• Nenhum resultado encontrado

Survey on pathogenic Escherichia coli and Salmonella spp. in captive cockatiels (Nymphicus hollandicus)

N/A
N/A
Protected

Academic year: 2021

Share "Survey on pathogenic Escherichia coli and Salmonella spp. in captive cockatiels (Nymphicus hollandicus)"

Copied!
7
0
0

Texto

(1)

brazilian journal of microbiology49S(2018)76–82

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Veterinary

Microbiology

Survey

on

pathogenic

Escherichia

coli

and

Salmonella

spp.

in

captive

cockatiels

(Nymphicus

hollandicus)

Patricia

Silveira

de

Pontes

a

,

Selene

Dall’

Acqua

Coutinho

a,∗

,

Renata

de

Oliveira

Iovine

a

,

Marcos

Paulo

Vieira

Cunha

b

,

Terezinha

Knöbl

b

,

Vania

Maria

de

Carvalho

c

aUniversidadePaulista,ProgramadePós-Graduac¸ãoemPatologiaAmbientaleExperimental,SãoPaulo,SP,Brazil

bUniversidadedeSãoPaulo,FaculdadedeMedicinaVeterináriaeZootecnia,DepartamentodePatologia,SãoPaulo,SP,Brazil cUniversidadedeSãoPaulo,FaculdadedeMedicinaVeterináriaeZootecnia,DepartamentodePatologia,LaboratóriodePatologia

ComparadadaVidaSelvagem,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6December2017 Accepted10May2018

Availableonline20August2018 AssociateEditor:WaldirElias

Keywords: Escherichiacoli Salmonellasp Cockatiel Nymphicushollandicus Antimicrobialresistance

a

b

s

t

r

a

c

t

We surveyed healthy captive cockatiels (Nymphicus hollandicus) for Escherichia coli and

Salmonellaspp.Cloacalswabswerecollectedfrom94cockatielskeptincommercial breed-ers,privateresidenciesandpetshopsinthecitiesofSãoPaulo/SPandNiterói/RJ(Brazil). ThreestrainsofE.colifromeachindividualweretestedforthepresenceofExPEC-, APEC-andDEC-relatedgenes.WeevaluatedtheblaTEM,blaSHV,blaOXA,blaCMY,blaCTX-M,tetA,tetB,

aadA,aphA,strAB,sul1,sul2,sul3,qnrA,qnrD,qnrB,qnrS,oqxAB,aac(6)-Ib-cr,qepAresistance genesandmarkersforplasmidincompatibilitygroups.Salmonellaspp.wasnotdetected.

E.coliwasisolatedin10%oftheanimals(9/94).FourAPECgenes(ironN,ompT,iss and

hlyF)weredetectedintwostrains(2/27–7%),andiss(1/27–4%)inoneisolate.Thehighest resistancerateswereobservedwithamoxicillin(22/27–82%),ampicillin(21/27–79%), strep-tomycin(18/27–67%),tetracycline(11/27–41%).Multiresistancewasverifiedin59%(16/27)of theisolates.WedetectedstrAB,blaTEM,tetA,tetB,aadA,aphaA,sul1,sul2,sul3resistancegenes

andplasmidIncgroupsin20(74%)ofthestrains.E.coliisolatedfromthesecockatielsareof epidemiologicalimportance,sincethesepetscouldtransmitpathogenicandmultiresistant microorganismstohumansandotheranimals.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthorat:RuaJorgeAmericano337apto71,SãoPaulo,Brazil.

E-mail:selene@uol.com.br(S.D.Coutinho).

https://doi.org/10.1016/j.bjm.2018.05.003

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Keepingpetsisassociatedwithphysicalandemotional bene-fitsduetoitspositiveeffectonpeople’slifequality;however, itmaypresentarisktopublichealth.1,2Thisisbecausethe relationshipbetweenmenandanimalsenablestransmission ofseveraldiseasesthroughpathogens’abilitytocolonize sev-eralhosts.3Therefore,petbirdssuchascockatielsmayharbor andtransmitzoonoticagentsthroughclosecontactwiththeir owners.1,4,5

Salmonellosis, a disease caused by bacteria of the

Salmonella genus, has great relevance due to its lethality andzoonoticpotential.6Infecteddomesticchickensare con-sideredthe mostcommon sourceofhumansalmonellosis; contaminated chicken meat and eggsare one ofthe main causesoffoodpoisoningworldwide.6Furthermore,wildand exoticavianspeciesarealsoconsideredSalmonellareservoirs.7

Escherichiacoliisacommensalbacteriumoftheintestinal microbiomeofhomeothermicanimals.However,pathogenic strainsarecapableofcausingintestinalandextraintestinal diseasesinhumans,andmammalandavianspecies,leading toseriouseconomiclossesandpublichealthissues.1,5,8

Aside from the zoonotic potential of these enterobac-teriaceae, concerns regarding antimicrobial resistance are currently on the rise.8,9 Broad use of antimicrobial drugs, eithertotreatdiseasesorinlivestockproduction,resultedin selectivepressureandtheconsequentappearanceof multire-sistantbacterialstrains.10

Antimicrobialresistantenterobacteriamaybetransmitted tohumansthroughanimalcontact,contaminatedfoodorthe environment.5,10Aftercolonizingnewhosts,theymay trans-ferresistancegenestomicroorganismsofthelocalmicrobiota. Antimicrobialresistancegenesmaythenrecombineamong thesestrains,creatingnewonesresistanttoseveraldrugs.5,10 Despite the great global concern with microbial resis-tances,thereislittleinformationavailableon the epidemi-ologicalrole ofpetbirds inthe epidemiologyofE. coliand

Salmonellaspp.6 Recentstudies inBrazil showed that free-ranging wild birds may harbor potentially pathogenic and antimicrobialresistantstrains.11

The aim of this study was to survey cloacal samples of captive cockatiels (Nymphicus hollandicus) for potentially pathogenic Salmonella spp. and E. coli. We also evaluated the antimicrobial resistanceprofile ofthe isolates, as well as resistance genes belonging to the main antimicrobial classes.

Materials

and

methods

Allanimal proceduresfollowed ethicalprinciplesand were approvedby the Ethical Committee inAnimal Use (237/14 CEUA/UNIP).

Wecollectedsamplesfrom94clinicallyhealthymaleand femalecockatiels(N.hollandicus) keptincaptivity:8from a petshop,28from differentprivateresidenciesand 58from commercialbreederslocatedinthecities ofSão Pauloand Niterói,intheStatesofSãoPauloandRiodeJaneiro(Brazil), respectively.

Upon physical restraining and after pericloacal asepsis with70%alcoholicsolution,twouretralswabswererubbed againstthecloacalmucosa,keptinrefrigeratedStuartmedia andprocessedwithin48h.

CloacalswabsamplesforE.coliscreeningwereseededin MacConkeyagar(DifcoTM,Maryland,EUA)andidentified fol-lowing routinebiochemical identification,12 including EPM, MILi and citrate(ProbacTM, SãoPaulo, SP,Brazil) identifica-tionkits.ThreedifferentE.coliisolatesfromeachanimalwere storedfortheremainingtests.

Swabs for Salmonella testing followed the protocol sug-gestedbyMichaeletal.,2003.13Theswabswerecultivatedin bufferedpeptonewaterat37◦Cby24h.Aliquotsof1mlwere subculturedin9mloftetrathionateMüller–Kauffmann(TMK, DifcoTM,Maryland,EUA).After24hofincubation,aliquotsof theselectivebrothswerestreakedontoxylose-lysine-tergitol 4agar(XLT4,DifcoTM,Maryland,EUA).After24hof incuba-tion (37◦C),typicalcoloniesofSalmonellawereisolated and subjectedtobiochemicalidentification.13

Weperformedpolymerasechainreaction(PCR)ontheE.coli

isolatesinsearchofextraintestinalpathogenicstrains(ExPEC) characteristicgenesbyaccessinggenespapC,14papEF,15sfa,14

fyuA,16 cnf1,15 hlyA,15 cvaC,16 and malX,16 aside from five avianvirulencepredictinggenes:ironN,17ompT,17hlyF,17iss,17 and iutA.17 Thefollowingdiarrheagenic-relatedgeneswere alsostudied:stx1,18 stx2,18 ST,19 LT,19 astA,20 ipaH,21 aggR,22

eae23, and bfpA.24 All E. coliisolates were submittedto the Fundac¸ãoOswaldoCruz(FIOCRUZ-RJ),areferencelaboratory, tobetestedwithO157andH7antisera.

Drugsensitivitywasevaluatedbydiffusingplates, follow-inginternationalestablishedstandards.25,26 Theuseddrugs (CefarTM,SãoPaulo,SP,Brazil)belongtothefollowing antimi-crobialcategories:␤-lactams–penicillin(amoxicillin–AMO andampicillin–AMP),␤-lactams–cephalosporins(cephalexin – CFE, cefoxitin – CFO and ceftiofur – CTF) and ␤-lactams – thienamycin(imipenem– IPM);aminoglycosides (strepto-mycin–ESTandgentamicin–GEN);tetracyclin(tetracyclin– TET);quinolones(ciprofloxacin–CIP,enrofloxacin–ENOand nalidixicacid –NAL);nitrofuran(nitrofurantoin–NIT); sul-fonamide(cotrimoxazol–SUT);anfenicol(chloramphenicol– CLO).Strainswereconsideredmultiresistantwhenresistant tothreeormoreantimicrobialcategories.27

Insearchofresistancegenes,weemployedPCRtechniques on the E. coli strains that presented antimicrobial resis-tantphenotypes.Wesearchedfor␤-lactamresistancegenes (blaTEM,28 blaSHV,28 blaOXA,28 blaCMY,29 and blaCTX-M28); and employedmultiplexto accesstetracycline(tetAand tetB),30 aminoglycoside (aadA,31 aphA,32 and strAB33), sulfonamide (sul1,33 sul2,31 and sul334), and quinolone resistance genes (qnrA,35qnrD,36qnrB,35qnrS,37oqxAB,35aac(6)-Ib-cr,38qnrC,35 andqepA39).

WeusedthePCR-basedreplicontyping(PBRT)techniqueon allE.coliisolatesinsearchofcharacteristicmarkersfor differ-entplasmidsoftheIncK/B,W,FIIA,FIA,FIB,Y,I1,F,X,HI1,N, H12andL/Mgroups.40

The chi-square test was employed to compare the fre-quency of bacteria from pet shop, private residences and commercial breeders. p-values ≤0.05 were considered significant.

(3)

78

brazilian journal of microbiology49S(2018)76–82

Results

Salmonellaspp.wasnotisolatedfromthecloacalsamples,on theotherhand,E.coliwasisolatedin10%(9/94)oftheanalyzed animals:onefrom apetshop(1/8–13%),threefromprivate residencies (3/28–11%), and five from commercial breeders (5/58–9%),withnostatisticaldifferencesbetweenbacterial iso-lationregardingtheindividual’sorigin.

Resultsofthe virulencepredictor genes and antimicro-bialresistanceprofilesofall27analyzedstrainsareshown

inTable1.

With the exception of APEC-relatedgenes, identified in twobirds,wedidnotdetectanyothermarkersrelatedtothe remainingExPEC(papC,papEF,sfa,iucD,fyuA,cnf1,hly,cvaC, malXandiutA)anddiarrheagenicE.coli(stx1,stx2,ST,LT,ial, aggR,eaeandbfpA).

NoneoftheevaluatedstrainswerepositiveforO157and H7antiseraagglutination.

All strainswere sensitive tonitrofurantoin. Thehighest resistancepercentagewasto␤-lactams(93%).Amoxicillinand ampicillinweretheantimicrobialswiththehighestnumber ofresistantstrains,81%(22/27)and78%(21/27),respectively, followedbystreptomycin(74%–20/27)(Fig.1).

Thecomparisonbetweenisolates’ resistancesand cock-atieloriginshowedthatbirdsfrompetshopandcommercial breeders were predominantly resistant to penicillins, 89% and100%,respectively,whileprivateresidencesisolateswere mostlyresistanttoaminoglycosides(100%)(Fig.2).

Table1showsthat30%(8/27)oftheisolateswereresistant

to seven or more of the tested antibacterial drugs. Resis-tancetooneormoreantimicrobialcategorieswasobserved in 67% (18/27) of the strains, while 59% (16/27) of them weremultiresistant(Table1).Themostfrequentlyobserved multiresistance profile was a combination of penicillins, cephalosporinsandaminoglycosides(Table1).

Weobservedthat96%(26/27)oftheE.colistrainspresented atleast one ofthe surveyedresistance genes (Table 1). In regardsto antimicrobialcategories,resistancegenesofthe aminoglycosideweredetectedin77% (20/26)ofthestrains, 54% (14/26) of the penicillin, 35% (9/26) of the tetracyclin and sulfonamide, and 4% (1/26) of the quinoloneisolates. Cephalosporin-relatedresistancegeneswerenotobserved.

Themostfrequentlydetectedgenesinthestudiedstrains werestrAB(17/26–65%)andblaTEM(14/26–54%).Themost var-iedresistancegenotypeprofilewastheblaTEMtetBaadaphaA

sul3,presentinthreestrainsisolatedfromonesingleanimal thatbelongedtoacommercialbreeder(Table1).

ThePBRT techniqueallowed usto identifyand classify plasmidsin74%(20/27)oftheE.coliisolates.TheIncFIBwas themostrecurrentInc,presentin67%(18/27)ofthestrains, followedbyIncI1(4/27–15%),IncFIA(3/27–11%)and IncY (2/27–7%).Fivesamplespresentedmorethan oneplasmid Incgroup.

Discussion

Dataon Salmonellaspp. epidemiologyinwildand domestic animalsareveryimportantinthedetectionoftheseagents’

potentialreservoirs.41Wedidnotisolatebacteriafrom this genusinthisstudy–asuggestionthatthestudiedcockatiels didnotpresentanyrisksoftransmittingsuchpathogensto humans oranimals, aspreviouslyobservedinastudy per-formedinpsittacines.41

Salmonellaspp.canbeconsideredoneofthemost impor-tant pathogen in commercial poultry industry, and the presenceofthesemicroorganismsisassociatedwith inten-sive breeding.At the same time, previous studies show a lowprevalenceofSalmonellaspp.inwildbirds,andmostof the reports are related to the illegal wildlife traded.7,29 In thisstudy,Salmonellaspp.wasnotdetectedinbirdsfrompet shop,privateresidencesorcommercialbreeders.However,the zoonoticimportanceofthisagentjustifiesitsmonitoringin aviaryspecies.

Oneofthefirstsurveystudies,performedin125psittacines of12differentspecies,detectedE.coliin14%ofthebirds42 resultssimilartoourfindings.However,laterstudies men-tionedhigherisolationpercentages,upto48%.41

Inthisresearch,wedidnotobserveanydifferencesinthe isolationofE.coliregardstoorigin (privateresidencies,pet shopsor commercialbreeders),concluding thatthe people handlingthesebirdswereexposedtosimilarrisks,regardless ofthebirds’origin.

Herein wetested avianvirulencepredictinggenes in27 strains:three(11%)isolatesfromcockatielslivinginprivate residencies presentedthe iss gene, two ofthem with iroN, ompTandhlyFgenes,allcharacteristicoftheAPECsubgroup. Therefore,althoughthesebirdswereapparentlyhealthy,they carriedpotentiallypathogenicstrains.

Studieshaveshowntheexistenceofgenotypicand phe-notypic similarities between avian extraintestinal E. coli

strains (APEC), urinary infections (UPEC),4,43 and neonatal meningitis.3Suchresultsreinforcethehypothesisthatbirds maybereservoirsofE.colipathogenictomammals.3,4,43Thus, itispossibletosuggestthepotentialtransmissionriskofthese zoonoticdiseasestotheownersandcaretakersoftheanalyzed birds.

Eventhoughotherresearchershavedetectedtheeae44and

stx245genesinpsittacinefecalsamples,suggestingthatthese birdscouldbereservoirsofEPECandSTECtohumans,wedid notobservevirulencegenesforthediarrheagenicE.coliinthis survey.

Allstrainsevaluatedinthisstudywereresistanttoatleast oneofthetestedantimicrobialscategories,exceptfor nitrofu-rantoin,similarlytowhatwasobservedinastudyperformed inpsittacines from aconservationist breeder.41 Ourresults showed that 30% of the strainswere resistant toseven or moreantimicrobialdrugsand59%weremultiresistant.E.coli

resistancetotwoormoreantimicrobialgroupsiscurrently consideredacommonfinding,bothinhumanandveterinary medicine.27,33Thisrepresentsagreatimpactoverviable ther-apeuticoptionsandpotentialdispersionofthesepathogensin thecommunity,oneofthemostrelevantglobalpublichealth issues.27

Thehighestresistancepercentagewasrelatedto␤-lactams (93%),ofwhich89%ofthestrainswereresistanttopenicillin. Severalauthorshavealsoobservedahighpercentageof peni-cillinresistance,upto100%,inpsittacinesandpasseriforms.9

(4)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 S (2 0 1 8) 76–82

79

Phenotype Genotype Plasmids

1 Petshop 1 – EST strAB IncFIB

2 – CFE;EST;GEN strAB

3a AMO;CFE;CFO;EST;GEN;TET;ENO strAB IncFIB

2 Privateresidence 1 – AMP;CTF;EST;NAL strAB IncFIB;IncFIA

2a AMP;EST;TET;CIP strAB IncFIB;IncFIA;IncY

3a CTF;EST;CIP strAB IncFIB;IncFIA;IncY

3 Commercialbreeding 1a AMP;AMO;EST;TET;CLO;ENO;CIP;NAL blaTEMtetBstrAB IncFIB

2a AMP;AMO;EST;TET;CLO;ENO;CIP;NAL blaTEMtetBstrAB IncI1

3a AMP;AMO;EST;TET;CLO;ENO;NAL blaTEMtetBstrAB IncFIB

4 Commercialbreeding 1a AMP;AMO;EST;TET;CLO;ENO;CIP;NAL;SUT blaTEMtetBaadA;aphaAsul3

2a AMP;AMO;CFE;EST;TET;CLO;ENO;CIP;NAL;SUT blaTEMtetBaadA;aphaAsul3

3a AMP;AMO;CFE;EST;TET;CLO;ENO;CIP;NAL;SUT blaTEMtetBaadA;aphaAsul3

5 Commercialbreeding 1a AMP;AMO;CFE;CTF;EST blaTEMstrAB IncFIB

2 – AMP;AMO;CFE blaTEMstrAB IncFIB

3 – AMP;AMO;EST blaTEM IncFIB

6 Commercialbreeding 1a AMO;CFE;EST blaTEMstrAB IncFIB

2a AMO;IPM;EST blaTEMstrAB IncFIB

3a AMP;AMO;IPM;EST blaTEMstrAB IncFIB

7 Commercialbreeding 1 – AMP;AMO blaTEM IncFIB

2 – AMP;AMO;EST blaTEMstrAB IncFIB

3 – AMP;AMO - IncFIB

8 Privateresidence 1a AMP;AMO;EST;TET;SUT tetBstrAB;aadAsul2 IncFIB;IncI1

2a ironN,ompT,hlyFandiss AMP;AMO;CFE;TET;CLO;ENO;CIP;NAL;SUT tetAsul1 IncI1

3a ironN,ompT,hlyFandiss AMP;AMO;EST;TET;SUT tetBstrAB;aadAsul2 IncFIB;IncI1

9 Privateresidence 1 iss AMP;AMO;SUT sul1

2 – AMP;AMO;SUT sul1

3 – AMP;AMO;SUT sul1

AMO,amoxicillin;AMP,ampicillin;CFE,cephalexin;CFO,cefoxitin;CTF,ceftiofur;IPM,imipenem;EST,streptomycin;GEN,gentamicin;TET,tetracyclin;CIP,ciprofloxacin;ENO,enrofloxacin;NAL, nalidixicacid;SUT,cotrimoxazol;CLO,chloramphenicol.

(5)

80

brazilian journal of microbiology49S(2018)76–82 SUT NIT CLO NAL CIP ENO GEN EST TET CFO CTF CFE IPM AMP AMO 0% 10% 20% 30% 40% 50% 70% 80% 90% 81% 78% 30% 41% 74% 7% 11% 4% 7% 30% 30% 30% 26% 0% 33% 100% 60%

Fig.1–ResistantEscherichiacolistrainsisolatedfromcockatielsaccordingtothetestedantimicrobialdrugs.SUT, cotrimoxazol;NIT,nitrofurantoin;CLO,chloramphenicol;NAL,nalidixicacid;CIP,ciprofloxacin;ENO,enrofloxacin;GEN, gentamicin;EST,streptomycin;TET,tetracyclin;CFO,cefoxitin;CTF,ceftiofur;CFE,cephalexin;IPM,imipenem;AMP, ampicillin;AMO,amoxicillin.

00% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Private residencies Pet shop Commercial breeders

Penicillin Cephalosporins Tetracyclin Aminoglycosides Quinolones Anfenicol sulfonamides

Fig.2–Escherichiacoliresistantstrainsaccordingtocockatielorigin(petshop,privateresidency,commercialbreeder).

Weverifiedthat52%ofthestrainspresentedtheblaTEM,28 sug-geststhatupto90%ofE.coliampicillinresistanceisdueto TEM-1andTEM-2enzymescodedbytheblaTEMgene.

The isolates presented increased resistance to amino-glycosides(74%),particularlytostreptomycin(67%).Similar resistancelevelshavebeenobservedinwildbirds(63%).46We detectedthat85%ofthestreptomycin-resistantstrains pre-sented the strABgene,justifyingthe high resistancelevels noticedforthisdrug.

Similarly, the tetB gene was detected in 80% of the tetracycline-resistantstrains.Researchershaveobtainedhigh frequenciesoftetracyclineresistanceinE.colistrainsof ani-maloriginandtetBgenehasalsobeenthemostcommonly reportedgeneinhumanisolates.47

InastudyperformedinBrazil,E.colistrainsisolatedfrom wild frigates presented low ciprofloxacin and enrofloxacin

resistance indexes.11 However, the strains isolated in our studypresented41%resistancetoquinolones.Thishigh resis-tancepercentagemayberelatedtoselectivepressure,aresult ofveterinary therapiesestablishedwithno laboratory sup-portandempiricaltreatmentswithnoveterinarysupervision. Thisfactorisespeciallyrelevantwhenoneconsidersthe com-mercialformulationofthisantimicrobialcategory,whichis focusedontheavianpetmarketandcommercializedwithout anygovernmentalcontrol.

Inthisstudy,33%ofthesulfonamide-resistantE.colistrains presentedthesul1,sul2andsul3genes,frequentlyreportedin resistantisolatesofhumanorigin.48

IncreasedGram-negativeresistanceismainlyattributedto mobilegenespresentinplasmids,whichmaybedisseminated withinbacterialpopulations.40,49 Airtravels,human migra-tionsandanimaltransitallowrapidtransportationofbacterial

(6)

plasmids among countries and continents. Four plasmids weredetectedinthisstudy:IncFIB,IncFIA,IncYandIncI1.The FIBgroupwasobservedinstrainsthatpresented phenotypi-calresistanceto␤-lactams,aminoglycosidesandquinolones. Ourfindingsareinaccordancewiththeavailable bibliogra-phy,whichstatesthatplasmidsoftheIncFfamilyarebroadly distributed inE. coli commensals,but carry quinoloneand aminoglycosideresistancegenesandESBLencodinggenes.40 StrainspresentingplasmidIncI1werephenotypically resis-tanttopenicillins,andoneofthemtocephalexin.Plasmids IncI1and IncY are also related tothe distribution ofESBL acquisitiongenes andquinoloneresistance.40 Furthermore, IncI1ischaracterizedbyencodingthetypeIVpili,avirulence factor that contributes tobacterial adhesion and invasion. ThisvirulencecharacteristichasbeenrelatedtoShigatoxin producingE.coli(STEC)40andtothehighlypathogenicAPEC strains,50 which may contribute to the pathogenic poten-tial presentedby the APECstrains with virulence markers detectedinthisstudy.

Weobservedhighantimicrobialresistanceinthestrains isolatedfromhealthycaptivecockatiels,including multiresis-tance,aswell,wedetectedthepresenceofplasmidsandgenes relatedtoresistancephenotype.E.colistrainswithpathogenic potentialpresentedimportantAPECvirulencefactors.Froma zoonoticpointofviewitisimportanttohighlightthe rele-vanceofmaintainingpetsanddisseminatingthesebacteria tootheranimals,tohumans,andtheenvironment.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

FabianaT.Konno,SuzanaM.BezerraandCleideM.daSilva Santanaprovided technicalassistanceduringthe research. CAPES-Coordenac¸ãodeAperfeic¸oamentodePessoaldeNível SuperiorprovidedascholarshiptoPatriciaSilveiradePontes. Thisresearchdidnotreceiveanyspecificgrantfromfunding agenciesinthepublic,commercial,ornot-for-profitsectors.

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,atdoi:10.1016/j.bjm.2018.05.003.

r

e

f

e

r

e

n

c

e

s

1.BélangerL,GrenauxA,HarelJ,BoulianneM,NadeauE,

DozoisCM.Escherichiacolifarmanimalreservoirsasa

potentialsourceofhumanextraintestinalpathogenicE.coli.

ImmunolMedMicrobiol.2011;62:1–10.

2.KnöblT,MenãoM.EnteropathogenicEscherichiacoli(EPEC)

isolatedfrompsitaccinebirds.FIEPBull.2010;80:839–841.

3.TivendaleKA,LogueCM,KariyawasamS,etal.

Avian-pathogenicEscherichiacolistrainsaresimilarto

neonatalmeningitisE.colistrainsandareabletocause

meningitisintheratmodelofhumandisease.InfectImmun.

2010;78:3412–3419.

4.JohnsonTJ,WannemuehlerY,JohnsonSJ,etal.Comparison

ofextraintestinalpathogenicEscherichiacolistrainsfrom

humanandaviansourcesrevealsamixedsubset

representingpotentialzoonoticpathogens.ApplEnviron

Microbiol.2008;74:7043–7050.

5.HammerumAM,HeuerOE.Humanhealthhazardsfrom

antimicrobialresistantEscherichiacoliofanimalorigin.Clin

InfectDis.2009;48:916–921.

6.KabirSM.Aviancolibacillosisandsalmonellosis:acloser

lookatepidemiology,pathogenesis,diagnosis,controland

publichealthconcerns.IntJEnvironResPublicHealth.

2010;7:89–114.

7.Marietto-Gonc¸alvesGA,AlmeidaSM,LimaET,OkamotoAS,

PinczowskiP,AndreattiFilhoRL.IsolationofSalmonella

entericaserovarEnteritidisinblue-frontedAmazonparrot

(Amazonaaestiva).AvianDis.2010;54:151–155.

8.CunhaMPV,MenãoMC,FerreiraAJP,KnöblTA.Thegenetic

similaritybetweenavianpathogenicEscherichiacoli(APEC)

andextraintestinalhumanE.colistrains,withantimicrobial

resistanceprofile,representahealthconcernassociated

withpoultryproducts?RevEducContMedVetZootec.

2013;11:22–31.

9.HidasiHW,HidasiNetoJ,MoraesDM,LinharesGF,JaymeVS,

AndradeMA.EnterobacterialdetectionandEscherichiacoli

antimicrobialresistanceinparrotsseizedfromtheillegal

wildlifetrade.JZooWildlMed.2013;44:1–7.

10.AllenHK,DonatoJ,WangHH,Cloud-HansenKA,DaviesJ,

HandelsmanJ.Callofthewild:antibioticresistancegenesin

naturalenvironments.NatRevMicrobiol.2010;8:251–259.

11.SaviolliJY,CunhaMPV,GuerraMFL,IrinoK,Catão-DiasJL, CarvalhoVM.Free-rangingfrigates(Fregatamagnificens)of thesoutheastcoastofBrazilharborextraintestinal pathogenicEscherichiacoliresistanttoantimicrobials.PLOS ONE.2016,http://dx.doi.org/10.1371/journal.pone.0148624.

12.KonemanEW,AllenSD,JandaWM,SchreckenbergerPC,

WinnWC.DiagnósticoMicrobiológico.5thed.RiodeJaneiro:

GuanabaraKoogan;2001.

13.MichaelGB,SimonetiR,CostaM,CardosoM.Comparisonof

differentselectiveenrichmentstepstoisolateSalmonellasp

fromfecesoffinishingswine.BrazJMicrobiol.

2003;34:138–142.

14.LeBouguenecC,ArchambaudM,LabigneA.Rapidand

specificdetectionofthepap,afa,andsfaadhesin-encoding

operonsinuropathogenicEscherichiacolistrainsby

polymerasechainreaction.JClinMicrobiol.1992;30:

1189–1193.

15.YamamotoA,DewaldDB,BoronenkovIV,AndersonRA,Emr

SD,KoshlandD.NovelPI(4)P5-kinasehomologueFab1p,

essentialfornormalvacuolefunctionandmorphologyin

yeast.MolBiolCell.1995;6:525–539.

16.JohnsonJR,StellAL.Extendedvirulencegenotypesof

Escherichiacolistrainsfrompatientswithurosepsisin

relationtophylogenyandhostcompromise.JInfectDis.

2000;181:261–272.

17.JohnsonTJ,WannemuehlerYM,NolanLK.Evolutionofthe

issGeneinEscherichiacoli.ApplEnvironMicrobiol.

2008;74:2360–2369.

18.PalA,GhoshS,RamamurthyT,etal.Shiga-toxinproducing

Escherichiacolifromhealthycattleinasemi-urban

communityinCalcutta,India.IndianJMedRes.1999;110:83.

19.YavzoriM,PorathN,OchanaO,DaganR,Orni-WasserlaufR,

CohenD.DetectionofenterotoxigenicEscherichiacoliinstool

specimensbypolymerasechainreaction.DiagMicrobiolInfect

Dis.1998;31:503–509.

20.YamamotoT,EcheverriaP.Detectionofthe

(7)

82

brazilian journal of microbiology49S(2018)76–82

genesequencesinenterotoxigenicE.colistrainspathogenic

forhumans.InfectImmun.1996;64:1441–1445.

21.VenkatesanMM,BuysseJM,KopeckoDJ.UseofShigella

flexneriipaCandipaHgenesequencesforthegeneral

identificationofShigellaspp.andenteroinvasive

Escherichiacoli.JClinMicrobiol.1989;27:2687–2691.

22.TomaC,LuY,HigaN,etal.MultiplexPCRassayfor

identificationofhumandiarrheagenicEscherichiacoli.JClin

Microbiol.2003;41:2669–2671.

23.YuJ,KaperJB.Cloningandcharacterizationoftheeaegene

ofenterohaemorrhagicEscherichiacoliO157:H7.MolMicrobiol.

1992;6:411–417.

24.EliasWP,BarrosSF,MoreiraCG,TrabulsiLR,GomesTA.

EnteroaggregativeEscherichiacolistrainsamongclassical

enteropathogenicEscherichiacoliOserogroups.JClin

Microbiol.2002;40:3540–3541.

25.ClinicalandLaboratoryStandardsInstitute.Performance

StandardsforAntimicrobialSusceptibilityTesting;Eighteenth InformationalSupplement.Wayne,PA:CLSIDocument

M100-S23;2013.

26.ClinicalandLaboratoryStandardsInstitute.Performance

StandardsforAntimicrobialSusceptibilityTesting;Twenty-third InformationalSupplement.Wayne,PA:CLSIDocument

VET01-S2;2013.

27.SmithJL,FratamicoP,GuntherNW.Extraintestinal

pathogenicEscherichiacoli:review.FoodbornePathogDis.

2007;4:134–163.

28.DallenneC,CostaA,DecreD,FavierC,ArletG.Development

ofasetofmultiplexPCRassaysforthedetectionofgenes

encodingimportant␤-lactamasesinEnterobacteriaceae.J

AntimicrobChemother.2010;65:490–495.

29.WinokurPL,CantonR,CasellasJM,LegakisN.Variationsin

theprevalenceofstrainsexpressinganextended-spectrum

beta-lactamasephenotypeandcharacterizationofisolates

fromEurope,theAmericas,andtheWesternPacificregion.

ClinInfectDis.2001;15:94–103.

30.GuardabassiL,DijkshoorL,CollardJM,OlsenJE,DalsgaardA.

Distributionandin-vitrotransferoftetracyclineresistance

determinantsinclinicalandaquaticAcinetobacterstrains.J

MedMicrobiol.2000;49:929–936.

31.MaynardC,BekalS,SanschagrinF,etal.Heterogeneity

amongvirulenceandantimicrobialresistancegeneprofiles

ofextraintestinalEscherichiacoliisolatesfromanimaland

humanorigin.JClinMicrobiol.2004;42:5444–5452.

32.MadsenL,AarestrupFM,OlsenJE.Characterisationof

streptomycinresistancedeterminantsinDanishisolatesof

SalmonellaTyphimurium.VetMicrobiol.2000;75:73–82.

33.SáenzY,Bri ˜nasL,DomínguezE,etal.Mechanismsof

resistanceinmultiple-antibiotic-resistantEscherichiacoli

strainsofhuman,animal,andfoodorigins.AntimicrobAgents

Chemother.2004;48:3996–4001.

34.PerretenV,BoerlinP.Anewsulfonamideresistancegene

(sul3)inEscherichiacoliiswidespreadinthepigpopulationof

Switzerland.AntimicrobAgentsChemother.2003;47:1169–1172.

35.CiesielczukH,HornseyM,ChoiV,WoodfordN,Wareham

DW.DevelopmentandevaluationofamultiplexPCRfor

eightplasmid-mediatedquinolone-resistancedeterminants.

JMedMicrobiol.2013;l62:1823–1827.

36.CavacoLM,HasmanH,XiaS,AarestrupFM.qnrD,anovel

geneconferringtransferablequinoloneresistancein

SalmonellaentericaserovarKentuckyandBovismorbificans

strainsofhuman.AntimicrobAgentsChemother.

2009;53:603–608.

37.CattoirV,PoirelL,RotimiV,SoussyCJ,NordmannP.

MultiplexPCRfordetectionofplasmid-mediatedquinolone

resistanceqnrgenesinESBL-producingenterobacterial

isolates.JAntimicrobChemother.2007;60:394–397.

38.WarehamDW,UmorenI,KhannaP,GordonNC.

Allele-specificpolymerasechainreaction(PCR)forrapid

detectionoftheaac(69)-Ib-crquinoloneresistancegene.IntJ

AntimicrobAgents.2010;36:476–477.

39.YamaneK,WachinoJ,SuzukiS,ArakawaY.

Plasmid-mediatedqepAgeneamongEscherichiacoliclinical

isolatesfromJapan.AntimicrobAgentsChemother.

2008;52:1564–1566.

40.CarattoliA.Plasmidsandthespreadofresistance.IntJMed

Microbiol.2013;303:298–304.

41.CorrêaIM,FloresF,SchneidersGH,PereiraLQ,BritoBG,

LovatoM.Detecc¸ãodefatoresdevirulênciadeEscherichiacoli

eanálisedeSalmonellaspp.empsitacídeos.PesqVetBras.

2013;33:241–246.

42.GrahamCL,GrahamDL.OccurrenceofEscherichiacoliin

fecesofpsittacinebirds.AvianDis.1978;22:

717–720.

43.Rodriguez-SiekKE,GiddingsCW,DoetkottC,JohnsonTJ,

FakhrMK,NolanLK.ComparisonofEscherichiacoliisolates

implicatedinhumanurinarytractinfectionandavian

colibacillosis.Microbiology.2005;151:2097–2110.

44.SanchesLA,GomesMS,TeixeiraRHF,etal.Captivewildbirds asreservoirsofenteropathogenicE.coli(EPEC)and

Shiga-toxinproducingE.coli(STEC).BrazJMicrobiol.2017,

http://dx.doi.org/10.1016/j.bjm.2017.03.003.

45.Gioia-DiChiacchioRM,CunhaMPV,SturnRM,etal.Shiga

toxin-producingEscherichiacoli(STEC):zoonoticrisks

associatedwithpsittacinepetbirdsinhomeenvironments.

VetMicrobiol.2016;184:27–30.

46.IkunoAA,GamaNMSQ,GuastalliEAL,GuimarãesMB,

FerreiraVCA.CaracterísticasdeisoladosdeEscherichiacoli

provenientesdeavessilvestresquantoagenesdevirulência

eresistênciaaantibióticos.In:ResumosdoXXXVCongresso

BrasileirodeMedicinaVeterinária.Gramado,Brasil.

2008:1269.

47.BryanA,ShapirN,SadowskyMJ.Frequencyanddistribution

oftetracyclineresistancegenesingeneticallydiverse,

nonselected,andnonclinicalEscherichiacolistrainsisolated

fromdiversehumanandanimalsources.ApplEnviron

Microbiol.2004;70:2503–2507.

48.GrapeM,SundströmL,KronvallG.Sulphonamideresistance

genesul3foundinEscherichiacoliisolatesfromhuman

sources.JAntimicrobChemother.2003;52:1022–1024.

49.JohnsonTJ,NolanLK.Plasmidreplicontyping.MethodsMol

Biol.2009;551:27–35.

50.DzivaF,StevenMP.Colibacillosisinpoultry:unravellingthe

molecularbasisofvirulenceofavianpathogenic

Escherichiacoliintheirnaturalhosts.AvianPathol.

Referências

Documentos relacionados

The objective of this study was to evaluate the influence of collard green stalks as environmental enrichment on the behavior of cockatiels ( Nymphicus hollandicus

The increase in temperature from 25 to 35°C changed the behaviour of the cockatiels, increasing permanence on the perch, flapping and gnawing the feeder;

APÊNDICE F: Registros fotográficos das atividades Aplicadas nas Regências. ANEXOS: FICHAS DE ESTÁGIO .... Este é referente às atividades realizada pela estagiária do curso

Mais ainda, a letra da canção tomada enquanto uma das discursividades que produzem Aracy é singular nesta pesquisa por deflagrar uma Aracy de Almeida eversiva,

The procedures for obtaining the samples used in this study, as well as the informed consent form signed by all the women participating in this study, followed the recommendations

[55] em uma coorte que incluiu 25 centros de diálise do Canadá, analisaram 558 pacientes que tiveram mais de um episódio de peritonite, sendo que a maioria apresentou 2

Além da identificação, os isolados bacterianos, Bacillus cereus, Enterobacter cloacae e Celullomonas sp., espécies mais representativas na APA Cariri e Burkholderia

de campo; bem como pela análise das entrevistas realizadas com profissionais do serviço de Proteção e Atendimento Integral à Família (PAIF) do Centro de Referência de