• Nenhum resultado encontrado

Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid

N/A
N/A
Protected

Academic year: 2021

Share "Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Arbuscular

mycorrhizal

fungi

in

Mimosa

tenuiflora

(Willd.)

Poir

from

Brazilian

semi-arid

Tancredo

Augusto

Feitosa

de

Souza

a,∗

,

Susana

Rodriguez-Echeverría

b

,

Leonaldo

Alves

de

Andrade

a

,

Helena

Freitas

b

aAgrarianScienceCenter,DepartmentofSoilsandRuralEngineering,FederalUniversityofParaíba,Areia,Paraíba,Brazil bCentreforFunctionalEcology,DepartmentofLifeSciences,UniversityofCoimbra,Coimbra,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12April2015

Accepted21September2015

Availableonline2March2016

AssociateEditor:AndréRodrigues

Keywords:

AMFcommunitystructure

AMF-plantpairing

Dryland Glomeromycota

a

b

s

t

r

a

c

t

ManyplantspeciesfromBraziliansemi-aridpresentarbuscularmycorrhizalfungi(AMF)

intheirrhizosphere.Thesemicroorganismsplayakeyroleintheestablishment,growth,

survivalofplantsandprotectionagainstdrought,pathogenicfungiandnematodes.This

studypresentsaquantitativeanalysisoftheAMFspeciesassociatedwithMimosatenuiflora,

animportantnativeplantoftheCaatingaflora.AMFdiversity,sporeabundanceandroot

colonizationwereestimatedinsevensamplinglocationsintheCearáandParaíbaStates,

duringSeptemberof2012.Thereweresignificantdifferencesinsoilproperties,spore

abun-dance,percentageofrootcolonization,andAMFdiversityamongsites.Altogether,18AMF

specieswereidentified,andsporesofthegeneraAcaulospora,Claroideoglomus,Dentiscutata,

Entrophospora,Funneliformis,Gigaspora,Glomus,Racocetra,RhizoglomusandScutellosporawere

observed.AMFspeciesdiversityandtheirsporeabundancefoundinM.tenuiflorarhizosphere

shownthatthisnativeplantspeciesisanimportanthostplanttoAMFcommunitiesfrom

Braziliansemi-aridregion.Weconcludedthat:(a)duringthedryperiodandinsemi-arid

conditions,thereisahighsporeproductioninM.tenuiflorarootzone;and(b)soilproperties,

assoilpHandavailablephosphorous,affectAMFspeciesdiversity,thusconstitutingkey

factorsforthesimilarity/dissimilarityofAMFcommunitiesintheM.tenuiflorarootzone

amongsites.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The Brazilian semi-arid region is an important Caatinga

ecoregionthatprovidestherequiredbioticandabiotic

con-ditionsfor many endemic species to inhabit; thus, having

Correspondingauthor.

E-mail:tancredoagro@hotmail.com(T.A.F.deSouza).

highspeciesdiversitywhencomparedwithothersemi-arid

regions ofthe World. This ecoregioncovers approximately

12% ofthecountry,and islocatedinthe innermostregion

of northeastern Brazil. It is characterized by frequent dry

periods,andbyauniquebiota,withthousandsofendemic

speciesandover1000speciesofvascularplant.1,2 However,

http://dx.doi.org/10.1016/j.bjm.2016.01.023

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

the establishment, growth and dispersal of native

vegeta-tion areoftenrestricted bylongdry periodsanthropogenic

activities,andexoticspeciesintroduction.1

Inthiscontext,plantmutualisticinteractionswithother

organisms,suchasfungi,mightplayasignificantrole

dur-ing their establishmentand growth. Mutualistic symbiosis

betweenarbuscular mycorrhizalfungi(AMF)and plantsare

advantageousforbothorganismsinvolved,becausetheplant

providestheAMFwithenergeticproductsresultingfrom

pho-tosynthesis,allowing AMFgrowth and maintenance,while

AMFprovidestheplantwithwaterandmineralnutrients,such

asphosphorusandnitrogen.3,4Byenhancingplant’smineral

nutrientsuptake,AMFplayakeyroleintheestablishmentand

survivalofnativeplantsinthisbiome,promoteplantgrowth

andofferprotectionagainstdroughtandsoilpathogens.5–8

Mimosa tenuiflora (Willd.) Poir (Fabaceae) is a perennial

native plant from northeastern Brazil. Similarly to other

Fabaceae,M.tenuifloraisabletofixnitrogenbecauseitsroots

formassociations withbacteria fromthegenusRhizobium.9

Thisplantspeciesisconsideredtobeaprolificpioneerplant,10

whichisverytoleranttodryperiods,firesandothermajor

eco-logicaldisturbances.11Duringhighlystressperiods,itsleaves

starttofall,representingamechanismfortheplanttosave

energy.10Itdevelopsextensiverootsystems,whichare

colo-nizedbymutualisticorganisms,asbacteriaandfungi.Indeed,

previousstudies haveshown theassociation betweenAMF

andM.tenuiflorarootsystem.9,12,13Theprimarilyobjectiveof

moststudiesconductedhavebeentoverifythepresenceof

AMF,butmorerecently,theyhavefocusedontheAMFspecies

diversitycommonlyfoundassociatedwithnativespeciesof

the Brazilian semi-arid region. Those studies have shown

thatspeciesfrom thegeneraArchaeospora,Acaulospora,

Glo-mus,GigasporaandScutellosporafrequentlyformmutualistic

symbiosiswithnativeplantspecies.14,15

Soil fertility is often reported as an important factor

conditioningAMFspeciesdiversity,havingeffectsatthe

com-munity level, but also on the biological activity of these

microorganisms.16–19Thus,theobjectiveofthepresentstudy

wastoprovideaquantitativeassessmentoftheAMFspecies

associatedwithM.tenuifloraintheBrazilianxericshrublands

sampledfromdifferentlocationsacrosstheCearáandParaíba

States.Toaccomplishthisobjective,weselectedseven

inde-pendentsiteswherewesampledM.tenuiflorarootzoneandwe

hypothesizedthat(1)therootzoneofthisnativeplantspecies

hashighAMFsporeabundanceandrootcolonizationduring

thedryperiod;and(2)soilpropertiesareanimportantfactor

thatinfluencetheAMFcommunityindifferentM.tenuiflora

rootzones.

Materials

and

methods

Sitedescriptionandsampling

Samplingofthestudyspeciesrootzoneareawasperformed

inlocations withsimilarimportancevalueindex20 (IVI,see

tablebelow)ofM.tenuiflorainCearáandParaíbaStates,Brazil

(Table1).Duringthedryseason,theaverageannual

temper-atureisof30◦C,whileduringtherainyseason,theaverage

annualtemperatureisaround23◦C.Rainfallinthegreaterpart

ofthisregionisscanty,unpredictableandirregular.1The

flow-eringseasonforM.tenuiflorastartsonAugustinCearáState,

one monthearlier than ParaíbaState. Theflowering starts

aftertherainyseason(August)andduringthedryseasonthat

theplantgrowthisverylimited.

Ineachsite,weestablished40plotsof100m2,accordingly

tothemethodologyproposedbyGrieg-smith22andFortinand

Dale.23BeforesamplingM.tenuiflorarootzone,thefollowing

criteriawereestablished:(a)eachplantshouldbelargerthan

3cmindiameternearsoilsurface;(b)itsheightshouldvary

between1and3m;and(c)noother individualsfroma

dif-ferent plantspecies shouldoccur atadistance lower than

3mfrom the sampling point.23–27 Intotal, twenty-fiveroot

zonesamplesperplotincludingsoilandrootfragmentswere

collected atadepthrangingbetween0and20cm.Soilwas

keptinplasticbagsandrootfragmentswerestoredin50%

ethanoluntillaboratoryanalysis.Becausefungalsporulation

is expectedtobehigher duringthedry periodinsemiarid

environments,15thesamplingwasconductedduring

Septem-berof2012.

Soilanalyses

For eachplot, soilandrootssampleswerepooledresulting

in40samplespersite.Ineachofthesesamples,thefollowing

variablesweremeasured:pH,carbon,totalnitrogenand

avail-ablephosphorus.SoilpHwasdeterminedinasuspensionof

soilanddistilledwater28;soilorganiccarbonwasestimated

accordinglytothemethodologydescribedbyOkalebo29;total

soilnitrogen content wasestimatedfollowing theKjeldahl

method28; andavailablephosphorus wasdetermined

spec-trophotometrically followingthe molybdenumbluemethod

andusingstannouschlorideasthereducingagent.28

Sporesassessment

Spores were extracted from field soil samples (n=40) by

wet sieving30 followed bysucrosecentrifugation.31 Initially,

the extracted spores were examined in aqueous solution

under a dissecting microscope and separated based on

morphologicalcharacteristics.Then,polyvinylalcohol

lacto-glycerol(PVLG)mixedornotwithMelzer’sreagentwasused

as permanent mounting medium.32 Species identification

was based on the descriptions provided by Schenck and

Perez,33 publications with descriptions of new genera and

families,34 and by consultingthe international culture

col-lection ofarbuscular mycorrhizal fungi database – INVAM

(http://invam.caf.wvu.edu).Forthepurposeofthiswork,we

adoptedtheclassificationproposedbyOehletal.,35including

recentlydescribednewtaxa.36–38

Mycorrhizalrootcolonizationassessment

To assess mycorrhizal root colonization, roots were first

cleared in2% KOH for1h at90◦C, and subsequently they

were acidifiedin1%HCl overnight.Blueink(Parker Quink)

was used as staining agent for 30min at 60◦C, followed

byadestainingtreatmentwithlactoglycerol.Theextentof

mycorrhizalrootcolonizationwasestimatedbyusinga

(3)

Table1–Geographiccoordinatesandtheimportancevalueindex(IVI,%)ofM.tenuifloraplantsineachstudiedsite.

Studyarea Location Geographicalcoordinates IVI(%)c

A1 AlgodãodeJandaíra,PB 06◦467.3S360155.3W 59.02±1.12 A2 Esperanc¸a,PB 06◦5645.7S35◦5406.8W 58.12±0.52 A3 Ibaretama,CE 04◦4946.8S38◦3847.6W 60.01±1.87 A4 Juazeirinho,PB 07◦0633.3S36◦3434.2W 59.13±1.13 A5 Monteiro,PB 07◦4819.8S37◦1032.4W 58.01±2.17 A6 Natuba,PB 07◦3734.9S35◦3224.5W 59.18±1.56 A7 Poc¸inhos,PB 07◦1023.3S36◦1241.8W 60.12±1.98

Climateclassificationa Hotsemiarid

Textureandsoilclassificationb SandyloamDystricFluvisols

a AccordinglytotheKöppenclassification.

b WRB.21

c IVI(%)=RDi+RFi+RDoi;RDi,RFiandRDoiforrelativedensity,relativefrequencyandrelativedominanceofM.tenuifloraineachstudyarea

accordinglytoMagurran.20Valuesaregivenasmean±SE,n=40.

acompoundmicroscopeat200×magnification.39,40 Priorto

microscope examinations, we decided to score hyphae as

“mycorrhizal”,basedontheassociatedpresenceofvesicles,

arbuscules, spores, and the morphology of the mycelium.

Thus, if any of the structures referred were found in one

of the 100 microscope intersections per sample per study

site(n=400intersectionsperstudysite),theywerescoredas

“mycorrhizal”.Toavoid errorassociatedwith theobserver,

allmicroscopicexaminationswere carriedoutbythesame

individual.

Statisticalanalysis

One-way ANOVA was used to compare spore abundance

and rootcolonizationamong the sevenlocations sampled.

The relationship between the AMF community structure

and soil propertieswas examined bycalculating the

Pear-son correlation coefficient. To explore the variability and

similarities among soils and AMF communities

composi-tion among sites, principal component analysis (PCA) was

used.

The following ecological indexes were calculated after

AMFspeciesidentification:averagespeciesrichnessofAMF,

diversity index41 and dominance index42 for each studied

site. One-way ANOVA was used to compare species

rich-nessofAMF,the diversityindex andthe dominanceindex

amongsites.Inaddition,theZhang’sfrequencyofoccurrence

classification43wasusedtoanalyze(a)totalsporeabundance

(totalnumberofspores),(b)sporeabundanceofagivenAMF

species(numberofsporesofaparticularAMFspecies),and

(c) AMFspecies occurrence frequency (percentage of

sam-ples containing a particular AMF species). This procedure

allowedAMFspeciestobeclassifiedasdominant(FO>50%),

mostcommon (31≤FO≤50%), common (10≤FO≤30%)and

rare(FO<10%).43Additionally,AMFspecieswerealso

classi-fiedasgeneralists(presentinsixareas),intermediate(present

in two to five areas) or exclusive (restricted to only one

area).44

Beforestatisticalanalysis,datawascheckedfornormality

andhomogeneityofvariances.One-wayANOVAandthe

Pear-soncorrelationcoefficientswere calculatedusing SAS9.1.3

Portable,whilePCAanalysisandtheecologicalindex

calcula-tionswereconductedusingMVSP3.1.45

Results

Soilanalysis

Allsoilchemicalpropertiesvariedsignificantlyamongsites

(Table2).AccordinglytothePCAanalysis,A4andA6werethe

mostdissimilarlocations(Fig.1).A1andA2weremore

sim-ilar toeachother thanA3,A5andA7.Totalorganic carbon

andavailablephosphorouswerethemainfactors

contribut-ing tothe varianceofmostsamples.PCAplotalsoshowed

astrongpositiverelationshipbetweentotalnitrogen,soilpH

andavailablephosphorousand93.1%ofthesamples’variation

wasexplainedbythetwoaxes.

Sporeabundanceandrootcolonization

SitesA4andA5didnotsignificantlydifferinsporeabundance

data,showingthehighestvaluesfromallstudiedsites,

aver-aging16.6sporesg−1soiland15.3sporesg−1soil,respectively

(Fig.2).Intheremainingfivesites,wefoundstatistically

sig-nificantdifferences(p<0.05)whencomparingA1,A2andA6

withA3andA7.A7hadthesmallestvalueofsporeabundance

fromallstudiedsites(6.8sporesg−1soil).Statistically

signifi-cantdifferences(p<0.05)werealsofoundinrootcolonization

amongallsites(averagesrangingbetween6.3and36.5%).A2

hadthehighestrootcolonization,whileA1thesmallestofall

studiedsites(Fig.2).

AMFcommunitydiversityandstructure

Ecologicalindexessignificantlydifferedamongsites(p<0.05).

AMFtotalrichnessvariedbetween14and18species,the

diver-sityindexrangedbetween1.98and2.64,andthevaluesforthe

dominanceindexaveragedbetween0.80and0.91amongsites.

A4sitehadthehighestvaluesforallecologicalindexes

calcu-lated(speciesrichness,18species;diversityindex,2.64;and

dominanceindex,0.91;Table3).

Field-collected sporeswere from twoorders,

(4)

Table2–Soilchemicalpropertiesforeachsampledlocation.Valuesaregivenasmean±SE(n=40). Parameters A1 A2 A3 A4 A5 A6 A7 LSD pH(H2O) 7.3±0.20 6.6±0.20 6.7±0.20 4.6±0.10 6.2±0.20 4.4±0.10 7.7±0.40 0.30 TOC(gkg−1) 19.3±0.60 8.2±0.20 4.8±0.30 17.8±0.20 18.5±2.80 6.2±0.20 9.2±1.00 14.40 P(mgkg−1) 8.6±0.30 8.2±0.20 6.5±1.40 3.4±0.10 7.8±0.60 0.8±0.30 12.3±2.40 1.50 Ntotal(gkg−1) 0.2±0.01 0.9±0.02 0.2±0.01 0.3±0.01 0.3±0.01 0.5±0.04 1.1±0.03 0.36

A1–AlgodãodeJandaíra,PB;A2–Esperanc¸a,PB;A3–Ibaretama,CE;A4–Juazeirinho,PB;A5–Monteiro,PB;A6–Natuba,PB;A7–Poc¸inhos,PB.

0.8 0.7 0.5 0.3 0.2 TOC –0.2 –0.7 –0.5 –0.3 –0.2 0.3 0.5 0.7P 0.8 –0.3 –0.5 –0.7 0.2PH A4 A6 A5 A1 A7 A2 A3 Axis 2= 27.53 Axis 1=65.57% Vector scaline: 0.72

Fig.1–PCAscoreplotofsoilpropertiesforthesevenstudiedsites.A1–AlgodãodeJandaíra,PB;A2–Esperanc¸a,PB;A3– Ibaretama,CE;A4–Juazeirinho,PB;A5–Monteiro,PB;A6–Natuba,PB;A7–Poc¸inhos,PB.Pointsrepresentsamplesfrom eachplotbystudiedsites.

families and four genera). Representatives belonging to four familiesofDiversisporaleswere identified: Acaulospo-raceaeDiversisporaceae,Entrophosporaceae,Gigasporaceae;

while two families from Glomerales were recognized,

Claroideoglomeraceae and Glomeraceae, representing ten

genera – Acaulospora (2), Claroideoglomus (1), Dentiscutata

(3), Entrophospora (1), Funneliformis (3), Gigaspora (3), Glomus

(1), Racocetra (1), Rhizoglomus (2) and Scutellospora (1); in

a total of 18 different AMF species. Accordingly to their occurrencefrequency,AMFspecieswere classifiedinto two groups: rare AMF species (R, occurrence frequency lower

than 10%), and common AMF species (C, occurrence

fre-quency between 10 and 30%). The AMF species identified

as rare species were: Acaulospora denticulata, Acaulospora

tuberculata, Dentiscutata cerradensis, Dentiscutata erythropus,

Dentiscutataheterograma,Entrophosporainfrequens,Funneliformis

caledonium, Funneliformis geosporum, Funneliformis mosseae,

Gigasporagigantea,Glomusmulticaule,Racocetracoralloidea,

Rhi-zoglomus aggregatum, Scutellospora calospora, Claroideoglomus

etunicatum, Gigaspora albida, Gigaspora decipiens, and

Rhi-zoglomus clarum were classified as common species. No

AMFspecieshadanoccurrencefrequencyhigherthan 30%

(Table4).

The PCA analyses showed that AMF species richness,

Shanonindex,Simpsonindex,soilpH,totalorganic carbon

andavailablephosphorouswerethemainfactors

contribut-ingtothevarianceofthesamples(Fig.3).Theanalysisalso

showed:(1)astrongnegativerelationshipbetweentotalsoil

pHandavailablephosphorouswithAMFspeciesrichness;and

(2)anegativerelationshipbetweentotalorganiccarbonand

Table3–Ecologicalindexescalculatedforeachlocation.Valuesaregivenasmean±SD(n=40).

Ecologicalindex Studiedsites

A1 A2 A3 A4 A5 A6 A7

Speciesrichness 18a 17a 17a 18a 15b 17a 14b

Shannonindex 2.20±0.02c 2.17±0.01c 2.42±0.08b 2.64±0.02a 1.98±0.04d 2.58±0.06a 2.16±0.07c

Simpsonindex 0.86±0.01b 0.85±0.01b 0.89±0.01a 0.91±0.01a 0.80±0.01c 0.91±0.01a 0.85±0.01b

A1–AlgodãodeJandaíra,PB;A2–Esperanc¸a,PB;A3–Ibaretama,CE;A4–Juazeirinho,PB;A5–Monteiro,PB;A6–Natuba,PB;A7–Poc¸inhos,

(5)

Table4–Occurrencefrequency(FOi)oftheAMFspeciesidentified.Valuesaregivenaspercentagefollowedbytheir occurrencefrequencyclassificationbetweenparenthesesaccordinglytoZhangetal.43

AMFspecies FOi(%)

A1 A2 A3 A4 A5 A6 A7

OrderDiversisporales

FamilyAcaulosporaceae

AcaulosporadenticulataSieverd.&S.Toro 4.8(R) 4.9(R) 3.2(R) 3.7(R) 2.0(R) 2.6(R) 2.2(R)

AcaulosporatuberculataJanos&Trappe 0.4(R) 0.4(R) 1.6(R) 0.5(R) 0.8(R) – –

FamilyEntrophosporaceae

Entrophosporainfrequens(I.R.Hall)R.N.Ames&R.W. Schneid.

0.5(R) 0.6(R) 1.7(R) 0.5(R) – 3.8(R) 0.5(R)

FamilyGigasporaceae

Dentiscutatacerradensis(Spain&J.Miranda)Sieverd.,

F.A.Souza&Oehl

1.6(R) 1.5(R) 2.5(R) 4.3(R) – 1.6(R) 2.3(R)

Dentiscutataerythropus(Koske&C.Walker)C.

Walker&D.Redecker

0.7(R) 0.6(R) 1.3(R) 6.5(R) 1.4(R) 11.5(C) –

Dentiscutataheterograma(T.H.Nicolson&Gerd.)

Sieverd.,F.A.Souza&Oehl

7.2(R) 7.3(R) 10.7(C) 15.8(C) 2.6(R) 2.3(R) 8.5(R)

GigasporaalbidaN.C.Schenck&G.S.Sm. 18.2(C) 18.0(C) 14.4(C) 4.7(R) 24.8(C) 7.8(R) 17.3(C)

GigasporadecipiensI.R.Hall&L.K.Abbott 17.4(C) 17.5(C) 10.8(C) 7.8(R) 24.6(R) 7.0(R) 14.9(R)

Gigasporagigantea(T.H.Nicolson&Gerd.)Gerd.& Trappe

0.2(R) 0.7(R) 1.7(R) 4.2(R) 1.6(R) 5.7(R) 3.2(R)

Racocetracoralloidea(Trappe,Gerd.&I.Ho)Oehl,F.A.

Souza&Sieverd.

3.0(R) 2.0(R) 4.0(R) 10.7(C) 3.5(R) 6.4(R) –

Scutellosporacalospora(T.H.Nicolson&Gerd.)C.

Walker&F.E.Sanders

1.2(R) 1.0(R) 2.4(R) 3.6(R) 1.8(R) 2.0(R) 1.6(R)

OrderGlomerales

FamilyClaroideoglomeraceae

Claroideoglomusetunicatum(W.N.Becker&Gerd.)C.

Walker&Schuessler

18.2(C) 19.5(C) 16.0(C) 4.8(R) 4.3(R) 6.0(R) 25.1(C)

FamilyGlomeraceae

Funneliformiscaledonium(T.H.Nicolson&Gerd.)C.

Walker&Schuessler

0.2(R) 0.4(R) 1.2(R) 2.5(R) 1.7(R) 1.5(R) 1.3(R)

Funneliformisgeosporum(T.H.Nicolson&Gerd.)C.

Walker&Schuessler

0.2(R) 0.7(R) 1.5(R) 3.9(R) 2.0(R) 4.9(R) 1.3(R)

Funneliformismosseae(T.H.Nicolson&Gerd.)C.

Walker&Schuessler

1.5(R) 2.9(R) – 7.7(R) 2.2(R) 7.7(R) 5.0(R)

GlomusmulticauleGerd.&B.K.Bakshi 5.0(R) 4.9(R) 6.5(R) 3.9(R) 2.3(R) 7.7(R) 8.2(R)

Rhizoglomusaggregatum(N.C.Schenck&G.S.Sm.)

Sieverd.,G.A.Silva&Oehl

2.7(R) – 5.0(R) 10.9(C) – 6.3(R) –

Rhizoglomusclarum(T.H.Nicolson&N.C.Schenck)

Sieverd.,G.A.Silva&Oehl

17.0(C) 17.1(C) 15.5(C) 4.0(R) 24.4(C) 15.2(C) 8.6(R)

A1–AlgodãodeJandaíra,PB;A2–Esperanc¸a,PB;A3–Ibaretama,CE;A4–Juazeirinho,PB;A5–Monteiro,PB;A6–Natuba,PB;A7–Poc¸inhos,PB.

FOi=ni/N,whereniisthenumberoftimesanAMFspecieswasobservedandNisthetotalnumberofAMFsporesobservedineachsite.R,rare

(FO<10%);C,common(10≤FO≤30%).43

ShanonandSimpsonindexes.Thetwoaxesexplained83.42%

ofthesamples’variation.

Discussion

Ourresultsprovidedevidencethat AMFare commoninM.

tenuifloraroots and rhizosphere, supporting ourhypothesis thatM.tenuiflorarhizospherehashighAMFsporeabundance

androotcolonization.However,AMFspecieswere

quantita-tivelyvariableamongthestudiedsites.Melloetal.46reported

low values ofspore abundance, <1sporeg−1 soil, and root

colonization,<10%,intherhizosphereofnativeplantsfrom

Braziliansemi-aridregion,asAspidospermapyrifolium,Bromelia

sp.,Myracrodruonurundeuva, Tabebuiaimpetiginosa,and Zizy-phus joazeiro. Contrarily, crop host plants, such as maize

and sorghum,usually havehigh sporulation(>5sporesg−1

soil)andhighrootcolonizationvalues(approximately40%).47

Thus,ourresultssuggestthatM.tenuiflorahaveagoodlevel

of promiscuity as a host plant, presenting high values of

sporulation and mycorrhizalcolonization independentlyof

thestudiedsite.Inadditiontothevariabilityfoundinspore

abundanceandrootcolonizationforallstudiedsites,wealso

observedasignificantvariationinthecontentofvesiclesand

arbuscules,whichprobablyindicatesdifferentphysiological

and/orphenological mechanismsofthe symbiosisbetween

thehostplantandthefungiamongsites(Unpublisheddata).

Thedifferencesinsporeabundanceandrootcolonization

amongsites are inagreement withprevious work15,48 that

reportedvariabilityinsporeabundanceduringthedryseason

inBraziliansemiaridregionforAMFspeciesfrom

(6)

45 40 35 30 25 20 15 10 5 0 A1 b d bc cd c c cd a a d b b a b A2 A3 A4 A5 A6 A7

Number of spores (g soil) Root colonization (%)

Fig.2–AMFsporeabundance,givenasnumberofspores g−1soil,andpercentageofrootcolonization(mean±SE,

n=40)intherhizosphereofM.tenuiflora.Differentletters representstatisticallysignificantdifferences(p<0.05) amongsites,afterone-wayANOVAandLSDtestforoverall comparisons.

periodofgreatestAMFsporeproduction,becausesoilwater

availabilityplaysanimportantroleintheAMF-hostplant

rela-tionship,namelyintermsofthecompositionandfunctioning.

Also,dataavailableintheliteraturefromelsewhereshowed

thatsporeabundancemightvaryfrom0to13sporesg−1soil

androotcolonizationrangesfrom27.7to45.7%inother

semi-aridandaridregions.13,49

Our results for total AMF species richness differ from

the ones presented by Silva et al.,15 which found that

AMF total species richness might be larger than 40 AMF

species.Thisdissimilarityinresultsmaybeduetosoil

site-specificcharacteristics, aswell asrhizosphere peculiarities

that differ among sites that might determine the number

of AMF species present, and consequently, the number of

AMFspeciesdetected.49However,ourresultsaresimilarto

recentlypublisheddata fromsemiaridand aridareas

else-where,whichshowedtotalrichness tovarybetween3and

32AMFspecies.16,50

TherewasastatisticallysignificantdifferenceinAMF

diver-sity and dominanceamongsites.A4was thesite withthe

greatest diversity (2.64) and the highest dominance index

(0.91). Other studies carried out in the Brazilian semiarid

region foundsimilarresults.15,51 Aspointedout above,soil

propertiesmayhavemoreinfluencethanthehostplanton

theAMFcommunity,15,47,52becausesoilpH,wateravailability,

phosphorousandnitrogencontentsaredeterminantfactorsin

thecompositionandfunctioningoftheAMF-hostplant

rela-tionship.Ourstudyprovidesevidencethatthesoilproperties,

suchassoilpH,totalnitrogenandphosphorousavailable,are

keyaspectsontheAMFcommunitystructureintheBrazilian

semiaridregion.

Species ofAcaulospora,Claroideoglomus,Dentiscutata,

Fun-neliformis,Gigaspora,RhizoglomusandScutellosporawereamong

the identified taxa.These genera are common insemiarid

sites,13,15,53andacidsoilswithlowphosphorousavailability.54

Previous studies have shown the presence of these AMF

speciesassociatedwithM.tenuiflora.9,12,13Moststudieshave

shownacertainconstancyintheAMFgeneraassociatedwith

this plantspecies, like Acaulospora, Archaeospora, Gigaspora,

Glomus,andScutellospora,14,15buttherearenoreportsof

dom-inantAMFgenusintheM.tenuiflorarhizosphere.46Ourresults

alsosupportthelackofdominanceofagivenAMFgenusor

speciesassociatedwithM. tenuiflorarhizosphere.Moreover,

thehighabundanceofrepresentativesfromtheOrder

Gigas-poralesfoundinourstudy,mightgivesomesupporttothe

hypothesis proposed by Goto et al.36 and Marinho et al.,55

whichpointsoutthatBrazilisthediversificationand

disper-sioncenterofspeciesfromGigasporales.

1.0

0.8

0.6

Total organic carbon

Axis 2 (14.81%) AMF species richness Shanon index Simpson index Axis 1 (68.61%)

Total nitrogen Soil pH

Available phosphorous 0.4 –0.2 0.2 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1.0 A4 A1 A3 A2 A5 A7 A6 –0.4 –0.6 –0.8

Fig.3–PCAscoreplotofsoilpropertiesandAMFcommunitystructure,hererepresentedbytheecologicalindexes calculated(speciesrichness,ShanonindexandSimpsonindex).A1–AlgodãodeJandaíra,PB;A2–Esperanc¸a,PB;A3– Ibaretama,CE;A4–Juazeirinho,PB;A5–Monteiro,PB;A6–Natuba,PB;A7–Poc¸inhos,PB.Pointsrepresentsamplesfrom eachplotbystudiedsites.

(7)

Soil properties differed among all studied sites. These

resultssupportourhypothesisthatsoilpropertiesare

impor-tant factors influencing the AMF community in the M.

tenuiflorarhizosphere.AccordinglytoOehletal.35andCarneiro

etal.,49soilpH,availablephosphorous,andothersoil

prop-ertiescanchangeAMFcommunitycomposition, increasing

the frequency of mutualists from genera Acaulospora,

Fun-neliformis,Gigaspora and Scutellospora.There wasa negative

correlationbetweensoilpH,totalnitrogenandphosphorous

availabilityandthedifferentecologicalindicescalculatedfor

eachsite(Fig.3).Ourresultsareinagreementwithprevious

workcarriedoutin16locationsacrossEurope,47whichfound

that different soil types contained different AMF species.

InSwitzerland,astudy analyzing 154different agricultural

soilsamplesreportedthattheabundanceofsomeAMFtaxa

wasalsorelatedwithsoilvariables.52Morerecently,astudy

performed along an environmental gradient in the

Brazil-iansemiaridregionfoundastrongcorrelationbetweensoil

attributesandAMFcommunitycomposition,concludingthat

soilpropertiesarekeyfactorsdeterminingAMFcommunity

structureinalocalscale,eventhoughsitesaregeographically

closetoeachother’s.15

In conclusion, our results showed that (1) AMF species

exhibithighsporulationduringthedryseason,(2)andthat

M. tenuiflorais a common hostplant, which points out its

importance in the biome it inhabits and its potential use

in reforestation programs in the Caatinga degraded areas.

However,furtherresearchisneededtounraveltheeffectof

AMFinoculationinthenativeplants,M.tenuiflorainthis

par-ticular case, growing in different soil conditions and with

differentAMFcommunitiesbeforeestablishhabitat

restora-tionmeasures.DespitenodominantAMFspecieswasfound

inM.tenuiflorarhizosphere,rare andcommon AMFspecies

accordinglytoZhang’sclassification43weredescribed.Based

ontheseresults,onecanassumethatthisnativeplantspecies

doesnotbenefitanyAMFparticulargenusandhighlightsits

potentialinAMFcommunities’restorationindegradedsoils.

Furtherwork isneededtounderstandwhetherthisdiverse

AMFcommunityhasapositivedifferentialeffectinincreasing

nativeplantgrowth,resistanceortolerancetorootpathogens

intheBraziliansemiaridregion.56,57

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

SpecialthankstoJoana Costaforvaluable discussionsand

checking of English grammar. Two anonymous reviewers

providehelpfulcomments,whichgreatlyimprovedaprevious

versionofthemanuscript.

r

e

f

e

r

e

n

c

e

s

1.AlvesJJA,AraújoMA,NascimentoSS.Degradac¸ãoda

Caatinga:umainvestigac¸ãoecofisiográfica.RevCaatinga

Mossoró.2009;22:126–135.

2.SantosJC,LealIR,Almeida-CortezJS,FernandesGW,

TabarelliM.Caatinga:thescientificnegligenceexperienced

byadrytropicalforest.TropConservSci.2011;4:

276–286.

3.SmithSE,ReadDJ.MycorrhizalSymbiosis.3rded.Amsterdam:

Bostoh,AcademicPress;2008.

4.HodgeA,StorerK.Arbuscularmycorrhizalandnitrogen:

implicationsforindividualplantsthroughtoecosystems.

PlantSoil.2014;386:1–19,

http://dx.doi.org/10.1007/s11104-014-2162-1.

5.AugéRM.Waterrelations,droughtandVAmycorrhizal

symbiosis.Mycorrhiza.2001;11:3–42.

6.CavagnaroTR,GaoL-L,SmithFA,SmithSE.Morphologyof

arbuscularmycorrhizasisinfluencedbyfungalidentity.New

Phytol.2001;151:469–475.

7.KoskeRE,PoisonWR.AreVAmycorrhizaerequiredforsand

dunestabilization?BioScience.1984;34:420–424.

8.Rodríguez-EcheverríaS,CrisóstomoJA,NabaisC,FreitasH.

BelowgroundmutualistsandtheinvasiveabilityofAcacia

longifoliaincoastaldunesofPortugal.BiolInvasions.

2009;11:651–661.

9.Yano-MeloAM,TrufemSFB,MaiaLC.Arbuscularmycorrhizal

fungiinsalinizedandsurroundedareasattheSãoFrancisco

SubmediumValley,Brazil.Hoehnea.2003;30:79–87.

10.LPWG(TheLegumePhylogenyWorkingGroup).Legume

phylogenyandclassificationinthe21stcentury:progress,

prospectsandlessonsforotherspecies-richclades.Taxon.

2013;62:217–248,doi:10.127-5/622.8.

11.BakkeIA,BakkeOA,AndradeAP,SalcedoIH.Regenerac¸ão

naturaldaJuremaPretaemáreassobpastejodebovinos.Rev

CaatingaMossoró.2006;19:228–235.

12.LimaRLFA,SalcedoIH,FragaVS.Propágulosdefungos

micorrízicosarbuscularesemsolosdeficientesemfósforo

sobdiferentesusos,daregiãosemiáridanoNordestedo

Brasil.RevBrasCiêncSolo.2007;31:257–268.

13.MergulhãoACES,OliveiraJP,BurityHA,MaiaLC.Potencialde

infectividadedefungosmicorrízicosarbuscularesemáreas

nativaseimpactadasporminerac¸ãogesseiranosemiárido

brasileiro.Hoehnea.2007;34:341–348.

14.SilvaLX,FigueiredoMVB,SilvaGA,etal.Fungosmicorrízicos

arbuscularesemáreasdeplantiodeLeucenaeSabiáno

estadodePernambuco.RevÁrvore.2007;31:427–435.

15.SilvaIRS,MelloCMA,FerreiraNetoRA,etal.Diversityof

arbuscularmycorrhizalfungialonganenvironmental

gradientintheBraziliansemiarid.ApplSoilEcol.

2014;84:166–175.

16.AlguacilMM,TorrecillasE,RoldánA,DíazG,TorresMP.

Perennialplantspeciesfromsemiaridgypsumsoilssupport

higherAMFdiversityinrootsthantheannualBromus

rubens.SoilBiolBiochem.2012;49:132–138.

17.BeauregardMS,GauthierM-P,HamelC,etal.Variousforms

oforganicandinorganicPfertilizersdidnonegativelyaffect

soil-androot-inhabitingAMfungiinamaize–soybean

rotationsystem.Mycorrhiza.2013;23:143–154.

18.JiB,BentivengaSP,CasperBB.ComparisonsofAMfungal

sporecommunitieswiththesamehostsbutdifferentsoil

chemistriesoverlocalandgeographicscales.Oecologia.

2012;168:187–197.

19.LekbergY,KoideRT,RohrJR,AldrichwolfeL,MortonJB.Role

ofnicherestrictionsanddispersalinthecompositionof

arbuscularmycorrhizalfungalcommunities.JEcol.

2007;95:95–105.

20.MagurranAE.Speciesabundanceovertime.EcolLett.

2007;10:347–354.

21.WRB(IUSSWORKINGGROUP).WorldReferenceBaseforSoil.

WorldSoilResourcesReports.n.103.Rome:FAO;2006.

22.Grieg-SmithP.QuantitativePlantEcology.Oxford:Blackwell;

(8)

23.FortinM,DaleMR.SpatialAnalysis:AGuideforEcologists.

Cambridge:CambridgeUniversityPress;2005.

24.CaifaAN,MartinsFR.Taxonomicidentification,sampling

methods,andminimumsizeofthetreesampled:

implicationsandperspectivesforstudiesintheBrazilian

AtlanticRainforest.FunctEcosystCommun.2007;1:

95–104.

25.CostaIR,AraújoFS.Organizac¸ãocomunitáriadeumencrave

decerradosensustrictonobiomaCaatinga,chapadado

Araripe,Barbalha,Ceará.ActaBotBrasil.2007;18:759–770.

26.DuriganG.Estruturaediversidadedecomunidades

florestais.In:MartinsSV,ed.EcologiadeFlorestasTropicaisdo

Brasil.Vicoc¸a,MG:EditoraUFV;2009:185–215.

27.DaubenmireRE.PlantCommunities:ATextbookofPlant

Synecology.NewYork:HaperandRow;1968.

28.BlackCA.Methodsofsoilanalysis,Part2.In:BlackCA,ed.

AgronomyMonographNo.9.Madison,WI:AmericanSocietyof

Agronomy;1965:771–1572.

29.OkaleboJR,GathuaKW,WoomerPL.LaboratoryMethodsof

PlantandSoilAnalysis:AWorkingManual.TechnicalBulletin

No.1SoilScienceSocietyEastAfrica;1993.

30.GerdemannJW,NicolsonTH.SporesofmycorrhizalEndogone

speciesextractedfromsoilbywetsievinganddecanting.

TransBrMycolSoc.1963;1:43–66.

31.JenkinsWR.Arapidcentrifugalflotationtechniquefor

separatingnematodesfromsoil.PlantDisRep.1964;48:

692.

32.WalkerC,VestbergM,DemircikF,etal.Molecularphylogeny

andnewtaxaintheArchaeosporales(Glomeromycota):

Ambisporafennicagen.sp.nov.,Ambisporaceaefam.nov.,

andemendationofArchaeosporaandArchaeosporaceae.

MycolRes.2007;111:137–153.

33.SchenckNC,PerezY.ManualfortheIdentificationofVA

MycorrhizalFungi.3rded.Gainesville:Synergistic

Publications;1990.

34.OehlF,SouzaFA,SieverdingE.RevisionofScutellosporaand

descriptionoffivenewgeneraandthreenewfamiliesinthe

arbuscularmycorrhiza-formingGlomeromycetes.Mycotaxon.

2008;106:311–360.

35.OehlF,SieverdingE,PalenzuelaJ,IneichenK,SilvaGA.

AdvancesinGlomeromycotataxonomyandclassification.

IMAFungus.2011;2:191–199.

36.GotoBT,SilvaGA,AssisDMA,etal.Intraornatosporaceae

(Gigasporales),anewfamilywithtwonewgeneraandtwo

newspecies.Mycotaxon.2012;119:117–132.

37.RedeckerD,SchüßlerA,StockingerH,etal.An

evidence-basedconsensusfortheclassificationor

arbuscularmycorrhizalfungi(Glomeromycota).Mycorrhiza.

2013.

38.SieverdingE,SilvaGA,BerndtR,OehlF.Rhizoglomus,anew

genusoftheGlomeraceae.Mycotaxon.2014;129:373–386.

39.PhillipsJM,HaymanDS.Improvedproceduresforclearing

rootsandstainingparasiticandvesicular-arbuscular

mycorrhizalfungiforrapidassessmentofinfection.TransBr

MycolSoc.1970;55:158–160.

40.McGonigleTP,MillerMH,EvansDG,FairchildGL,SwanJA.A

newmethodwhichgivesanobjectivemeasureof

colonizationofrootsbyvesicular-arbuscularmycorrhizal

fungi.NewPhytol.1990;115:495–501.

41.ShanonCE,WeaverW.TheMathematicalTheoryof

Communication.Urbana,IL:UniversityofIllinoisPress;1949.

42.SimpsonEH.Measurementofdiversity.Nature.1949;163:688.

43.ZhangY,GuiLD,LiuRJ.Surveyofarbuscularmycorrhizal

fungiindeforestedandnaturalforestlandinthesubtropical

regionofDujiangyan,southwestChina.PlantSoil.

2004;261:257–263.

44.StürmerSL,SiqueiraJO.Speciesrichnessandspore

abundanceofarbuscularmycorrhizalfungiacrossdistinct

landusesinWesternBrazilianAmazon.Mycorrhiza.

2011;21:255–267.

45.KovachWL.MVSP–AMultiVariateStatisticalPackagefor

Windows,ver.3.1.Pentraeth,Wales,UK:KovachComputing

Services;2007.

46.MelloCMA,SilvaIR,PontesJS,etal.Diversidadedefungos

micorrízicosarbuscularesemáreadeCaatinga,PE,Brasil.

ActaBotBrasil.2012;26:938–943.

47.OehlF,LaczkoE,BogenriederA,etal.Soiltypeandlanduse

intensitydeterminethecompositionofarbuscular

mycorrhizalfungalcommunities.SoilBiolBiochem.

2010;42:724–738.

48.PereiraCMR,SilvaDKA,FerreiraACA,GotoBT,MaiaLC.

DiversityofarbuscularmycorrhizalfungiinAtlanticforest

areasunderdifferentlanduses.AgricEcosystEnviron.

2014;185:245–252.

49.CarneiroRFV,CardozoJúniorFM,PereiraLF,AraújoASF,Silva

GA.Fungosmicorrízicosarbuscularescomoindicadoresda

recuperac¸ãodeáreasdegradadasnoNordestedoBrasil.Rev

CiencAgron.2012;43:648–657.

50.WetzelK,SilvaG,MatczinskiU,OehlF,FesterT.Superior

differentiationofarbuscularmycorrhizalfungal

communitiesfromtillandno-tillplotsbymorphological

sporeidentificationwhencomparedtoT-RFLP.SoilBiol

Biochem.2014;72:88–96.

51.PaganoMC,ZandavalliRB,AraújoFS.Biodiversityof

arbuscularmycorrhizasinthreevegetationaltypesfromthe

semiaridofCearáState,Brazil.ApplSoilEcol.2013;67:

37–46.

52.JansaJ,ErbA,OberholzerH-R,SmilauerP,EgliS.Soiland

geographyaremoreimportantdeterminantsofindigenous

arbuscularmycorrhizalcommunitiesthanmanagement

practicesinSwissagriculturalsoils.MolEcol.

2014;23:2118–2135,doi:10.1111/mec.12706.

53.DandanZ,ZhiweiZ.Biodiversityofarbuscularmycorrhizal

fungiinthehot-dryvalleyoftheJinshariver,southwest

China.ApplSoilEcol.2007;37:118–128.

54.RamosAC,Fac¸anhaAR,FeijóJA.Proton(H+)fluxsignature

forthepresymbioticdevelopmentofthearbuscular

mycorrhizalfungi.NewPhytologist.2008;178:177–188.

55.MarinhoF,SilvaGA,FerreiraACA,etal.Bulbosporaminima,

anewspeciesintheGigasporalesfromsemi-aridNortheast

Brazil.Sydowia.2014;66:313–323.

56.Rodríguez-EcheverríaS,GeraHolWH,FreitasH,EasonWR,

CookR.ArbuscularmycorrhizalfungiofAmmophilaarenaria

(L.)Link:sporeabundanceandrootcolonizationinsix

locationsoftheEuropeancoast.EurJSoilBiol.2008;44:30–36.

57.ZhangQ,YangR,TangJ,etal.Positivefeedbackbetween

mycorrhizalfungiandplantsinfluencesplantinvasion

Referências

Documentos relacionados

In general, the sunflower plants in association with AMF showed significantly higher values of the capitulum diameter, 1,000 seed weight, and grain yield parameters compared to the

Variables related to the chemical properties (amount of P and K available, soil pH, and base and aluminum saturation) and physical properties (mechanical resistance, average of

Thus, in this study, we evaluated the effects of monospecific and mixed stands of Eucalyptus camaldulensis and Sesbania virgata on the chemical properties of soils (namely

TABLE 1 Soil physical properties in two soil layers, number of individuals of the key species undergoing natural regeneration and herbaceous aboveground biomass of the

Relationship in soil physical and chemical properties of soil, floristic and phytosociological association of semi- deciduous riparian forest of the Paranapanema

Arbuscular mycorrhizal fungi (AMF) species from secondary forest (SF) and grass pasture (GP) in soil samples taken in April and November, 2000, in Paraty, RJ..

The two areas of anthropogenic dark earths (ADE 1 and 2) in a Gleysol, showed improved soil chemical properties compared to the adjacent soil, particularly in relation to

Therefore, in this study, we evaluated the effects of six years of repeated CTS amendment on the chemical and physical properties of soil and investigated cowpea yield in a