan)wasusedtovisualizecharacteristicof

theimmobilizedcells.Theimmobilizedcellswerefrozenin

(4)

Table2–Thecentralcompositedesign(CCD)matrixforethanolproductionfromsweetsorghumjuicebythe

ALM-immobilizedcellsofS.cerevisiaeDBKKUY-53.

Runs Inoculum(%) Sugarconcentration(g/L) Temperature(◦C) P(g/L) Qp(g/Lh) Y

p/s(g/g) 1 10.0 260 37.5 83.13 1.73 0.42 2 10.0 260 37.5 79.71 1.66 0.44 3 10.0 201 37.5 84.03 1.75 0.49 4 7.0 295 33.0 96.64 1.61 0.45 5 13.0 295 42.0 44.85 0.75 0.46 6 10.0 260 37.5 77.01 1.60 0.43 7 7.0 225 42.0 50.15 1.04 0.43 8 10.0 260 37.5 81.35 1.69 0.44 9 13.0 225 33.0 96.43 1.61 0.48 10 5.0 260 37.5 81.58 1.36 0.43 11 7.0 295 42.0 25.71 0.54 0.39 12 10.0 319 37.5 78.04 1.30 0.41 13 10.0 260 45.0 24.36 0.51 0.39 14 13.0 295 33.0 99.70 1.66 0.45 15 10.0 260 30.0 93.84 1.30 0.43 16 7.0 225 33.0 95.39 1.59 0.45 17 10.0 260 37.5 85.98 1.79 0.45 18 13.0 225 42.0 49.86 1.04 0.42 19 15.0 260 37.5 86.06 1.79 0.42

P,ethanolconcentration;Qp,ethanolproductivity;Yp/s,ethanolyield;Ey,ethanolfermentationefficiency.

weresputteredwithgold(EMITECHmodelK500X,Kent,UK) andphotographed.

Results

Ethanolproductionusingfree-andALM-immobilizedcell systems

Theresultsoftheethanolproductionatrelativelyhigh tem-perature (37◦C) from SSJ containing 200g/Lof sugar using freecellsandcellsimmobilizedinloofahspongesofdifferent dimensionsaresummarizedinTable1.Theethanol

concen-trationsand volumetricethanolproductivitiesproduced by

boththefreeand theALM-immobilized cellswere not

sig-nificantly different. Thismight bedueto the factthat the

initiallivingcellconcentrationsofbothfreelysuspendedcells

andimmobilizedcellsweresimilar.Itshouldbenotedfrom

thecurrentstudythatcellsintheALM-immobilizedsystem

couldutilizehigheramountofsugarsthanthatinthe

free-cellsystem,resultinginlessresidualsugarconcentrationin

the fermentation broth. As a result, the ALM-immobilized

cells exhibited slightly higher ethanol concentrations and

volumetric ethanol productivities than the free cells. The

highestethanolconcentration(76.46–76.75g/L)and

volumet-ricethanolproductivity(1.59–1.60g/Lh)wereachievedbythe

ALM-immobilizedcellswithadimensionof15×15×5mm3

and 20×20×5mm3, which were approximately 3.87% and

4.08%greaterthanthoseofthefreecells,respectively.With

respecttothe ethanolyield, thefree-cell systemexhibited

slightlyhigherethanolyieldthantheALM-immobilized

sys-tem. The cell concentrations during ethanol fermentation

weredetermined.Asobservedinthisstudy,theinitialliving

cellconcentration offreelysuspendedcells inthe

fermen-tationbrothwas1.68×107cells/mL,thenitwasenumerated

and reachedthe concentrationof1.37×108cells/mL atthe

end of fermentation (48h). On the other hand, the initial

living cell concentrations of ALM-immobilized cells in

dif-ferent dimensions ofloofah sponges were similar, ranging

from 1×107 to1.16×107cells/mL.Itshould benotedfrom

this study that the freely suspended cells were observed

apart from the immobilized cells in the ALM-immobilized

cellssystem,resultinginthetotallivingcellconcentrations

of8.85×107to9.38×107cells/mLafter48hoffermentation,

which was slightly lower than that of the free cells

sys-tem (Additionalinformationsection,Table2). Accordingto

the results demonstrated in Table 1 and additional

infor-mation section, Table 2, it was plausible that both freely

suspendedcellsandimmobilizedcellscontributedinthe

con-version of sugar into ethanol in the ALM-immobilized cell

system.

It should be noted that the ethanol

concentra-tions and volumetric ethanol productivities obtained

from the ALM-immobilized cells in 15×15×5mm3 and

20×20×5mm3loofahspongeswerenotsignificantly

differ-ent(Table1).BecausetheALM-immobilizedcellsystemusing

20×20×5mm3 loofah sponges exhibited more compact

structure and its preparationwas alsoeasier than the cell

system using the 15×15×5mm3 loofah sponges, it was

selectedasthesystemforfurtherexperiments.

Optimizationofethanolproductionconditionsduring

fermentationbyALM-immobilizedcellsusingacentral

compositedesign(CCD)

Theoptimumlevels ofthe inoculumsize, the initialsugar

concentrationandtheincubationtemperatureduringethanol

productionfromSSJbyALM-immobilizedcellswereevaluated

usingaCCDviatheDesignexpertsoftware.The

experimen-taldesignmatricesalongwiththeresponsevariables(ethanol

concentrationand ethanolproductivity)aresummarizedin

(5)

experi-Table3–KineticparametersofrepeatedbatchethanolproductionfromsweetsorghumjuicebytheALM-immobilized

cellsofS.cerevisiaeDBKKUY-53.

Batch P(g/L) Qp(g/Lh) Yp/s(g/g) X0(cells/cm3) 1 82.54±0.60 1.38±0.02 0.40±0.01 1.40×107 2 84.75±0.87 1.41±0.01 0.44±0.01 6.04×107 3 82.29±1.08 1.37±0.02 0.42±0.02 5.68×107 4 81.50±1.16 1.36±0.06 0.40±0.01 4.84×107 5 80.63±1.15 1.34±0.10 0.42±0.02 3.06×107 6 82.80±1.27 1.38±0.12 0.43±0.00 2.87×107

P,ethanolconcentration;Qp,ethanolproductivity;Yp/s,ethanolyield;X0,initiallivingcellconcentrationineachbatch.

mentsrangedfrom24.36to99.70g/Lwiththeethanolyields ranging from 0.39 to 0.49g/g. The predicted values of the ethanolconcentrationsinthisstudywererangedfrom15.71to 100.31g/L(datanotshown).Aregressionanalysiswasapplied totheexperimentaldatashowninTable2,andthe

second-orderpolynomialequation (3)fortheprediction ofethanol

concentration(P,g/L)asafunctionoftheprocessparameters

includingtheinoculumsize(A,%),initialsugarconcentration

(B,g/L),andincubationtemperature(C,◦C),wasasfollows:

P(g/L)=+82.39+2.22A−2.61B−24.37C+3.08AB+

2.71AC−4.29BC−0.34A21.35B29.08C2 (3)

Therelativelyhighcoefficientofdetermination(R2)ofthe

regressionoftheabovemodel(0.9698)indicatesthat96.98%

oftheethanolconcentrationcouldbeexplainedbythe

estab-lishedmodel.Thep-valueofthelack-of-fittestwasabove0.05

(0.0891),suggestingthatthemodelisreliable.Thestatistical

significanceoftheregressionmodelofethanolconcentration

wasevaluated byANOVA, andthe resultsare summarized

inadditionalinformationsection,Table3.Inthisstudy,the

establishedmodelwasfoundtobehighlysignificantbecause

the p-value of the experiment was less than 0.05. These

resultsindicatedthattheincubationtemperature(C)andthe

quadratictermsoftheincubationtemperature(C2)had

sig-nificanteffectsontheethanolconcentrationcomparedwith

otherprocessparameters.

The3-Dresponsesurfaceplots(Fig.1A)showingtheeffects

oftheprocessparametersonethanolconcentrationwere

gen-eratedusingthedatainEq.(3).Generally,theresponsesurface

plotscanbeusedtoexplaintheinteractionbetweentwo

pro-cess parameters when another process parameter is fixed

atacentrallevel. Basedon theresponsesurface plots,the

optimumlevelsoftheprocessparametersneededtoobtain

themaximumethanolconcentrationcanbedetermined.9As

showninFig.1A,increasingtheinoculumsizeincreasesthe

ethanolconcentration.Ontheotherhand,theethanol

con-centrationdecreases when theinitial sugarconcentrations

andtheincubationtemperaturesareincreased.

Theregression and the response surfaceanalyses were

alsoevaluatedtostudy theeffects ofinoculum size,initial

sugarconcentrationandincubationtemperatureonethanol

productivity.As shown in Table 2, the actual ethanol

pro-ductivitiesmeasuredin19experimentsrangedfrom0.51to

1.79g/Lh,whicharereliablyclosetothepredictedvaluesof

0.32–1.76g/Lh.Todevelopaquadraticpolynomialregression

modelandasecond-orderpolynomialequation(4)forthe

pre-dictionofthefinalethanolproductivity(Qp,g/Lh)asafunction

oftheprocessparameters,includingtheinoculumsize(A,%),

theinitialsugarconcentration(B,g/L),andincubation

tem-perature(C,◦C),theethanolproductivitiesprovidedinTable2

wereused,andthepredictionequationwasasfollows:

Qp(g/Lh)=+1.71+0.073A−0.011B−0.32C+0.030AB+

0.017AC−0.11BC−0.065A20.085B20.30C2 (4)

TheresultsoftheANOVAshowninadditionalinformation

section,Table4revealedthatthismodelwashighly

signifi-cant.Inaddition,thelineartermsofthesugarconcentration

(B),incubationtemperature(C),theinteractionbetweensugar

concentrationandincubationtemperature(BC),thequadratic

termsofthesugarconcentration(B2)andincubation

temper-ature(C2)werealsosignificant.TheR2valueoftheregression

(0.9512)suggeststhat95.12%ofthevariabilityintheresponse

couldbeexplainedbythismodel.Thep-valueof“lack-of-fit

tests”(0.0644)wasnotsignificant.Theseresultsclearly

indi-catethatthemodelisreliable.

The 3-D response surface plots showing the effects of

various parameters on ethanol productivity are illustrated

in Fig. 1B. The results indicate that ethanol productivity

increaseswhentheinoculumsizeisincreased.Ontheother

hand, the ethanol productivity decreases when the initial

sugar concentrations and the incubation temperatures are

increased.

Repeatedexperimentswereperformedtoverifythe

pre-dicted optimum values. The final optimum values of the

parametersfromtherepeatedexperimentswereasfollows:

an inoculum size of11.05%, an initialsugar concentration

of 277.06g/L, and anincubation temperature of33.55◦C.A

maximum ethanolconcentration and avolumetricethanol

productivity of 97.54g/L and 1.36g/Lh, respectively, were

obtainedfromtheALM-immobilizedcellsystemunderthese

optimumconditions(Fig.2).Theactualethanolconcentration

obtainedinthisstudyisreliablyclosetothepredictedvalue

(97.76g/L),whereas thatofavolumetricethanol

productiv-ityisslightlydifferentfromthepredictedvalue(1.76g/Lh).It

shouldbenotedfromthecurrentstudythathighlevelsof

sug-arsandtotalsolublesolidremainedinthefermentationbroth.

Thismightbeduetothenegativeeffectsofhigh

concentra-tionsofsugarandethanolongrowthandmetabolicprocesses

inyeastcells.15Bytheway,theresultsofthisstudy

(6)

87 1.8 1.675 1.55 1.425 1.3 12.97 11.49 10.00 8.51 7.03 1.9 1.55 1.2 0.85 0.5 33.04 35.27 37.50 39.73 41.96 7.03 8.51 99 80.25 61.5 42.75 24 295.68 277.84 260.00 242.16 224.3241.96 39.73 37.50 35.27 33.04 10.00 11.49 12.97 24 42.5 61 79.5 98 12.97 11.49 10.00 8.51 1.9 1.55 1.2 0.85 0.5 295.68 277.84 260.00 242.16 224.32 41.96 39.73 37.50 35.27 33.07 7.0341.96 39.73 37.50 35.27 33.04 295.68 277.84 260.00 242.16 224.32 83.25 79.5 75.75 72 12.97 11.49 10.00 8.51 7.03 295.68 277.84 260.00 242.16 224.32 B: sugar concentration B: sugar concentration B: sugar concentration productivity productivity productivity ethanol concentr ation ethanol concentr ation ethanol concentr ation B: sugar concentration A: Inoculum size A: Inoculum size C: temperature C: temperature C: temperature C: temperature A: Inoculum size A: Inoculum size

A

B

Fig.1–The3-Dresponsesurfaceplotsshowingtheeffectsofvariousparametersonethanolconcentration(A)andethanol productivity(B)bytheALM-immobilizedcellsofS.cerevisiaeDBKKUY-53.

Table4–Comparisonofrepeated-batchethanolproductionbytheALM-immobilizedcellsofthermotolerantyeastS.

cerevisiaeDBKKUY-53andotherimmobilizedcellsystems.

Strain C-source Carrier P(g/L)a Q

p(g/Lh)a Yp/s(g/g)a References

S.cerevisiae Glucoseand sucrose

Sorghumbagasse 96(13batches) 100(21batches)

NA 0.48 Yuetal.35

S.cerevisiaeNP01 Sweetsorghum juice

Freshsorghum stalk

99.28(8batches) 1.36 0.47 Ariyajaroenwong

etal.34

S.cerevisiaeM30 Palmsugar Thin-shellsilk cocoon

81.9(5batches) 1.71 0.45 Rattanapanetal.1

S.cerevisiaeIR2 Sugarbeetjuice Loofahsponge 76(3batches) NA 0.39 Ogbonnaetal.28

S.cerevisiaeM30 Canemolasses Alginate-loofah-matrix (ALM)

81.4(3batches) NA 0.43 Phisalaphongetal.15

S.cerevisiae Glucose Sucrose Chitosan-cover calciumalginate 30.7(8batches) 31.8(8batches) NA NA 0.31 0.34 Duarteetal.36 S.cerevisiae DBKKUY-53 Sweetsorghum juice Alginate-loofah-matrix (ALM)

82.4(6batches) 1.37 0.42 Thisstudy

S0,initialsugarconcentration;P,ethanolconcentration;Qp,ethanolproductivity;Yp/s,ethanolyield;NA,notavailable.

(7)

Time (h) 0 12 24 36 48 60 72 84 96 R e si d u al su ga r c o n c e n tr a ti o n ( g L -1) 0 50 100 150 200 250 300 T o ta l solu b le solid ( B x) 0 5 10 15 20 25 30 E th a no l c o nc e n tr a ti o n ( g L -1) 0 20 40 60 80 100 120 pH 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

Fig.2–VerificationexperimentsofethanolproductionfromsweetsorghumjuiceusingtheALM-immobilizedcellsofS.

cerevisiaeDBKKUY-53.ThefermentationconditionsusedinthisexperimentwerebasedontheCCDresults,asfollows:an

inoculumsizeof11.05%,aninitialsugarconcentrationof277.06g/Landanincubationtemperatureof33.55◦C.䊉:ethanol, :totalsolublesolids,:totalresidualsugar,:pH.

modelisapowerfultooltodeterminetheoptimumvaluesof

theindividualvariablesandthemaximumresponsevaluesas

alsodescribedbyDongetal.33

Ethanolproductionbyrepeatedbatchfermentation

Ethanol production from SSJ by repeated batch

fermenta-tion for sixcycles usingthe ALM-immobilized cells ofthe

thermotolerantS.cerevisiaestrainDBKKUY-53wasevaluated.

Thetimeprofileofrepeatedbatchethanolproductionbythe

ALM-immobilizedcellsisshowninFig.3,andthemain

fer-mentationparameters are summarized inTable 3. Overall,

the almost constant ethanol concentrations and

volumet-ric ethanol productivities, ranging from 80.63 to 84.75g/L

and from 1.34 to 1.41g/Lh, respectively, suggest that the

ALM-immobilizedcellsarestablethroughouttheentire

oper-ation. Although a longer period of fermentation may be

needed to determine the long-term stability of the

ALM-immobilized cell system, repeated fermentation had to be

ceasedaftersixcyclesduetoalimitedamountofSSJ.A

previ-ousstudybyOgbonnaetal.19reportedthatcellsimmobilized

onloofahspongeswerestableaftermorethan35 cyclesof

repeatedbatchfermentationandmorethan500hof

contin-uousethanolproductionusingeithersucroseormolassesas

rawmaterials.

Fig.4showstheyeastcellsadsorbedontheinnerandouter

surfacesandinthemicro-porousstructureoftheALM.The

numberofyeastcellsattheendoftherepeatedbatch

fer-mentation(360h)increasedascomparedtotheinitialtimeof

fermentation.

Acomparativeanalysis betweenrepeated batchethanol

fermentationbyALM-immobilizedcells ofthe

thermotoler-antyeastS.cerevisiaeDBKKUY-53andotherimmobilizedcell

systemsreported inthe literaturewas illustrated (Table 4).

Theethanolconcentration,volumetricethanolproductivity

andethanolyieldproducedbytheALM-immobilizedcellsof

S.cerevisiaeDBKKUY-53werecomparabletothosereportedby

Rattanapanetal.,1Phisalaphongetal.15andOgbonnaetal.28

However,theethanolconcentration,volumetricethanol

pro-ductivityandethanolyieldobtainedinthisstudywerelower

thanthosereportedbyAriyajaroenwongetal.34andYuetal.35

Thismightbeduetothedifferencesinyeaststrainsand

car-riersusedforcellimmobilization.Ontheotherhand,lower

levels of ethanol concentrations and ethanol yields using

immobilizedcellssystemhavealsobeenreported.For

exam-ple, Duarte et al.36 reported the ethanol concentration of

30.7g/Lwiththeethanolyieldof0.31g/gfromglucose and

31.8g/Lwiththeethanolyieldof0.34g/gfromsucroseusingS.

cerevisiaeimmobilizedinchitosan-coveredcalcium alginate.

Inthissystem, chitosanactedasabarriertosubstrate and

products, resulting in the low substrate consumption and

ethanolproductionrate.

Discussion

Cell-immobilization has been proposed as one of the

fer-mentation approaches to improve the ethanol production

efficiencysinceitprovidesseveraladvantages,suchas

pro-longedactivityandstabilityofthecells,theabilitytorecycle

thebiocatalysts,increasedtolerancetoahighsubstrate

con-centration, and easy product recovery.1,13–17 In this study,

S.cerevisiaeDBKKUY-53wassuccessfullyimmobilizedinthe

ALM,oneofthemostpromisingnaturalcarriersforcell

immo-bilization, and its ethanolfermentationactivities usingSSJ

as a raw material were determined. Although the ethanol

production efficiencies in terms of ethanol concentrations

and volumetric ethanol productivities between the

ALM-immobilized cells and the free cells were not significantly

different,theethanolconcentrationsandvolumetricethanol

productivitiesproducedbytheALM-immobilizedcells were

slightlyhigherthanthoseofthefreecells.Theresidualsugar

concentrationsinthefermentationbrothoftheimmobilized

cell cultures were alsoless than those inthe broth ofthe

(8)

Time (h) 0 24 48 72 96 120144168192216240264288312336360384 pH 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 Tota l s o lu b le so lid ( B x) 0 5 10 15 20 25 30 35 R e s id u a l s u g a r co n c en tr a tio n ( g L -1) 0 50 100 150 200 250 300 E th a n o l c o n c en tr a tio n ( g L -1) 0 20 40 60 80 100

Fig.3–Timeprofileofrepeatedbatchethanolproduction fromsweetsorghumjuicebytheALM-immobilizedcellsof

S.cerevisiaeDBKKUY-53.䊉:ethanolconcentration,:

residualsugarconcentration,:totalsolublesolid,:pH.

study,theALM-immobilizedcellsexhibitedslightlylowercell

numberthanthefreecells.Thesefindingsdemonstratedthat

the immobilizedcell cultures exhibitedhigher ethanol

fer-mentationactivitythanthefreecellcultures.Onepossibilityis

thatthematrixofcarriersmayprotectyeastcellsfromstress

conditionssuchashightemperatureorhighethanol

concen-trationduringfermentation,allowingthemtoperformbetter

fermentationactivitythanthefreecells.15Withrespecttothe

ethanolyieldinthecurrentstudy,theALM-immobilizedcells

exhibitedslightlylowerethanolyieldthanthefreecells.This

mightbeduetothefactthattheimmobilizedcellcultures

utilized sugarsnotonlyforethanolproductionbut alsofor

synthesisofothermetabolizessuchassaturatedfattyacids,

glycerolortrehalose,whichareinvolvedintheethanol

tol-eranceofyeastcellsunderstressconditions.35Toclarifythis

hypothesis,furtherinvestigationisneeded.

Itshouldbenotedthattheutilizationofsugarsbythe

ALM-immobilizedcellswasnotrestrictedwiththecarriersystem,

suggestedthatthe diffusionofthesubstrates wasnot

pre-ventedbythecarriers,whichwerehighlyporousandthus,

facilitatedthemasstransferofthesystem.Theresultsofthe

currentstudywereingoodagreementwiththosereportedby

Phisalaphongetal.,15Pachecoetal.37andLeetal.38

Thereareseveralfactorsinfluencingtheethanol

produc-tionefficiency6,7,14,18;however,inthisstudy,onlythreemajor

factors including the inoculum size, the initialsugar

con-centrationandtheincubationtemperaturewerefocused.As

foundinthisstudy,increasingtheinoculumsizeresultedin

theincreasesoftheethanolconcentration,whichwas

sim-ilarwiththatreportedbyNuanpengetal.7Onthecontrary,

theethanolconcentrationandethanolproductivitydecrease

whentheinitialsugarconcentrationsandtheincubation

tem-peratures are increased (Fig. 1). This might be due to the

negativeeffectsofhighsugarconcentrationsandhigh

incu-bation temperaturesongrowth,cell viabilityandmetabolic

processesinyeastcells.Baietal.39andOzmichiandKargi40

reported that high sugar concentrations caused negative

effectsoncellviabilityandmorphologyduetoanincreasein

theosmoticpressure,leadingtoareductioninthecellbiomass

andethanolproductionefficiency.Likewise,ithasalsobeen

reportedthatrelativelyhightemperatureconditionscausea

modificationofplasmamembranefluidityandareductionin

theeffectivenessoftheplasmamembrane,resultinginthe

leakage ofessential cofactorsand coenzymes requiredfor

theactivityofenzymesinvolvedinglucosemetabolismand

ethanolproduction.41Relativelyhightemperatureconditions

havealsobeenreportedtocauseadenaturationofcellular

pro-teins,leadingtothereductionofcellgrowthandfermentation

activity.42

ItshouldbenotedfromtheexperimentalusingCCDmodel

that the maximum ethanol concentration and volumetric

ethanolproductivitywerederivedfromdifferentfermentation

conditions.Inthisstudy,amaximumethanolconcentration

wasachievedfromrun14withtheconditionsasfollows;13%

inoculumsize,295g/Lsugarconcentrationand33◦C,whilea

maximumvolumetricethanolproductivitywasachievedfrom

run 19 with the conditions asfollows; 15% inoculum size,

260g/Lsugarconcentrationand37.5◦C.Thereisacorrelation

betweentheinoculumsize,theinitialsugarconcentrationand

(9)

produc-A

B

C

D

E

D

Fig.4–SEMimageoftheALM-immobilizedcellsinloofahspongeswithadimensionof20mm×20mm.(A)Pureloofah sponge;(B)alginate-loofahsponge(withoutyeastcells);(C)yeastcellsincorporatedontheoutersurfaceoftheALM;(D) yeastcellsincorporatedontheinnersurfaceoftheALM;(E)ALM-immobilizedcellsat0h,and(F)ALM-immobilizedcellsat 360hafterfermentation.Thewhiteandblackarrowheadsindicatetheyeastcellsandloofahsponge,respectively.

tivity.Itclearlyindicatedfromthisstudythatincreasingthe

inoculumsizeand incubationtemperaturesresultedinthe

increasesofthevolumetricethanolproductivity.Ontheother

hand,thevolumetricethanolproductivitydecreaseswhenthe

initialsugarconcentrationsincreased.

Based on the CCD model, the optimal conditions for

ethanol production from SSJ using the ALM-immobilized

cells were obtained in the current study. In order to

ver-ifythe predicted optimalvaluesoftheindividual variables

from CCD results, repeated ethanolfermentation was

per-formed(Fig. 2). Althoughthe actual ethanolconcentration

(97.54g/L)obtainedinthisexperimentwasrelativelycloseto

thepredictedvalue(97.76g/L),theactualvolumetricethanol

productivity (1.36g/Lh)was slightly lower than that ofthe

predictedvalue(1.76g/Lh).Itwas plausiblethathighsugar

concentration (277.06g/L) may cause prolongation of

com-pletesugarutilization,resultinginlowervolumetricethanol

productivity.7,39,40

Oneoftheadvantagesofthecell-immobilizationsystemis

theabilitytorecyclethebiocatalysts.Inthisstudy,theethanol

productionfromSSJbyrepeatedbatchfermentationusingthe

ALM-immobilized cells ofS. cerevisiaeDBKKUY-53 was

per-formed. Asfoundinthis study,the ALM-immobilized cells

couldbeusedforatleastsixsuccessivecycleswithoutanyloss

ofethanolproductionefficiency(Fig.3).Ithasbeenreported

that highconcentrationsofethanolinhibit thegrowth and

metabolicprocessesofyeastcells.15Theenhancedcell

stabil-ityoftheimmobilizedcellsasobservedinthepresentstudy

suggests that the ALMcarriersmay protectthe yeast cells

fromsevereconditionsduringthefermentationprocess.The

increasedcellstabilityandcell productivityofthe

immobi-lizedsystemdemonstratedinthisstudyareconsistentwith

the reportsbyRattanapanetal.,1 Phisalaphongetal.15 and

Ariyajaroenwongetal.34Inaddition,anincreaseinthe

num-berofyeastcellsadsorbedontheinner andoutersurfaces

and inthe micro-porous structureofthe matrix based on

SEM observationatthe end ofthe repeatedbatch

fermen-tation(360h)ascomparedwiththatattheinitialtime(0h)

wasobserved(Fig.4),suggestingthathighethanolandsugar

(10)

yeastgrowth.Wepropose,fromthesefindings,thatthe

regen-erationandprotectionofimmobilizedcellsbytheALMarethe

mainfactorsthatworksynergisticallytopreventcellactivity.

S.cerevisiaeDBKKUY-53hasbeenreportedasoneofthe

goodcandidatesforethanolproductionathightemperature

conditions.7 Although, in this work, the predicted optimal

temperaturebased on the CCD resultsforethanol

produc-tionfromSSJbytheALM-immobilizedcellsofthisstrainwas

33.55◦C,ithasanabilitytoproducerelativelyhighlevelsof

ethanol concentrations and volumetric ethanol

productivi-ties atrelatively high temperature ofup to 40◦C.Previous

studybyNuanpengetal.,7demonstratedthatthemaximum

ethanolconcentrationsandvolumetricethanolproductivities

producedundertheoptimalconditionsusingthefree-cell

sys-temofS.cerevisiaeDBKKUY-53were106.82g/Land2.23g/Lhat

37◦C,and85.01g/Land2.83g/Lhat40◦C,respectively,using

SSJcontainingsugarconcentrationof250g/Lasaraw

mate-rial.ThesefindingssuggeststhatS.cerevisiaeDBKKUY-53has

ahigh potentialforhigh-temperatureethanolfermentation

(HTEF),whichprovidesseveraladvantages,suchasincreasing

therateoffermentation,decreasingariskofcontamination,

andreducing the costofthecoolingsystem andoperating

processes.43,44 Itshould be notedthat the level ofethanol

concentrationandvolumetricethanolproductivityobtained

at37◦Cusingthefree-cellsysteminthisstudy(Table1)was

lowerthanthatofNuanpengetal.7Thismightbeduetothe

differencesinthefermentationconditions.Inthisstudy,the

sugarconcentrationusedintheethanolfermentation

exper-imentusingthe free-cellsystem was200g/L,whilethat of

Nuanpengetal.7was250g/L.Furthermore,theconditionfor

ethanolproductionusing the free-cellsystem inthis work

wasnotyetoptimizedascomparedwiththatofNuanpeng

etal.7

Conclusion

ALM-immobilized cells were successfully developed, and

their ethanol fermentation activities using SSJ as a raw

material were evaluated. The ethanol concentration and

volumetricethanol productivity produced bythe free cells

andthecellsimmobilizedindifferentdimensionsofloofah

spongeswerenotsignificantlydifferent.Basedonthestability

and mass transfercharacteristics, the ALM with a

dimen-sion of 20×20×5mm3 was shown to be effective for cell

immobilization. The optimum conditions for ethanol

pro-ductionbythe ALM-immobilizedcells were asfollows:the

inoculum sizeof11.05%, the initialsugar concentration of

277.06g/Landtheincubationtemperatureof33.55◦C.Under

theseoptimum conditions, the maximum ethanol

concen-trationandthe volumetricethanolproductivity of97.54g/L

and 1.36g/Lh, respectively, were achieved. The ability of

ALM-immobilized cells to be used in repeated batch

fer-mentation for at least six successive cycles without any

loss of ethanol production efficiency indicates that

ALM-immobilized cells can be potentially used for industrial

ethanolproduction.Furtherstudiestoimproveethanol

pro-ductivity and yield such as testing ethanol production by

ALM-immobilizedcellsduringcontinuousfermentation,need

tobeperformed.

Conflict

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgments

Thisresearch wasfinancially supported bytheEnergy

Pol-icyandPlanningOffice,MinistryofEnergy,Thailand,andby

theResearchFundforSupportingaLecturertoAdmita

High-PotentialStudenttoStudyandPerformResearchonHisExpert

ProgramYear2009,bytheGraduateSchool,KhonKaen

Univer-sity,Thailand,bytheFermentationResearchCenterforValue

AddedAgriculturalProducts(FerVAAP),andbytheKhonKaen

University.WewouldliketothankAssociateProf.Dr.Prasit

Jaisil,FacultyofAgriculture,KhonKaenUniversity,Thailand

forprovidingsweetsorghumjuice.

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,atdoi:10.1016/j.bjm.2017.12.011.

r

e

f

e

r

e

n

c

e

s

1.RattanapanA,LimtongS,PhisalaphongM.Ethanol

productionbyrepeatedbatchandcontinuousfermentations ofblackstrapmolassesusingimmobilizedyeastcellson thin-shellsilkcocoons.ApplEnergy.2012;88:4400–4404. 2.DuarteJC,RodriguesJAR,MoranPJS,ValencaGP,NunhezJR.

Effectofimmobilizedcellsincalciumalginatebeadsin alcoholicfermentation.AMBExpress.2013;3:31.

3.FarrellAE,PlevinRJ,TurnerBT,JonesAD,O’HareM,Kammen DM.Ethanolcancontributetoenergyandenvironmental goals.Science.2006;311:506–508.

4.HillJ,NelsonE,TilmanD,PolaskyS,TiffanyD.

Environmental,economic,andenergeticcostsandbenefits ofbiodieselandethanolbiofuels.ProcNatlAcadSciUSA.

2006;30:11206–11210.

5.YanJ,LinT.BiofuelsinAsia.ApplEnergy.2009;86:S1–S10. 6.LaopaiboonL,NuanpengS,SrinophakunP,KlanritP,

LaopaiboonP.Ethanolproductionfromsweetsorghumjuice usingveryhighgravitytechnology:effectsofcarbonand nitrogensupplementations.BioresourTechnol.

2009;18:4176–4182.

7.NuanpengS,ThanonkeoS,YamadaM,ThanonkeoP.Ethanol productionfromsweetsorghumjuiceathightemperature usinganewlyisolatedthermotolerantyeastSaccharomyces cerevisiaeDBKKUY-53.Energies.2016;9:253.

8.NuanpengS,LaopaiboonL,SrinophakunP,KlanritP,JaisilP, LaopaiboonP.Ethanolproductionfromsweetsorghumjuice underveryhighgravityconditions:batch,repeated-batch andscaleupfermentation.ElectronJBiotechnol.2011;14:1–12. 9.WangL,LuoZ,ShahbaziA.Optimizationofsimultaneous

saccharificationandfermentationfortheproductionof ethanolfromsweetsorghum(Sorghumbicolor)bagasseusing responsesurfacemethodology.IndCropsProd.

2013;42:280–291.

10.PrasadS,SinghA,JainN,JoshiHC.Ethanolproductionfrom sweetsorghumsyrupforutilizationasautomotivefuelin India.EnergyFuel.2007;21:2415–2420.

(11)

11.WuX,StaggenborgS,PropheterJL,RooneyWL,YuJ,WangD. Featuresofsweetsorghumjuiceandtheirperformancein ethanolfermentation.IndCropsProd.2010;31:164–170. 12.ShenF,ZengY,DengS,LiuR.Bioethanolproductionfrom

sweetsorghumstalkjuicewithimmobilizedyeast.Process EnvironSci.2011;11:782–789.

13.KourkoutasY,BekatorouA,BanatIM,MarchantR,Koutinas AA.Immobilizationtechnologiesandsupportmaterials suitableinalcoholbeveragesproduction:areview.Food Microbiol.2004;21:377–397.

14.NajafpourG,YounesiH,IsmailKSK.Ethanolfermentationin animmobilizedcellreactorusingSaccharomycescerevisiae. BioresourTechnol.2004;92:251–260.

15.PhisalaphongM,BudiraharjoR,BangrakP,MongkolkajitJ, LimtongS.Alginate-loofaascarriermatrixforethanol production.JBiosciBioeng.2007;104:214–217.

16.GhorbaniF,YounesiH,SariAE,NajafpourG.Canemolasses fermentationforcontinuousethanolproductioninan immobilizedcellsreactorbySaccharomycescerevisiae.Renew Energy.2011;36:503–509.

17.BangrakP,LimtongS,PhisalaphongM.Continuousethanol productionusingimmobilizedyeastcellsentrappedin loofa-reinforcedalginatecarriers.BrazJMicrobiol.

2011;42:676–684.

18.BeheraS,MohantyRC,RayRC.Ethanolproductionfrom mahula(MadhucalatifoliaL.)flowerswithimmobilizedcells ofSaccharomycescerevisiaeinLuffacylindricaL.spongediscs.

ApplEnergy.2011;88:212–215.

19.OgbonnaJC,LiuYC,LiuYK,TanakaH.Loofa(Luffacylindrica)

spongeasacarrierformicrobialcellimmobilization.J FermentBioeng.1994;78:437–442.

20.MazaliIO,AlvesOL.Morphosynthesis:highfidelityinorganic replicaofthefibrousnetworkofloofasponge(Luffa

cylindrical).AnnBrazAcadSci.2005;77:25–31.

21.GangulyR,DwivediP,SinghRP.Productionoflacticacidwith loofaspongeimmobilizedRhizopusoryzaeRBU2-10.Bioresour Technol.2007;98:1246–1251.

22.YuJ,ZhangX,TanT.Optimizationofmediaconditionsfor theproductionofethanolfromsweetsorghumjuiceby immobilizedSaccharomycescerevisiae.BiomassBioenergy.

2009;33:521–526.

23.YinglingB,ZongchengY,HonglingW,LiC.Optimizationof bioethanolproductionduringsimultaneoussaccharification andfermentationinveryhigh-gravitycassavamash.Anton VanLeeuw.2011;99:329–339.

24.ZhaoS,WangB,LiangX.Enhanceethanolproductionfrom stalksjuiceofsweetsorghumbyresponsesurface methodology.AfrJBiotechnol.2012;11:6117–6122.

25.CaoW,LiuR.Screeningandoptimizationoftraceelements supplementinsweetsorghumjuiceforethanolproduction.

BiomassBioenergy.2013;50:45–51.

26.FerreiraSLC,BrunsRE,FerreiraHS,etal.Box–Behnken design:analternativefortheoptimizationofanalytical methods.AnalChimActa.2007;597:179–186.

27.SinghA,TutejaS,SinghN,BishnoiNR.Enhanced

saccharificationofricestrawandhullsbymicrowave-alkali pretreatmentandlignocellulolyticenzymeproduction.

BioresourTechnol.2011;102:1773–1782.

28.OgbonnaJC,MashimaJ,TanakaH.Scaleupoffuelethanol productionfromsugarbeetjuiceusingloofasponge immobilizedbioreactor.BioresourTechnol.2001;76:1–8. 29.EiadpumA,LimtongS,PhisalaphongM.High-temperature

ethanolfermentationbyimmobilizedcocultureof

KluyveromycesmarxianusandSaccharomycescerevisiae.JBiosci Bioeng.2012;3:325–329.

30.SrideeW,LaopaiboonL,JaisilP,LaopaiboonP.Theuseof driedspentyeastasalow-costnitrogensupplementin ethanolfermentationfromsweetsorghumjuiceundervery highgravityconditions.ElectronJBiotechnol.2011;14:1–15. 31.ZoecklienBW,FugelsangKC,GumpBH,NuryFS.Wine

AnalysisandProduction.NewYork:Chapman&Hall;1995. 32.MecozziM.Estimationoftotalcarbohydrateamountin

environmentalsamplesbythephenol-sulphuricacid methodassistedbymultivariatecalibration.ChemometrIntell Lab.2005;79:84–90.

33.DongHN,ZhaoXM,MaYY,ZhangMH.Optimizationofa syntheticmediumforethanolproductionby

xylose-fermentingZymomonasmobilisusingresponsesurface methodology.ChinSciBull.2012;57:3782–3789.

34.AriyajaroenwongP,LaopaiboonP,JaisilP,LaopaiboonP. Repeated-batchethanolproductionfromsweetsorghum juicebySaccharomycescerevisiaeimmobilizedonsweet sorghumstalks.Energies.2012;5:1215–1228.

35.YuJ,ZhangX,TanT.Annovelimmobilizationmethodof

Saccharomycescerevisiaetosorghumbagasseforethanol production.JBiotechnol.2007;129:415–420.

36.DuarteJC,RodriguesJAR,MoranPJS,ValencaGP,NunhezJ. Effectofimmobilizedcellsincalciumalginatebeadsin alcoholicfermentation.AMBExpress.2013;3:31.

37.PachecoAM,GondimDR,Gonc¸alvesLRB.Ethanolproduction byfermentationusingimmobilizedcellsofSaccharomyces cerevisiaeincashewapplebagasse.ApplBiochemBiotechnol.

2010;161:209–217.

38.LeHD,ThanonkeoP,LeVVM.Impactofhightemperatureon ethanolfermentationbyKluyveromycesmarxianus

immobilizedonbananaleafsheathpieces.ApplBiochem Biotechnol.2013;171:806–816.

39.BaiFW,ChenLJ,ZhangZ,AndersonWA,Moo-YoungM. Continuousethanolproductionandevaluationofyeastcell lysisandviabilitylossunderveryhighgravitymedium conditions.JBiotechnol.2004;110:287–293.

40.OzmichiS,KargiF.Comparisonofyeaststrainsforbatch ethanolfermentationofcheese-wheypowder(CWP) solution.LettApplMicrobiol.2007;44:602–606.

41.WalkerGM.Therolesofmagnesiuminbiotechnology.Crit RevBiotechnol.1994;14:311–354.

42.RoukasT.Solid-statefermentationofcarobpodsforethanol production.ApplMicrobiolBiotechnol.1994;41:296–301. 43.LimtongS,SringiewC,YongmanitchaiW.Productionoffuel

ethanolathightemperaturefromsugarcanejuicebynewly isolatedKluyveromycesmarxianus.BioresourTechnol.

2007;98:3367–3374.

44.SootsuwanK,IrieA,MurataM,LertwattanasakulN, ThanonkeoP,YamadaM.ThermotolerantZymomonas mobilis:comparisonofethanolfermentationcapacitywith thatofanefficienttypestrain.OpenBiotechnolJ.2007;1:52–58.

Referências

Documentos relacionados

Essa realidade de um ser miserável e condenado a dívidas provém da condição social na qual Naziazeno está inserido, que é a de um servidor público que não recebe

A partir da presente pesquisa buscou-se conceituar e analisar as novas formas de economia colaborativa que estão se consolidando na sociedade globalizada, bem como a real necessidade

Efficiency of a fixed-bed and gas- lift three-column reactor for continuous production of ethanol by pectate and alginate immobilized Saccharomyces cerevisiae cells. Biofilm

ABM são particularmente indicados para aferir quando o estado de equilíbrio de sistemas poderá estar prestes a deixar de existir, que comportamento pode então ser

Effect of pH, dextrose and yeast extract on cadmium toxicity on Saccharomyces cerevisiae PE-2.. Ação tóxica do cádmio sobre a levedura Saccharomyces cerevisiae pE-2: influência do

O ensino acadêmico nos cursos de produção tem uma necessidade de melhorias e uma elaboração de um laboratório, pois como os cursos de elétrica e mecânica, por exemplo, que

dado o forte envolvimento das empresas estatais chinesas no Programa de investimentos Públicos angolano através das linhas de crédito concedidas pelo governo

Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Utilization of amino acids to enhance glutathione production in