• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número3"

Copied!
6
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

The

essential

oil

of

Artemisia

capillaris

protects

against

CCl

4

-induced

liver

injury

in

vivo

Qinghan

Gao

a,b,1

,

Xin

Zhao

a,1

,

Lei

Yin

a,1

,

Yuanbin

Zhang

a

,

Bing

Wang

a

,

Xiuli

Wu

a

,

Xinhui

Zhang

a

,

Xueyan

Fu

a,c,∗

,

Weihong

Sun

d,∗

aSchoolofPharmacy,NingxiaMedicalUniversity,Yinchuan,China bSchoolofPublicHealth,NingxiaMedicalUniversity,Yinchuan,China

cKeyLaboratoryofHuiEthnicMedicineModernization,MinistryofEducation(NingxiaMedicalUniversity),Yinchuan,China dGeneralHospitalofNingxiaMedicalUniversity,Yinchuan,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received13July2015 Accepted11January2016 Availableonline28January2016

Keywords: Essentialoil Carbontetrachloride Hepatoprotectiveeffects Invivo

H&E GC–MS

a

b

s

t

r

a

c

t

TostudythehepatoprotectiveeffectoftheessentialoilofArtemisiacapillarisThunb.,Asteraceae,on CCl4-inducedliverinjuryinmice,thelevelsofserumaspartateaminotransferaseandalanine amino-transferase,hepaticlevelsofreducedglutathione,activityofglutathioneperoxidase,andtheactivitiesof superoxidedismutaseandmalondialdehydewereassayed.AdministrationoftheessentialoilofA. capil-larisat100and50mg/kgtomicepriortoCCl4injectionwasshowntoconferstrongerinvivoprotective effectsandcouldobservablyantagonizetheCCl4-inducedincreaseintheserumalanineaminotransferase andaspartateaminotransferaseactivitiesandmalondialdehydelevelsaswellaspreventCCl4-induced decreaseintheantioxidantsuperoxidedismutaseactivity,glutathionelevelandglutathioneperoxidase activity(p<0.01).Theoilmainlycontained␤-citronellol,1,8-cineole,camphor,linalool,␣-pinene,␤ -pinene,thymolandmyrcene.ThisfindingdemonstratesthattheessentialoilofA.capillariscanprotect hepaticfunctionagainstCCl4-inducedliverinjuryinmice.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Liver disease, a commondisorder caused by viral hepatitis, alcoholism, liver-toxic chemicals, unhealthy dietary habits and environmentalpollution,isaglobalconcern(Papayetal.,2009). However, medical treatment for this disease is often hard to administerandhasaconfinedeffect.TraditionalChineseherbal medicines,whichunderlienumerousprescriptionsusedtotreat liverdiseases,arestillwidelyusedbytheChinese(Zhaoetal.,2014).

Artemisia capillaris Thunb., Asteraceae,according to theBencao Gangmu,themostfamousrecordsofChineseTraditionalMedicine, hasbeenwidelyusedasamedicinetoclearheat,promotediuresis andremovejaundiceandhasalsobeenusedasaflavorin bever-ages,vegetables,andpastriesbecauseofitsparticularfragrance.A. capillarishasbeenregardedasatypeofChinesefolkmedicineand foodbyagrowingnumberofpeople.Therefore,therehavebeen

∗ Correspondingauthors.

E-mails:xueyanfu2661@163.com(X.Fu),tungbuo@163.com(W.Sun).

1Theseauthorsequallycontributedtothismanuscript;theyshouldbeconsidered

firstauthor.

considerableeffortstodevelopusefulherbalmedicines,suchasA. capillaris,forthetreatmentofliverdisease.

Inrecentyears,herbalmedicineshavegainedmoreattention andpopularityforthetreatmentofliverdiseasebecauseoftheir safetyandefficacy(Dingetal.,2012).A.capillarishasbeenproven topossessgoodhepatoprotectiveactivitybasedonmodern phar-macological methods (Han et al.,2006).It is alsoanimportant medicinalmaterialinChinaand isa popularanti-inflammatory

(Chaetal.,2009a),choleretic(YoonandKim,2011),andanti-tumor

(Fengetal.,2013)herbalremedy.

Phytochemicalstudieshaverevealedanumberofvolatile essen-tialoils, coumarins, and flavonol glycosides aswell asa group ofunidentifiedaglyconesfromA.capillaris(Komiyaetal.,1976;

Yamaharaetal.,1989).TheessentialoilofA.capillaris(AEO)isone

ofthemainpharmacologicalactivecompoundsandconfers anti-inflammatory(Chaetal.,2009a)andanti-apoptoticproperties(Cha

etal.,2009b).However,asAEOisoneofthemaincompoundsof

A.capillaris,thepotentialhepatoprotectiveactivitiesofthemajor constituentsfromA.capillarisshouldbeexplored.

In this study, the protective effect of AEO on carbon tetrachloride(CCl4)-inducedhepatotoxicitywasevaluatedby

bio-chemical methods, such as hepatic reduced glutathione (GSH),

http://dx.doi.org/10.1016/j.bjp.2016.01.001

(2)

malondialdehyde(MDA)levels,superoxidedismutase(SOD),and glutathioneperoxidase(GSH-Px)activity,aswellastheactivities ofaspartateaminotransferase(AST)andalanineaminotransferase (ALT)intheserum.TheextentofCCl4-inducedliverinjurywasalso

analyzed through histopathological observations, accompanied withphytochemicalanalysisbyGC–MStoidentifytheconstituents ofAEO.

Materialsandmethods

Drugsandchemicals

The essential oil of Artemisia capillaris Thunb., Asteraceae, wasobtainedfromKangshenNaturaloilsCo.,Ltd(Jishui,Jiangxi Province,China).CCl4waspurchasedformDamaoChemical

Com-pany (Tianjin, China). Bifendate tablets were purchased from Yunpeng,ShanxiPharmaceuticalCo.,Ltd.(no.A130602).The diag-nostickitsusedforthedeterminationofALT,AST,SOD,MDA,GSH andGSH-PxwereobtainedfromtheNanjingJianchengInstituteof Biotechnology(Nanjing,China).

AEOanalysis

AEOwasanalyzedby gaschromatography–mass spectrome-try(GC/MS)usingaShimadzuQP2010plusGCwithRxi-5SilMS (30m×0.25mm; 0.25␮mfilm thickness). The GC/MS was run under thefollowing conditions: a fused-silica capillary column with heliumat 1.60ml/min and an injector at 250◦C. The GC oventemperaturewasinitiallyheldat40◦Cfor5min.Thereafter, thetemperaturewasraisedwithagradientof3◦Cmin−1untilit

reached230◦C.Thistemperaturewasheldfor3min.Finally,the temperaturewasthenraisedwitha gradientof1◦Cmin−1 until

260◦Candagainheldfor10min.Massspectraweretakenat70eV from33to500Da.Identificationofthecompoundswasbasedon thecomparisonofthemassspectraldataonacomputermatched withNIST(similarityindex>85%)andthosedescribedinthe lit-erature(Sylvestre etal., 2006; Chenget al., 2008; Ait-Ouazzou

etal.,2012;ArgyropoulouandSkaltsa,2012; ´Cavaretal.,2012;Ben

Mansouretal.,2013;Chenetal.,2013;GouveiaandCastilho,2013;

MuruganandMallavarapu,2013;Singhetal.,2013;Bagherietal.,

2014;DaSilvaetal.,2014;Desaietal.,2014;Pandeyetal.,2014;

Qietal.,2014;Ratheretal.,2014;Sadgroveetal.,2014;Sereshti

etal.,2014;Taoetal.,2014;Tianetal.,2014).Theidentification

ofcompoundswasperformedaccordingtotheirretentionindices relativetoC8–C24n-alkanesandMS.

Animals

MaleICRmiceat6–8weeksofage(18–22g)werepurchased fromtheMedicineExperimentAnimalCenterofNingxiaMedicine University.Theanimalswereallowedtoacclimatizefortwodays toanimalroomconditionsandweremaintainedonastandard pel-letdietandwateradlibitum.Thefoodwaswithdrawnontheday beforetheexperiment,buttheanimalswereallowedfreeaccess towater.AllanimalswerecaredforincompliancewiththeGuide fortheCareandUseofLaboratoryAnimals(1996).The experimen-talprocedureswereapprovedbyourinstitutionalanimalresearch ethicscommittee(approvalnumber:SYXK(NING)2011-0001).

Rodentmodeldesign

Theanimalswererandomlydividedintofivegroupsoffifteen miceeach.Thecontrolgroupand modelgroupmicewere gav-agedwithsesameoilfor6days.Positivecontrolgroupmicewere gavagedwithbifendatetablets(BT,10mg/kg)for6days.The exper-imentalgroupsweretreatedwith100mg/kgand50mg/kgAEO

dissolvedinsesameoilfor6days.Onday6,thecontrolgroupwas treatedwithsesameoil,andalloftheothergroupsweretreated withasingledoseof0.2%CCl4insesameoil(10ml/kg)by

intraperi-tonealinjection.Themicewerethenfastedfreeofwater,andblood samples werecollected from the retrobulbarvessels; collected bloodwascentrifugedat3000×gfor10mintoseparatetheserum. Cervicaldislocationwasperformedimmediatelyafterwithdrawal ofblood,andliversampleswerepromptlyremoved.Onepartof theliversamplewasimmediatelystoredat−20◦Cuntilanalysis, andanotherpartwasexcisedandfixedina10%formalinsolution; theremainingtissueswerestoredat−80◦Cforhistopathological analysis(Wangetal.,2008;Hsuetal.,2009;Nieetal.,2015).

Measurementofthebiochemicalparametersintheserum

Liverinjurywasassessedbyestimatingtheenzymaticactivities ofserumALTand ASTusingthecorrespondingcommercialkits accordingtotheinstructionsforthekits(Nanjing,JiangsuProvince, China).Theenzymaticactivitieswereexpressedasunitsperliter (U/l).

MeasurementofMDA,SOD,GSHandGSH-Pxinliverhomogenates

Livertissueswerehomogenizedwithcoldphysiologicalsaline ata1:9ratio(w/v,liver:saline).Thehomogenateswerecentrifuged (2500×gfor 10min) tocollectthe supernatantsfor the subse-quentdeterminations.Liverdamagewasassessedaccordingtothe hepaticmeasurementsoftheMDAandGSHlevelsaswellasthe SODandGSH-Pxactivities.Alloftheseweredetermined follow-ingtheinstructionsonthekit(Nanjing,JiangsuProvince,China). TheresultsforMDAandGSHwereexpressedasnmolpermg pro-tein(nmol/mgprot),andtheactivitiesofSODandGSH-Pxwere expressedasUpermgprotein(U/mgprot).

Histopathologicalanalysis

Portionsoffreshlyobtainedliverwerefixedina10%buffered paraformaldehyde phosphate solution. The sample was then embeddedin paraffin,slicedinto3–5␮msections, stainedwith hematoxylinandeosin(H&E)accordingtoastandardprocedure, andfinallyanalyzedbylightmicroscopy(Tianetal.,2012).

Statisticalanalysis

Theresultswereexpressedasthemean±standarddeviation (SD).TheresultswereanalyzedusingthestatisticalprogramSPSS Statistics,version19.0.Thedataweresubjectedtoananalysisof variance(ANOVA, p<0.05)followed byDunnett’stest and Dun-nett’sT3testtodeterminethestatisticallysignificantdifferences

betweenthevaluesofvariousexperimentalgroups.Asignificant differencewasconsideredatalevelofp<0.05.

Resultsanddiscussion

ConstituentsofAEO

(3)

Table1

ChemicalcompositionofessentialoilfromArtemisiacapillarisThun.(AEO).

Compound Rta RIcalcb RIlitc %d

␣-Pinene 11.133 928 933 7.21

Camphene 11.340 943 946 1.52

Sabinene 13.269 968 969 1.09

␤-Pinene 13.640 975 974 3.99

Myrcene 14.313 987 988 2.02

Iso-cineole 15.612 1012 1012 1.27

p-Cymene 16.025 1020 1020 2.28

Limonene 16.273 1025 1024 2.00

1,8-Cineole 16.424 1028 1026 13.09

Artemisiaketone 17.965 1057 1056 1.44

Terpinolene 19.226 1081 1086 1.30

Linalool 20.112 1098 1095 11.33

trans-Pinocarveol 17.965 1135 1135 1.44

Camphor 22.215 1140 1141 12.59

Terpinen-4-ol 23.998 1176 1174 1.21

␣-Terpineol 24.744 1191 1186 1.89

Dodecane 25.173 1199 1200 2.44

␤-Citronellol 26.407 1226 1211 16.23

Thymol 29.356 1288 1289 3.22

Longipinene 34.330 1401 1402 2.16

(E)-Caryophyllene 34.813 1413 1417 1.73

aRtretentiontime(min)formalineartemperatureprogram. bRIcalcretentionindexcalculatedforeachcompound. c RIlitretentionindexobtainfrompublishedliteratures. d %relativeabundancesfromthepeakareaintegration.

(7.21%),␤-pinene(3.99%),thymol(3.22%), andmyrcene(2.02%). Thevariationinthechemicalcompositionmayberelatedtothe environmentalconditionsthattheplantwasexposedto,suchas mineralwater,sunlight,thestageofdevelopmentandnutrition.

Aspreviouslysuggested,fewstudieshavereportedthe hepato-protectiveeffectsof someofthesemajorcompounds.However, therearefindingsthatindicatethatmajorcompoundspossessan anti-inflammatoryeffect,suchasthymol(Bragaetal.,2006), euca-lyptol,limonene,andlinalool(KuandLin,2013).␤-Myrceneand 1,8-cineolewerealsofoundtoeliminateTCDD-inducedoxidative stressinrats(Ciftcietal.,2011).

Measurementofthebiochemicalparametersintheserum

CCl4-inducedhepaticinjury isa commonlyused

experimen-talanimalmodel(JohnstonandKroening,1998).Apreviousstudy reportedthatCCl4administrationisassociatedwithactivationby

thecytochromesystem(e.g.,CYP2E1)toformtrichloromethyl

radi-cals(CCl3•).ItisgenerallythoughtthatCCl4 toxicityisduetoa

reactiveintermediatethatisgeneratedbyitsreductivemetabolism. Thishighlyreactiveintermediateisknowntoinducelipid peroxida-tion,oxidativestress,hepaticnecrosisandapoptosis(Weberetal.,

2003).

Inthisassay,theresultsofthehepatoprotectiveeffectsofAEOon theenzymaticactivitiesofserumALTandASTareshowninFig.1A andB,respectively.AnintraperitonealinjectionofCCl4 induced

anotableincreaseinALTandASTactivitiesincomparison with untreatedcontrolmice(p<0.01);theincreasedserumactivitiesof ALTandASTenzymesinCCl4treatedmiceconfirmedthehepatic

damage.Conversely,pretreatmentwithAEOatdosesof100mg/kg and50mg/kg,aswellasbifendatetablets,obviouslyreversedthe toxin-inducedincreaseintheALTandASTlevelscomparedwith toxinmodelgroup2(p<0.01).Whenthedosereached100mg/kg, theresultswereasgoodasBT.

ALTandASTareimportantmetabolicenzymesoftheliver.After CCl4administration,theserumALTandASTactivitiesinmicewere

evaluated.These enzymesnormallyexist in thecytoplasm, but upon liverinjury, theycanenter thecirculatory systemdueto

toxicity-mediatedalteredpermeabilityofthecellularmembrane

(WillsandAsha,2006).Inapreviousstudy,itwasreportedthat

administrationofCCl4inmicecausedincreasedALTandAST

activ-ities.

OurdatashowedthattheliverdamageinducedbyCCl4

ele-vateslivermarkerenzymes.Elevatedactivitiesofserumenzymes, ALTandASTareindicativeofcellularleakageandthelossofthe functionalintegrityofthecellmembraneintheliver,while pre-treatmentwithAEOeffectivelydecreasedtheamountofASTand ALTleakage.

MeasurementofMDA,SOD,GSHandGSH-Pxinliverhomogenates

ThelevelsofMDAsuggestenhancedperoxidationleadingto tissuedamageandfailureoftheantioxidant-defensemechanisms topreventtheformationofexcessivefreeradicals(Chengetal.,

2013; Pareeket al., 2013).However, AEO at 50 and 100mg/kg

couldmarkedlypreventtheincreaseinMDAformation(Fig.1C), whichclearlydemonstratedtheabilityofAEOtorelievelipid per-oxidation.MDAiswellknowntobethemostabundantindividual aldehyderesultingfromlipidperoxidationandiscommonlyused asanindicatoroflivertissuedamageinvolvingaseriesof oxida-tivechainreactions(Huangetal.,2012).Inthepresentresearch, micetreatedwithCCl4showedastrikingincreaseinMDAlevels

compared tountreatednormal mice(p<0.01).SODand GSH-Px

arethemajorenzymesthatplayanimportantroleinthe elim-ination of toxic metabolites, which are the major cause of the liver pathology caused by CCl4 (Cengiz et al., 2013; Xia et al.,

2013).Here,administrationofCCl4tomicesharplydecreasedthe

SODandGSH-Pxactivitiesinmouselivertissues,asevidencedby theinhibitionoftheirenzymaticactivities.However,thedecrease in theseenzymatic activities wassignificantlyelevated by pre-treatmentwithAEO,suggestingthattheycouldprotectthethree antioxidantenzymesinCCl4-damagedlivers.Theprotectiveeffect

of AEO waspotent in terms of the SOD and GSH-Px activities, whichismostlikelyrelatedtotheeliminationoftoxic metabo-lites(Fig.1DandF).SODisamanganese-containingenzymeinthe mitochondriaandconvertsthedismutationofsuperoxideanions into hydrogen peroxide (H2O2) (Reiter et al., 2000).GSH-Px is

animportant enzymethat catalyzesthereduction ofH2O2 and

hydroperoxidesandterminatesthechainreactionoflipid peroxi-dationbyremovinglipidhydroperoxidesfromthecellmembrane (Aietal.,2013).Similarly,GSHisanimportantwater-phase antiox-idantandanessentialcofactorforantioxidantenzymes;itprotects themitochondriaagainstendogenousoxygenradicals(Hanetal., 2006).TheendogenousantioxidantGSHperoxidaseinhibits oxida-tive stressby quickly removing superoxideradicals (Chaudiere et al.,1999) and playsanimportant role inclearing intracellu-lar hydrogenperoxide and lipid peroxides. Therefore, thelevel ofGSHinthebodyisconsideredtobeanimportantindicatorof antioxidativecapacity(Campoetal.,2001;Iwamotoetal.,2002).

Fig.1EshowedthatCCl4treatmentinducedasignificantdecrease

inthelevelofGSHinliverhomogenatescomparedtocontrollivers. ThetreatmentofmicewithAEOat50and100mg/kgsignificantly increasedthehepaticGSHcontentcomparedwiththeCCl4-treated

group.Thisfindingindicatedthatthefreeradicalsreleasedinthe liverwereeffectivelyscavengedduringAEOtreatment.Allofthese data suggest that thehepatoprotective effects of AEO onCCl4

-inducedliverdamageinmiceareassociatedwithitscapacityfor freeradicalscavengingandantioxidation.

Histopathologicalexaminationofmouselivers

(4)

100

A

B

C

D

E

F

300

200

100

0 80

60

40

20

** ** **

** ** **

## ##

** **

**

** ** ** ##

##

** ** **

** ** **

##

##

AL

T activities(U/I)

AST activities(U/I)

MD

A le

ve

ls(nmol/mg prot)

GSH le

vels(nmol/mg prot)

GSH-Px activities (Ul/mg prot)

SOD activities (U/mg prot)

0

80

60

40

20

0

40

30

20

10

0 1.5

1.0

0.5

0

150

100

50

0

Vehicle Model

Bifendatatum 100 mg/kg

50 mg/kg

Vehicle Model

Bifendatatum 100 mg/kg

50 mg/kg

Vehicle Model

Bifendatatum 100 mg/kg

50 mg/kg

Vehicle Model

Bifendatatum 100 mg/kg

50 mg/kg

Vehicle Model

Bifendatatum 100 mg/kg

50 mg/kg

Vehicle Model

Bifendatatum 100 mg/kg

50 mg/kg

Fig.1.EffectsoforalpretreatmentwithAEOonCCl4-inducedhepaticinjury.Theresultsofthebiochemicalparameters(ALT,AST)andhepaticlevels(MDA,SOD,GSH

andGSH-Px)arerepresentedasthemean±SD(n=15).ThemicewerepretreatedwithAEO(100,50mg/kg)oncedailyfor6consecutivedays.Thecontrolmiceweregiven sesameoil.DifferencesbetweenthegroupsweredeterminedbyANOVAfollowedbyDunnett’stest.*p<0.05,**p<0.01comparedtothemodelgroup,and#p<0.05,##p<0.01

comparedtothecontrolgroup.

hepaticcellswithawell-preservedcytoplasmandlegiblenucleus, hepatocytesthatwereradiallyarrangedaroundthecentralvein, andawell-definedsinusoidalline(Fig.2A).CCl4causeddamageto

thehepaticarchitectureandproducedhistologicalchanges,suchas severehepatocellulardegenerationandnecrosisaroundthecentral vein,sinusoidaldilatation,lossofcellularboundaries, inflamma-torycell infiltration, and cytoplasmic vacuolation,all of which confirmedthesuccessfulestablishment ofliverinjury (Fig.2B). In contrast, CCl4-intoxicated mice pretreated with BT showed

nearnormalization of liver tissues withno significant changes inhepatocytes(Fig.2C).The liverdamagewasnoteworthyand dose-dependentlyreducedbypretreatmentwithAEOatdifferent doses,asindicatedbythesignificantreductioninthenumberof ballooning-degeneratedhepatocytes and significantlydecreased

necrotic area. In the grouppretreated with a low doseof AEO (Fig.2E),theliversectionsshowedmoderatehypertrophyof hepa-tocyteswitharelativelyintactcentralvein,ashrunkensinusoidal areaandreducedinflammatorycells.Theadministrationofahigh doseofAEO(Fig.2D)inducedanear-normalappearance, suggest-ingthatAEOatadoseof100mg/kgwasmoreeffectivecompared tothedoseof50mg/kgandthatAEOcouldprotecttheliverfrom acuteCCl4-inducedhepaticdamage.Thiswasingoodagreement

withtheresultsfromtheserumbiochemicalmarkers.

Insummary,theresultsfromthisstudyclearlydemonstratethat AEOiseffectiveforthepreventionofCCl4-inducedhepaticinjury

inmice.Thisstudyindicatesthepotentialforthedevelopmentof AEOasapotentialhepatoprotectiveagentincasesofCCl4induced

(5)

Fig.2.EffectsofAEOonthehistologicalchangesoftheliverafterCCl4treatmentinmice(originalmagnification400×):(A)controlgroup;(B)CCl4-intoxicatedgroup(model

group);(C)bifendatatum(10mg/kg)+CCl4;(D)AEO(100mg/kg)+CCl4;(E)AEO(50mg/kg)+CCl4.

Authorcontributions

QG,LYandXZcontributedtoperformingthelaboratorywork. YZandXZcontributedtotheestimationofthechemical compo-sition.BWcontributedtotheanalysisofthedata.LYwrotethe manuscript.QGandXWcontributedtothecriticalreadingofthe manuscript.XFandWSdesignedthestudy,supervisedthe labora-toryworkandcontributedtothecriticalreadingofthemanuscript. Alloftheauthorshavereadthefinalmanuscriptandapprovedits submission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Project No. 2013BAI05B01).

References

Ai,G.,Liu,Q.,Hua,W.,Huang,Z.,Wang,D.,2013.Hepatoprotectiveevaluationof thetotalflavonoidsextractedfromflowersofAbelmoschusmanihot(L.)Medic:

invitroandinvivostudies.J.Ethnopharmacol.146,794–802.

Ait-Ouazzou,A.,Lorán,S.,Arakrak,A.,Laglaoui,A.,Rota,C.,Herrera,A.,Pagán,R., Conchello,P.,2012.Evaluationofthechemicalcompositionandantimicrobial activityofMenthapulegium,Juniperusphoenicea,andCyperuslongusessential oilsfromMorocco.FoodRes.Int.45,313–319.

Argyropoulou,C.,Skaltsa,H.,2012.Identificationofessentialoilcomponentsof Mar-rubiumthessalumBoiss.&Heldr.growingwildinGreece.Nat.Prod.Rep.26, 593–599.

Bagheri,H.,AbdulManap,M.Y.B.,Solati,Z.,2014.Responsesurfacemethodology appliedtosupercriticalcarbondioxideextractionofPipernigrumL.essential oil.LWT–FoodSci.Technol.57,149–155.

BenMansour,M.,Balti,R.,Rabaoui,L.,Bougatef,A.,Guerfel,M.,2013.Chemical compositionangiotensinI-convertingenzyme(ACE)inhibitory,antioxidantand antimicrobialactivitiesoftheessentialoilfromsouthTunisianAjugapseudoiva

Rob.Lamiaceae.ProcessBiochem.48,723–729.

Braga,P.C.,DalSasso,M.,Culici,M.,Bianchi,T.,Bordoni,L.,Marabini,L.,2006. Anti-inflammatoryactivityofthymol:inhibitoryeffectonthereleaseofhuman neutrophilelastase.Pharmacology77,130–136.

´Cavar,S.,Maksimovi ´c,M.,Vidic,D.,Pari ´c,A.,2012.Chemicalcompositionand antiox-idantandantimicrobialactivityofessentialoilofArtemisiaannuaL.fromBosnia. Ind.CropsProd.37,479–485.

Cengiz,N.,Kavak,S.,Guzel,A.,Ozbek,H.,Bektas,H.,Him,A.,Erdo˘gan,E.,Balahoro˘glu, R.,2013.InvestigationofthehepatoprotectiveeffectsofSesame(Sesamum indicumL.)incarbontetrachloride-inducedlivertoxicity.J.Membr.Biol.246, 1–6.

Cha,J.D.,Moon,S.E.,Kim,H.Y.,Lee,J.C.,Lee,K.Y.,2009a.Theessentialoilisolated fromArtemisiacapillarispreventsLPS-inducedproductionofNOandPGE(2)by inhibitingMAPK-mediatedpathwaysinRAW2647macrophages.Immunol. Invest.38,483–497.

Cha,J.D.,Moon,S.E.,Kim,H.Y.,Cha,I.H.,Lee,K.Y.,2009b.EssentialoilofArtemisia capillarisinducesapoptosisinKBcellsviamitochondrialstressandcaspase activationmediatedbyMAPK-stimulatedsignalingpathway.J.FoodSci.74, T75–T81.

Chen,Y.,Zhou,C.,Ge,Z.,Liu,Y.,Liu,Y.,Feng,W.,Li,S.,Chen,G.,Wei,T.,2013. Compo-sitionandpotentialanticanceractivitiesofessentialoilsobtainedfrommyrrh andfrankincense.Oncol.Lett.6,1140–1146.

Cheng,N.,Ren,N.,Gao,H.,Lei,X.,Zheng,J.,Cao,W.,2013.Antioxidantand hepato-protectiveeffectsofSchisandrachinensispollenextractonCCl4-inducedacute

liverdamageinmice.FoodChem.Toxicol.55,234–240.

Cheng,S.S.,Liu,J.Y.,Lin,C.Y.,Hsui,Y.R.,Lu,M.C.,Wu,W.J.,Chang,S.T.,2008. Ter-minatingredimportedfireantsusingCinnamomumosmophloeumleafessential oil.Bioresour.Technol.99,889–893.

Ciftci,O.,Ozdemir,I.,Tanyildizi,S.,Yildiz,S.,Oguzturk,H.,2011.Antioxidativeeffects ofcurcumin,beta-myrceneand1,8-cineoleagainst 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health 27, 447–453.

Da Silva,J.K.R.,Pinto, L.C.,Burbano,R.M.R., Montenegro,R.C., Guimarães,E.F., Andrade,E.H.A.,Maia,J.G.,2014.EssentialoilsofAmazonPiperspeciesandtheir cytotoxicantifungal,antioxidantandanti-cholinesteraseactivities.Ind.Crop. Prod.58,55–60.

Desai,M.A.,Parikh,J.,De,A.K.,2014.Modellingandoptimizationstudieson extrac-tionoflemongrassoilfromCymbopogonflexuosus(Steud.).Wats.Chem.Eng. Res.Des92,793–803.

Ding,R.B.,Tian,K.,Huang,L.L.,He,C.W.,Jiang,Y.,Wang,Y.T.,Wan,J.B.,2012.Herbal medicinesforthepreventionofalcoholicliverdisease:areview.J. Ethnophar-macol.144,457–465.

Feng,G.,Wang,X.,You,C.,Cheng,X.,Han,Z.,Zong,L.,Zhou,C.,Zhang,M.,2013. AntiproliferativepotentialofArtemisiacapillarispolysaccharideagainsthuman nasopharyngealcarcinomacells.Carbohydr.Polym.92,1040–1045.

Gouveia,S.C.,Castilho,P.C.,2013.ArtemisiaannuaL.:essentialoilandacetoneextract compositionandantioxidantcapacity.Ind.Crop.Prod.45,170–181. Guo,F.Q.,Liang,Y.Z.,Xu,C.J.,Li,X.N.,Huang,L.F.,2004.Analyzingofthevolatile

chemicalconstituentsinArtemisiacapillarisherbabyGC–MSandcorrelative chemometricresolutionmethods.J.Pharm.Biomed.Anal.35,469–478. Han,K.H.,Jeon,Y.J.,Athukorala,Y.,Choi,K.D.,Kim,C.J.,Cho,J.K.,Sekikawa,M.,

Fukushima,M.,Lee,C.H.,2006.AwaterextractofArtemisiacapillarisprevents 2,2′-azobis(2-amidinopropane)dihydrochloride-inducedliverdamageinrats.J.

Med.Food9,342–347.

Hsu,Y.W.,Tsai,C.F.,Chen,W.K.,Lu,F.J.,2009.Protectiveeffectsofseabuckthorn (HippophaerhamnoidesL.)seedoilagainstcarbontetrachloride-induced hepa-totoxicityinmice.FoodChem.Toxicol.47,2281–2288.

Huang,Q.,Zhang,S.,Zheng,L.,He,M.,Huang,R.,Lin,X.,2012.Hepatoprotective effectsoftotalsaponinsisolatedfromTaraphochlamysaffinisagainstcarbon tetrachlorideinducedliverinjuryinrats.FoodChem.Toxicol.50,713–718. Johnston,D.E.,Kroening,C.,1998.Mechanismofearlycarbontetrachloridetoxicity

inculturedrathepatocytes.Pharmacol.Toxicol.83,231–239.

Komiya,T.,Naruse,Y.,Oshio,H.,1976.StudiesonInchinkoII.Studiesonthe com-poundsrelatedtocapillarisinandflavonoids.YakugakuZasshi96,855–862. Ku,C.M.,Lin,J.Y.,2013.Anti-inflammatoryeffectsof27selectedterpenoid

com-poundstestedthroughmodulatingTh1/Th2cytokinesecretionprofilesusing murineprimarysplenocytes.FoodChem.141,1104–1113.

(6)

Nie,Y.,Ren,D.,Lu,X.,Sun,Y.,Yang,X.,2015.Differentialprotectiveeffectsof polyphenolextractsfromapplepeelsandfleshesagainstacuteCCl(4)-induced liverdamageinmice.FoodFunct.6,513–524.

Pandey,V.,Verma,R.S.,Chauhan,A.,Tiwari,R.,2014.Compositionalvariationin theleafflowerandstemessentialoilsofHyssop(HyssopusofficinalisL.)from Western-Himalaya.J.Herb.Med.4,89–95.

Papay,J.I.,Clines,D.,Rafi,R.,Yuen,N.,Britt,S.D.,Walsh,J.S.,Hunt,C.M.,2009. Drug-inducedliverinjuryfollowingpositivedrugrechallenge.Regul.Toxicol.Pharm. 54,84–90.

Pareek,A.,Godavarthi,A.,Issarani,R.,Nagori,B.P.,2013.Antioxidantand hepato-protectiveactivityofFagoniaschweinfurthii(Hadidi)Hadidiextractincarbon tetrachlorideinducedhepatotoxicityinHepG2celllineandrats.J. Ethnophar-macol.150,973–981.

Qi,X.-L.,Li,T.-T.,Wei,Z.-F.,Guo,N.,Luo,M.,Wang,W.,Zu,Y.-G.,Fu,Y.-J.,Peng,X., 2014.Solvent-freemicrowaveextractionofessentialoilfrompigeonpealeaves [Cajanuscajan(L.)Millsp.]andevaluationofitsantimicrobialactivity.Ind.Crop Prod.58,322–328.

Rather,M.A.,Dar,B.A.,Shah,W.A.,Prabhakar,A.,Bindu,K.,Banday,J.A.,Qurishi,M.A., 2014.ComprehensiveGC–FIDGC–MSandFT-IRspectroscopicanalysisofthe volatilearomaconstituentsofArtemisiaindicaandArtemisiavestitaessential oils.Arab.J.Chem.,http://dx.doi.org/10.1016/j.arabjc.2014.05.017.

Reiter,R.,Tan,D.-X.,Osuna,C.,Gitto,E.,2000.Actionsofmelatonininthereduction ofoxidativestress.J.Biomed.Sci.7,444–458.

Sadgrove, N.J.,Goncalves-Martins, M.,Jones, G.L.,2014. Chemogeography and antimicrobialactivityofessentialoilsfromGeijeraparvifloraandGeijera sali-cifolia(Rutaceae):twotraditionalAustralianmedicinalplants.Phytochemistry 104,60–71.

Sereshti,H.,Heidari,R.,Samadi,S.,2014.Determinationofvolatilecomponents ofsaffronbyoptimisedultrasound-assistedextractionintandemwith dis-persiveliquid–liquidmicroextractionfollowedbygaschromatography–mass spectrometry.FoodChem.143,499–505.

Singh,S.,Kapoor,I.P.S.,Singh,G.,Schuff,C.,DeLampasona,M.P.,Catalan,C.A.N., 2013.Chemistryantioxidantandantimicrobialpotentialsofwhitepepper(Piper nigrumL.)essentialoilandoleoresins.Proc.Natl.Acad.Sci.IndiaB83,357–366.

Sylvestre,M.,Pichette,A.,Longtin,A.,Nagau,F.,Legault,J.,2006.Essentialoilanalysis andanticanceractivityofleafessentialoilofCrotonflavensL.fromGuadeloupe. J.Ethnopharmacol.103,99–102.

Tao,N.,Jia,L.,Zhou,H.,2014.Anti-fungalactivityofCitrusreticulataBlanco essen-tialoilagainstPenicilliumitalicumandPenicilliumdigitatum.FoodChem.153, 265–271.

Tian,J.,Zeng,X.,Zhang,S.,Wang,Y.,Zhang,P.,Lü,A.,Peng,X.,2014.Regional varia-tionincomponentsandantioxidantandantifungalactivitiesofPerillafrutescens

essentialoilsinChina.Ind.CropProd.59,69–79.

Tian,L.,Shi,X.,Yu,L.,Zhu,J.,Ma,R.,Yang,X.,2012.Chemicalcompositionand hepatoprotectiveeffectsofpolyphenol-richextractfromHouttuyniacordatatea. J.Agric.FoodChem.60,4641–4648.

Wang,N.,Li,P.,Wang,Y.,Peng,W.,Wu,Z.,Tan,S.,Liang,S.,Shen,X.,Su,W., 2008.HepatoprotectiveeffectofHypericumjaponicumextractanditsfractions. J.Ethnopharmacol.116,1–6.

Weber,L.W.,Boll,M.,Stampfl,A.,2003.Hepatotoxicityandmechanismofactionof haloalkanes:carbontetrachlorideasatoxicologicalmodel.Crit.Rev.Toxicol.33, 105–136.

Wills,P.J.,Asha,V.V.,2006.ProtectiveeffectofLygodiumflexuosum(L)Sw.extract againstcarbontetrachloride-inducedacuteliverinjuryinrats.J. Ethnopharma-col.108,320–326.

Xia,D.Z.,Zhang,P.H.,Fu,Y.,Yu,W.F.,Ju,M.T.,2013.Hepatoprotectiveactivityof puerarinagainstcarbontetrachloride-inducedinjuriesinrats:arandomized controlledtrial.FoodChem.Toxicol.59,90–95.

Yamahara, J., Kobayashi, G., Matsuda, H., Katayama, T., Fujimura, H., 1989. Theeffect ofscoparone a coumarinderivative isolated from theChinese crudedrug Artemisiaecapillarisflos,ontheheart.Chem.Pharm. Bull.37, 1297–1299.

Yoon,M.,Kim,M.Y.,2011.Theanti-angiogenicherbalcompositionOb-XfromMorus albaMelissaofficinalis,andArtemisiacapillarisregulatesobesityingenetically obeseob/obmice.Pharm.Biol.49,614–619.

Imagem

Fig. 1. Effects of oral pretreatment with AEO on CCl 4 -induced hepatic injury. The results of the biochemical parameters (ALT, AST) and hepatic levels (MDA, SOD, GSH and GSH-Px) are represented as the mean ± SD (n = 15)
Fig. 2. Effects of AEO on the histological changes of the liver after CCl 4 treatment in mice (original magnification 400×): (A) control group; (B) CCl 4 -intoxicated group (model group); (C) bifendatatum (10 mg/kg) + CCl 4 ; (D) AEO (100 mg/kg) + CCl 4 ;

Referências

Documentos relacionados

escultura como uma “célebre combinação de um metrônomo [mecânico] com uma fotografia de um olho afixada com um clipe de papel no braço oscilante” desse instrumento do século

Este estudo tem como objeto a análise das influências da rotina do trabalho offshore na saúde mental deste trabalhador com propostas de ações de promoção da saúde mental que

Avaliar os impactos que tecnologias diferentes podem acarretar em níveis de poluição e na variação de preços da energia elétrica no Brasil, devido ao aumento de

Essential oil administrated 4 hour prior to intrapleural injection of carrageenan, in doses of 100 and 200 mg/kg, significantly reduced exudates volume (Table 6) and

Lovastatin (administered 1 h prior to carrageenan), at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan

Considerando o estoque de nutrientes disponíveis no solo e no resíduo florestal de acordo com os diferentes métodos de colheita da biomassa e as entradas via precipitação

Neste artigo, procurou-se operacionalizar empiricamente o conceito de vulnerabilidade socioambiental, por meio da construção de um índice de vulnerabilidade socioambiental,

Serão seguidos as prescrições da NBR-7170/83 – Tijolo maciço cerâmico para alvenaria.. Apresentaram bons valores de resistência, acima dos requeridos pelas