• Nenhum resultado encontrado

Aula4 Volumetriadeprecipitacao 2011

N/A
N/A
Protected

Academic year: 2021

Share "Aula4 Volumetriadeprecipitacao 2011"

Copied!
39
0
0

Texto

(1)

Volumetria de Precipitação

Lilian Silva

Universidade Federal de Juiz de Fora (UFJF) Instituto de Ciências Exatas

Depto. de Química

Juiz de Fora, 2011

QUI 070 – Química Analítica IV Análise Quantitativa

(2)

VOLUMETRIA DE PRECIPITAÇÃO

• A volumetria de precipitação baseia-se em reações com formação de compostos pouco solúveis.

• Sua principal aplicação é na determinação de haletos e alguns íons metálicos.

(3)

VOLUMETRIA DE PRECIPITAÇÃO

●A reação de precipitação deve ser quantitativa no ponto de equivalência;

● Completar-se em tempo relativamente curto;

● E oferecer condições para uma conveniente sinalização do ponto final.

(4)

VOLUMETRIA DE PRECIPITAÇÃO

Produto de solubilidade – Kps:

Quando se adiciona um sólido iônico pouco solúvel em água, estabelece-se o equilíbrio entre os íons em solução e o sólido, o que pode ser descrito pela equação:

AB(s) A+

(aq) + B-(aq)

Entre os íons existe a relação:

Kps = [A+][B-]

(5)

VOLUMETRIA DE PRECIPITAÇÃO

●Quanto menor o valor de Kps, menor a solubilidade do precipitado. AgI(s) Ag+ (aq) + I-(aq) Kps= 8,3 x 10-17 AgBr(s) Ag+ (aq) + Br-(aq) Kps= 5,0 x 10-13 AgCl(s) Ag+ (aq) + Cl-(aq) Kps= 1,8 x 10-10

(6)

VOLUMETRIA DE PRECIPITAÇÃO

•As titulações de precipitação estão entre os métodos analíticos mais antigos

Número limitado de reações

Muitas reações de precipitação não obedecem a alguns requerimentos básicos para o sucesso de uma titulação

Estequiometria e/ou velocidade da reação e visualização do ponto final

•Alguns métodos empregam indicadores mais ou menos específicos, apropriados para uma dada reação de precipitação.

(7)

VOLUMETRIA DE PRECIPITAÇÃO

●Na volumetria em geral....

•A variação das concentrações dos íons reagentes em torno do P.E. depende grandemente do grau como se completa a reação.

●Na volumetria de precipitação...

•Os fatores que decidem a questão são o produto de solubilidade do precipitado e as concentrações dos reagentes.

•As titulações argentimétricas ou argentimetria são largamente utilizadas e baseia-se na titulação com íons Ag+ .

•Métodos argentimétricos  método baseado na formação de sais (haletos, cianetos e tiocianato) de prata pouco solúveis

(8)
(9)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

•Na argentimetria, as curvas de titulação são construídas em função da variação da concentração de Ag+ , ou seja, pAg+,

após a adição de cada incremento de titulante .

•Considere a titulação de 50,0 mL de NaCl 0,100 mol L-1 com

solução de AgNO3 de mesma concentração. Calcular os valores de [Ag+] e o pAg da solução quando os seguintes volumes de

uma solução de AgNO3 são adicionados: A) 0 mL

B) 25,0 mL C) 49,9 mL D) 50,0 mL E) 75 mL

(10)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO Solução:

A) VAg+ = 0mL  nesse ponto tem-se apenas NaCl em solução (eletrólito forte)

NaCl  Na+ + Cl

-[Cl-] = 0,1 mol L-1 pCl = -log[Cl- ] = log(0,1 mol L-1 ) = 1,0

[Ag+] = 0 pAg = Indeterminado

Kps = [Ag+][Cl-] = 1,82 x 10-10

-log[Ag+] - log[Cl-]=-log (1,82 x 10-10)

(11)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0 20 40 60 80 100 volume de titulante (mL) pCl pAg

(12)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

B) VAg+ = 25,0 mL esse ponto ilustra o cálculo para a [Ag+] antes do

P.E.

[Cl-] = [Cl-]

exc + [Cl-]sol (1) [Cl-]

exc = concentração de cloreto em excesso

[Cl-]

sol = concentração de cloreto da solubilidade do precipitado [Cl-]

exc = (CCl-xVCl-- CAg+xVAg+)/Vt (2) Substituindo (2) em (1):

[Cl-] = ((C

Cl-xVCl-- CAg+xVAg+)/Vt) + [Cl-]sol (3) Como [Cl-]

exc [Cl-]sol, ou [Cl-] exc  10 x Kps o termo [Cl-]sol pode ser Desprezado, assim:

[Cl-] = (C

(13)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO [Cl-] = (C Cl- xVCl- - CAg+xVAg+)/Vt (4) [Cl-] = (0,1 mol L-1 x 50 mL – 0,1 mol L-1 x 25 mL)/50 mL + 25 mL [Cl-] = (5,0 mol L-1 mL – 2,5 mol L-1 mL)/75 mL [Cl-] = (2,5 mol L-1 mL)/75 mL = 3,33 x 10-2 mol L-1 [Cl-] = 3,33 x 10-2 mol L-1, pCl = 1,48

Expressão do produto da solubilidade (Kps) do cloreto de prata AgCl Ag+ + Cl

-Kps = [Ag+] [Cl-] (5) [Ag+] = K

ps /[Cl-]

[Ag+] = 1,80 x 10-10/ 3,33 x 10-2 mol L-1 = 5,41 x 10-9 mol L-1 [Ag+] = 5,41 x 10-9 mol L-1, pAg = 8,27

(14)

Curvas de titulação de Precipitação

c) VAg+ = 49,9 mL esse ponto ilustra o cálculo para a [Ag+] muito próximo do

P.E.

[Cl-] = ((C

Cl- xVCl-- CAg+xVAg+)/Vt) + [Cl-]sol (3)

[Cl-] = ((C

Cl- xVCl-- CAg+xVAg+)/Vt) + [Cl-]sol

[Cl-]

exc = (0,1molL-1 x 50mL – 0,1 molL-1 x 49,9mL)/50mL + 49,9mL

[Cl-]exc = (5,0 molL-1mL – 4,99molL-1mL)/99,9 mL

[Cl-]

exc = 1,0 x 10-2 molL-1mL / 99,9 mL = 1,0 x 10-4molL-1

[Cl-]

exc = 1,0 x 10-4molL-1

Como [Cl-]

exc  10 x Kps , ou 1,8 x 10-9, então o termo [Cl-]sol pode ser desprezado

[Ag+] = K

ps /[Cl-]

[Ag+] = 1,8x10-10/ 1,0 x 10-4molL-1 = 1,8 x 10-6

pCl = 4,00 pAg = 5,74

(15)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

d) VAg+ = 50 mL esse ponto ilustra o cálculo para a [Ag+]

no P.E.

AgCl Ag+ + Cl

-[Ag+] = [Cl-]

Kps = [Ag+] [Cl-] K

ps = [Ag+] [Ag+] = [Ag+]2 [Ag+] = (K

ps)1/2

[Ag+] = (1,8 x 10-10)1/2

[Ag+] = 1,34 x 10-5 mol L-1

(16)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

d) VAg+ = 75 mL esse ponto ilustra o cálculo para a [Ag+] após o P.E.

[Ag+] = [Ag+]

exc + [Ag+]sol

[Ag+] = (C

Ag+xVAg+- CCl- xVCl-)/Vt + [Ag+]sol (6)

[Ag+]

exc = (0,1molL-1 x 75mL – 0,1 molL-1 x 50,0mL)/75mL + 50mL

[Ag+]

exc = (7,5 molL-1mL – 5,0 molL-1mL)/125 mL

[Ag+]

exc = 2,5 molL-1mL / 125 mL = 2,0 x 10-2molL-1

[Ag+]

exc = 2,0 x 10-2molL-1

Como [Ag+]

exc  [Ag+]sol, ou [Ag+] exc  10 x Kps o termo [Ag+]sol pode ser

desprezado, assim; [Cl-] = K ps /[Ag+] [Cl-] = 1,8x10-10/ 2,0 x 10-2molL-1 = 9,0 x 10-9 pCl = 8,05 pAg = 1,70

(17)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

Curva de titulação de uma solução 0,100molL-1 de NaCl com uma

(18)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

(19)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

(20)

CURVAS DE TITULAÇÃO DE PRECIPITAÇÃO

O efeito da Extensão da Reação nas Curvas de titulação (figura skoog, pag. 339)

(21)

INDICADORES PARA TITULAÇÕES ARGENTOMÉTRICAS

• Três tipos de P.F. são encontrados em titulações com nitrato de prata:

-Químico

-Potenciométrico  medida de potencial entre um eletrodo de Ag e um eletrodo de referência

-Amperométrico  o PF amperométrico é determinado usando microeletrodos de Ag.

• O PF produzido por um indicador químico consiste geralmente  variação de cor ou turbidez.

• Requisitos para um indicador químico:

-A alteração da cor deve ocorrer numa faixa restrita da função “p” do reagente ou do analito.

-A alteração da cor deve ocorrer dentro da parte de variação abrupta da curva de titulação do analito.

(22)

INDICADORES PARA TITULAÇÕES ARGENTOMÉTRICAS

A alteração da cor deve ocorrer dentro da parte de variação abrupta da curva de titulação do analito”

(23)

Método de Mohr

Determinação de Cl- e Br -IndicadorK2CrO4 No Ponto de Equivalência: Ag+ + X- AgX (s)  X- = Br - e Cl -2Ag+ + CrO

42- Ag2CrO4(s)  precipitado vermelho

Kps AgCl = 1,82 x 10-10 K

ps Ag2CrO4 = 1,1 x 10-12

 Kps Ag2CrO4 < Kps AgCl  Temos que olhar a solubilidade dos dois precipitados formados:

(24)

Método de Mohr

AgCl(s) Ag+

(aq) + Cl-(aq) S S

KpsAgCl =S xS  S2 = Kps

AgCl  S = (KpsAgCl)1/2 = 1,35x10-5molL-1

Ag2CrO4 (s) 2Ag+

(aq) + CrO42- (aq) 2S S

KpsAg2CrO4 =(2S)2xS 4S3 = Kps

AgCl  S = (KpsAgCl/4)1/3 =

6,5x10-5molL-1

(25)

Método de Mohr

Limitação do método:

Faixa de pH: 6,5pH10

Se pH6,5  a [CrO42-] abaixo muito devido ao equilíbrio:

CrO42- + H+ HCrO 4

-Se pH10precipitação de AgOH:

2Ag+

(aq) + OH-(aq) 2Ag(OH)(s) Ag2O(s) + H2O(l)

A concentração do indicador é muito importante !!! [Ag+]

P. E. = (1,82 x 10-10)1/2 = 1,35 x 10-5 mol L-1 [CrO42-]= K

ps /[Ag+]2=1,1 x 10-12/(1,35 x 10-5 mol L-1)2 = 6,0x 10-3molL-1

(26)

Método de Mohr

Na prática...

• [CrO42-] na ordem de 6,0 x 10-3 mol L-1 forma solução

com intensa coloração amarela, o que dificulta a identificação do Ag2CrO4 vermelho.

• [CrO42-] menores são geralmente utilizadas, por exemplo,

algo em torno de 2,5 x 10-3 mol L-1 .

• Conseqüentemente, um excesso de nitrato de prata é necessário além do P.E. para que a formação do precipitado vermelho seja perceptível.

(27)

Método de Mohr

[Ag+] P. E. = (1,82 x 10-10)1/2 = 1,35 x 10-5 mol L-1 1,35 x 10-5 x 6,0 x 10-3 = Kps Ag2CrO4

[CrO42-] correta 1,35 x 10-5 x 2,5 x 10-3 < Kps Ag2CrO4

[CrO42-] utilizada

[Ag+] tem que ser

maior

[Ag+] x 2,5 x 10-3 = KpsAg

2CrO4

Por outro lado, o método baseia-se no aparecimento de um segundo precipitado, sendo necessário produzi-lo em alguma quantidade, exigindo um pequeno excesso de AgNO3.

Esses dois fatores produzem um erro sistemático por excesso no Método de Mohr.

(28)
(29)

Método de Volhard

●O método de Vollhard envolve a titulação de íon prata em meio ácido com uma solução padrão de tiocianato.

Ag+

(residual) + SCN- AgSCN(s)

● Indicador : Fe(III) – Produz uma coloração vermelha com o primeiro excesso de tiocianato:

SCN-(excesso) + Fe3+ FeSCN2+

(aq) (complexo vermelho) (P. F.)

● Íon ferro (III): indicador extremamente sensível para o íon tiocianato. ● Neste tipo de titulação a mudança de coloração aparece cerca de 1% antes do ponto de equivalência devido à adsorção de íons prata pelo precipitado.

● Solução do problema: Após forte agitação a prata é liberada (Titulação sob constante agitação).

(30)

Método de Volhard

● A aplicação mais importante do método de Volhard é a determinação indireta de íons halogênios

Uma quantidade exata e em excesso de AgNO3 é adicionada à solução a analisar (que contém, por exemplo, Cl-)

rIndicador: íon Fe3+ em meio ácido

Ag+

(excesso) + Cl-(aq) AgCl(s) + Ag+(residual) Ag+

(residual) + SCN- AgSCN(s) SCN

-(excesso) + Fe3+ FeSCN2+(aq) (complexo vermelho) (P. F.)

A titulação pelo Método de Volhard tem que ocorrer em pH ácido, para evitar a precipitação de Fe(OH)3(s).

(31)

Método de Volhard • O AgCl é mais solúvel do que o AgSCN:

KpsAgSCN = 1,1 x 10-12

KpsAgCl = 1,8 x 10-10 (mais solúvel)

AgCl(s) + SCN- AgSCN

(s) + Cl

- A reação acima ocorre numa extensão significativa perto do ponto de equivalência, o que levará a um consumo excessivo de SCN-, originando valores de Cl- mais baixos do que na realidade.

(32)

Método de Volhard Solução do problema:

• Filtrar AgCl: antes da titulação da prata residual;

•Usar cerca de 2mL de nitrobenzeno (modificação de Caldwell e Moyer)

Exceção:

Br- e I-: não ocorre esse problema, pois seus sais de prata são menos solúveis que o AgSCN(s).

Na determinação de iodeto, o íon Fe(III) somente deve ser

adicionado após a precipitação de AgI: evitar a oxidação dos íons iodeto pelo Fe(III).

2Fe3+ + 2I- 2Fe2+ + I 2

(33)

Método de Fajans (Indicadores de adsorção)

• Indicadores de adsorção: corantes orgânicos com caráter de ácidos (aniônicos) ou bases fracas (catiônicos).

Acusam o P. F. através de uma mudança de coloração sobre o

precipitado.

A mudança de coloração se deve à adsorção ou dessorção do

corante como consequência de uma modificação da dupla camada elétrica em torno das partículas do precipitado na passagem do P. E.

(34)

Método de Fajans (Indicadores de adsorção)

• Exemplo: Fluoresceína (titulação de íons Cl- com Ag+).

• Em meio aquoso a fluoresceína se dissocia em H3O+ e fluoresceinato (solução verde amarelada)

(35)

Método de Fajans (Indicadores de adsorção)

•Antes do ponto de equivalência (excesso de íons Cl-): alguns desses íons são adsorvidos na superfície do AgCl conferindo uma carga negativa ao precipitado, repelindo o fluoresceinato.

•Após o ponto de equivalência (excesso de Ag+): confere um excesso de carga positiva ao precipitado adsorvendo o fluoresceinato, modificando a coloração do precipitado para rosa.

(36)

Método de Fajans (Indicadores de adsorção)

Condições para a utilização do método de Fajans

Como a fluoresceina é um ácido fraco (pKa = 8,0) a titulação deve ser conduzida em pH > 7, pois em valores de pH < 7, a concentração de fluoresceinato é insuficiente para a visualização da mudança de cor.

AgNO3(aq) + I

-(aq) AgI(s) + NO3-(aq) Ind

-(aq) + H+(aq) HInd(aq) (pH < 6,5) (Fluoresceinato) (Fluoresceina)

Ag+

(aq) + Ind-(aq) AgInd(s) (ppt cor-de-rosa) 2AgNO3(aq) + 2OH

(37)
(38)
(39)

Referências Bibliográficas

• D. A. SKOOG, D. M. WEST e F. J. HOLLER – Fundamentals of Analytical Chemistry, 6a ed., Saunders, 1991.

• Baccan, N., Química Analítica Quantitativa Elementar. 3a Ed. Edgard

Blucher LTDA

• Ohlweiler, O. A., Química Analítica Quantitativa, Volume 2. 4a Ed. Livros

Técnicos e Científicos Editora S.A. 1981

• Juliano, V. F., Notas de aula. Instituto de Química, UFMG. 2008 • Vogel, A., Análise Química Quantitativa, 4a Ed., LTC, 2002.

Referências

Documentos relacionados

É preciso analisar como as relações de poder, as relações sociais, a moral e a moral sexual podem ter papel na construção da conduta e comportamento social, político

The challenges of aging societies and the need to create strong and effective bonds of solidarity between generations lead us to develop an intergenerational

Este estudo tem como objetivos identificar os níveis de trauma manifestados e de estratégias de coping utilizadas pelos TEPH; caracterizar os incidentes mais

forficata recém-colhidas foram tratadas com escarificação mecânica, imersão em ácido sulfúrico concentrado durante 5 e 10 minutos, sementes armazenadas na geladeira (3 ± 1

No Estado do Pará as seguintes potencialidades são observadas a partir do processo de descentralização da gestão florestal: i desenvolvimento da política florestal estadual; ii

No primeiro, destacam-se as percepções que as cuidadoras possuem sobre o hospital psiquiátrico e os cuidados com seus familiares durante o internamento; no segundo, evidencia-se

Therefore, the time required for desorption (~ 120 min or more) was always one order of magnitude higher than the time required for complete sorption (~ 30 min). In the

b) Verifique se o manuscrito cumpre as normas aos au- tores da Acta Médica Portuguesa e que contém as informa- ções necessárias em todos os manuscritos da Acta Médica