• Nenhum resultado encontrado

Limits on anomalous trilinear gauge couplings from WW -> e(+)e(-), WW -> e(+/-)mu(-/+), and WW ->mu(+)mu(-) events from pp collisions at root s=1.96 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Limits on anomalous trilinear gauge couplings from WW -> e(+)e(-), WW -> e(+/-)mu(-/+), and WW ->mu(+)mu(-) events from pp collisions at root s=1.96 TeV"

Copied!
6
0
0

Texto

(1)

Limits on anomalous trilinear gauge couplings from WW ! e



e



, WW ! e







, and WW !









events from p 

p collisions at

p



s

 1:96 TeV

V. M. Abazov,36B. Abbott,76M. Abolins,66B. S. Acharya,29M. Adams,52T. Adams,50M. Agelou,18S. H. Ahn,31 M. Ahsan,60G. D. Alexeev,36G. Alkhazov,40A. Alton,65G. Alverson,64G. A. Alves,2M. Anastasoaie,35T. Andeen,54 S. Anderson,46B. Andrieu,17M. S. Anzelc,54Y. Arnoud,14M. Arov,53A. Askew,50B. A˚ sman,41A. C. S. Assis Jesus,3 O. Atramentov,58C. Autermann,21C. Avila,8C. Ay,24F. Badaud,13A. Baden,62L. Bagby,53B. Baldin,51D. V. Bandurin,60

P. Banerjee,29S. Banerjee,29E. Barberis,64P. Bargassa,81P. Baringer,59C. Barnes,44J. Barreto,2J. F. Bartlett,51 U. Bassler,17D. Bauer,44A. Bean,59M. Begalli,3M. Begel,72C. Belanger-Champagne,5L. Bellantoni,51A. Bellavance,68 J. A. Benitez,66S. B. Beri,27G. Bernardi,17R. Bernhard,42L. Berntzon,15I. Bertram,43M. Besanc¸on,18R. Beuselinck,44 V. A. Bezzubov,39P. C. Bhat,51V. Bhatnagar,27M. Binder,25C. Biscarat,43K. M. Black,63I. Blackler,44G. Blazey,53 F. Blekman,44S. Blessing,50D. Bloch,19K. Bloom,68U. Blumenschein,23A. Boehnlein,51O. Boeriu,56T. A. Bolton,60 G. Borissov,43K. Bos,34T. Bose,78A. Brandt,79R. Brock,66G. Brooijmans,71A. Bross,51D. Brown,79N. J. Buchanan,50 D. Buchholz,54M. Buehler,82V. Buescher,23S. Burdin,51S. Burke,46T. H. Burnett,83E. Busato,17C. P. Buszello,44 J. M. Butler,63P. Calfayan,25S. Calvet,15J. Cammin,72S. Caron,34W. Carvalho,3B. C. K. Casey,78N. M. Cason,56 H. Castilla-Valdez,33D. Chakraborty,53K. M. Chan,72A. Chandra,49F. Charles,19E. Cheu,46F. Chevallier,14D. K. Cho,63

S. Choi,32B. Choudhary,28L. Christofek,59D. Claes,68B. Cle´ment,19C. Cle´ment,41Y. Coadou,5M. Cooke,81 W. E. Cooper,51D. Coppage,59M. Corcoran,81M.-C. Cousinou,15B. Cox,45S. Cre´pe´-Renaudin,14D. Cutts,78M. C´ wiok,30

H. da Motta,2A. Das,63M. Das,61B. Davies,43G. Davies,44G. A. Davis,54K. De,79P. de Jong,34S. J. de Jong,35 E. De La Cruz-Burelo,65C. De Oliveira Martins,3J. D. Degenhardt,65F. De´liot,18M. Demarteau,51R. Demina,72 P. Demine,18D. Denisov,51S. P. Denisov,39S. Desai,73H. T. Diehl,51M. Diesburg,51M. Doidge,43A. Dominguez,68 H. Dong,73L. V. Dudko,38L. Duflot,16S. R. Dugad,29D. Duggan,50A. Duperrin,15J. Dyer,66A. Dyshkant,53M. Eads,68

D. Edmunds,66T. Edwards,45J. Ellison,49J. Elmsheuser,25V. D. Elvira,51S. Eno,62P. Ermolov,38H. Evans,55 A. Evdokimov,37V. N. Evdokimov,39S. N. Fatakia,63L. Feligioni,63A. V. Ferapontov,60T. Ferbel,72F. Fiedler,25 F. Filthaut,35W. Fisher,51H. E. Fisk,51I. Fleck,23M. Ford,45M. Fortner,53H. Fox,23S. Fu,51S. Fuess,51T. Gadfort,83 C. F. Galea,35E. Gallas,51E. Galyaev,56C. Garcia,72A. Garcia-Bellido,83J. Gardner,59V. Gavrilov,37A. Gay,19P. Gay,13

D. Gele´,19R. Gelhaus,49C. E. Gerber,52Y. Gershtein,50D. Gillberg,5G. Ginther,72N. Gollub,41B. Go´mez,8 A. Goussiou,56P. D. Grannis,73H. Greenlee,51Z. D. Greenwood,61E. M. Gregores,4G. Grenier,20Ph. Gris,13 J.-F. Grivaz,16S. Gru¨nendahl,51M. W. Gru¨newald,30F. Guo,73J. Guo,73G. Gutierrez,51P. Gutierrez,76A. Haas,71 N. J. Hadley,62P. Haefner,25S. Hagopian,50J. Haley,69I. Hall,76R. E. Hall,48L. Han,7K. Hanagaki,51K. Harder,60 A. Harel,72R. Harrington,64J. M. Hauptman,58R. Hauser,66J. Hays,54T. Hebbeker,21D. Hedin,53J. G. Hegeman,34 J. M. Heinmiller,52A. P. Heinson,49U. Heintz,63C. Hensel,59K. Herner,73G. Hesketh,64M. D. Hildreth,56R. Hirosky,82 J. D. Hobbs,73B. Hoeneisen,12H. Hoeth,26M. Hohlfeld,16S. J. Hong,31R. Hooper,78P. Houben,34Y. Hu,73Z. Hubacek,10

V. Hynek,9I. Iashvili,70R. Illingworth,51A. S. Ito,51S. Jabeen,63M. Jaffre´,16S. Jain,76K. Jakobs,23C. Jarvis,62 A. Jenkins,44R. Jesik,44K. Johns,46C. Johnson,71M. Johnson,51A. Jonckheere,51P. Jonsson,44A. Juste,51D. Ka¨fer,21 S. Kahn,74E. Kajfasz,15A. M. Kalinin,36J. M. Kalk,61J. R. Kalk,66S. Kappler,21D. Karmanov,38J. Kasper,63P. Kasper,51

I. Katsanos,71D. Kau,50R. Kaur,27R. Kehoe,80S. Kermiche,15N. Khalatyan,63A. Khanov,77A. Kharchilava,70 Y. M. Kharzheev,36D. Khatidze,71H. Kim,79T. J. Kim,31M. H. Kirby,35B. Klima,51J. M. Kohli,27J.-P. Konrath,23 M. Kopal,76V. M. Korablev,39J. Kotcher,74B. Kothari,71A. Koubarovsky,38A. V. Kozelov,39J. Kozminski,66D. Krop,55 A. Kryemadhi,82T. Kuhl,24A. Kumar,70S. Kunori,62A. Kupco,11T. Kurcˇa,20J. Kvita,9S. Lammers,71G. Landsberg,78 J. Lazoflores,50A.-C. Le Bihan,19P. Lebrun,20W. M. Lee,53A. Leflat,38F. Lehner,42V. Lesne,13J. Leveque,46P. Lewis,44

J. Li,79Q. Z. Li,51J. G. R. Lima,53D. Lincoln,51J. Linnemann,66V. V. Lipaev,39R. Lipton,51Z. Liu,5L. Lobo,44 A. Lobodenko,40M. Lokajicek,11A. Lounis,19P. Love,43H. J. Lubatti,83M. Lynker,56A. L. Lyon,51A. K. A. Maciel,2

R. J. Madaras,47P. Ma¨ttig,26C. Magass,21A. Magerkurth,65A.-M. Magnan,14N. Makovec,16P. K. Mal,56 H. B. Malbouisson,3S. Malik,68V. L. Malyshev,36H. S. Mao,6Y. Maravin,60M. Martens,51R. McCarthy,73D. Meder,24

A. Melnitchouk,67A. Mendes,15L. Mendoza,8M. Merkin,38K. W. Merritt,51A. Meyer,21J. Meyer,22M. Michaut,18 H. Miettinen,81T. Millet,20J. Mitrevski,71J. Molina,3N. K. Mondal,29J. Monk,45R. W. Moore,5T. Moulik,59 G. S. Muanza,16M. Mulders,51M. Mulhearn,71L. Mundim,3Y. D. Mutaf,73E. Nagy,15M. Naimuddin,28M. Narain,63

N. A. Naumann,35H. A. Neal,65J. P. Negret,8P. Neustroev,40C. Noeding,23A. Nomerotski,51S. F. Novaes,4 T. Nunnemann,25V. O’Dell,51D. C. O’Neil,5G. Obrant,40V. Oguri,3N. Oliveira,3N. Oshima,51R. Otec,10 G. J. Otero y Garzo´n,52M. Owen,45P. Padley,81N. Parashar,57S.-J. Park,72S. K. Park,31J. Parsons,71R. Partridge,78

(2)

N. Parua,73A. Patwa,74G. Pawloski,81P. M. Perea,49E. Perez,18K. Peters,45P. Pe´troff,16M. Petteni,44R. Piegaia,1 J. Piper,66M.-A. Pleier,22P. L. M. Podesta-Lerma,33V. M. Podstavkov,51Y. Pogorelov,56M.-E. Pol,2A. Pomposˇ,76 B. G. Pope,66A. V. Popov,39C. Potter,5W. L. Prado da Silva,3H. B. Prosper,50S. Protopopescu,74J. Qian,65A. Quadt,22

B. Quinn,67M. S. Rangel,2K. J. Rani,29K. Ranjan,28P. N. Ratoff,43P. Renkel,80S. Reucroft,64M. Rijssenbeek,73 I. Ripp-Baudot,19F. Rizatdinova,77S. Robinson,44R. F. Rodrigues,3C. Royon,18P. Rubinov,51R. Ruchti,56V. I. Rud,38 G. Sajot,14A. Sa´nchez-Herna´ndez,33M. P. Sanders,62A. Santoro,3G. Savage,51L. Sawyer,61T. Scanlon,44D. Schaile,25

R. D. Schamberger,73Y. Scheglov,40H. Schellman,54P. Schieferdecker,25C. Schmitt,26C. Schwanenberger,45 A. Schwartzman,69R. Schwienhorst,66J. Sekaric,50S. Sengupta,50H. Severini,76E. Shabalina,52M. Shamim,60V. Shary,18

A. A. Shchukin,39W. D. Shephard,56R. K. Shivpuri,28D. Shpakov,51V. Siccardi,19R. A. Sidwell,60V. Simak,10 V. Sirotenko,51P. Skubic,76P. Slattery,72R. P. Smith,51G. R. Snow,68J. Snow,75S. Snyder,74S. So¨ldner-Rembold,45

X. Song,53L. Sonnenschein,17A. Sopczak,43M. Sosebee,79K. Soustruznik,9M. Souza,2B. Spurlock,79J. Stark,14 J. Steele,61V. Stolin,37A. Stone,52D. A. Stoyanova,39J. Strandberg,41S. Strandberg,41M. A. Strang,70M. Strauss,76 R. Stro¨hmer,25D. Strom,54M. Strovink,47L. Stutte,51S. Sumowidagdo,50A. Sznajder,3M. Talby,15P. Tamburello,46 W. Taylor,5P. Telford,45J. Temple,46B. Tiller,25M. Titov,23V. V. Tokmenin,36M. Tomoto,51T. Toole,62I. Torchiani,23 S. Towers,43T. Trefzger,24S. Trincaz-Duvoid,17D. Tsybychev,73B. Tuchming,18C. Tully,69A. S. Turcot,45P. M. Tuts,71

R. Unalan,66L. Uvarov,40S. Uvarov,40S. Uzunyan,53B. Vachon,5P. J. van den Berg,34R. Van Kooten,55 W. M. van Leeuwen,34N. Varelas,52E. W. Varnes,46A. Vartapetian,79I. A. Vasilyev,39M. Vaupel,26P. Verdier,20 L. S. Vertogradov,36M. Verzocchi,51F. Villeneuve-Seguier,44P. Vint,44J.-R. Vlimant,17E. Von Toerne,60M. Voutilainen,68

M. Vreeswijk,34H. D. Wahl,50L. Wang,62M. H. L. S Wang,51J. Warchol,56G. Watts,83M. Wayne,56M. Weber,51 H. Weerts,66N. Wermes,22M. Wetstein,62A. White,79D. Wicke,26G. W. Wilson,59S. J. Wimpenny,49M. Wobisch,51 J. Womersley,51D. R. Wood,64T. R. Wyatt,45Y. Xie,78N. Xuan,56S. Yacoob,54R. Yamada,51M. Yan,62T. Yasuda,51

Y. A. Yatsunenko,36K. Yip,74H. D. Yoo,78S. W. Youn,54C. Yu,14J. Yu,79A. Yurkewicz,73A. Zatserklyaniy,53 C. Zeitnitz,26D. Zhang,51T. Zhao,83B. Zhou,65J. Zhu,73M. Zielinski,72D. Zieminska,55A. Zieminski,55

V. Zutshi,53and E. G. Zverev38 (D0 Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina 2

LAFEX, Centro Brasileiro de Pesquisas Fı´sicas, Rio de Janeiro, Brazil

3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 4Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Sa˜o Paulo, Brazil

5University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University,

Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada

6Institute of High Energy Physics, Beijing, People’s Republic of China 7University of Science and Technology of China, Hefei, People’s Republic of China

8Universidad de los Andes, Bogota´, Colombia

9Center for Particle Physics, Charles University, Prague, Czech Republic 10Czech Technical University, Prague, Czech Republic

11Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 12Universidad San Francisco de Quito, Quito, Ecuador

13Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Universite´ Blaise Pascal, Clermont-Ferrand, France 14Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France

15CPPM, IN2P3-CNRS, Universite´ de la Me´diterrane´e, Marseille, France 16IN2P3-CNRS, Laboratoire de l’Acce´le´rateur Line´aire, Orsay, France

17LPNHE, IN2P3-CNRS, Universite´s Paris VI and VII, Paris, France 18DAPNIA/Service de Physique des Particules, CEA, Saclay, France

19IPHC, IN2P3-CNRS, Universite´ Louis Pasteur, Strasbourg, France, and Universite´ de Haute Alsace, Mulhouse, France 20Institut de Physique Nucle´aire de Lyon, IN2P3-CNRS, Universite´ Claude Bernard, Villeurbanne, France

21III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany 22Physikalisches Institut, Universita¨t Bonn, Bonn, Germany 23Physikalisches Institut, Universita¨t Freiburg, Freiburg, Germany

24Institut fu¨r Physik, Universita¨t Mainz, Mainz, Germany 25Ludwig-Maximilians-Universita¨t Mu¨nchen, Mu¨nchen, Germany 26Fachbereich Physik, University of Wuppertal, Wuppertal, Germany

27Panjab University, Chandigarh, India 28Delhi University, Delhi, India

(3)

29Tata Institute of Fundamental Research, Mumbai, India 30University College Dublin, Dublin, Ireland 31Korea Detector Laboratory, Korea University, Seoul, Korea

32SungKyunKwan University, Suwon, Korea 33CINVESTAV, Mexico City, Mexico

34FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands 35Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

36Joint Institute for Nuclear Research, Dubna, Russia 37Institute for Theoretical and Experimental Physics, Moscow, Russia

38Moscow State University, Moscow, Russia 39Institute for High Energy Physics, Protvino, Russia 40Petersburg Nuclear Physics Institute, St. Petersburg, Russia

41Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden,

and Uppsala University, Uppsala, Sweden

42Physik Institut der Universita¨t Zu¨rich, Zu¨rich, Switzerland 43Lancaster University, Lancaster, United Kingdom

44Imperial College, London, United Kingdom 45University of Manchester, Manchester, United Kingdom

46University of Arizona, Tucson, Arizona 85721, USA

47Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA 48California State University, Fresno, California 93740, USA

49University of California, Riverside, California 92521, USA 50Florida State University, Tallahassee, Florida 32306, USA 51Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

52University of Illinois at Chicago, Chicago, Illinois 60607, USA 53Northern Illinois University, DeKalb, Illinois 60115, USA

54Northwestern University, Evanston, Illinois 60208, USA 55Indiana University, Bloomington, Indiana 47405, USA 56University of Notre Dame, Notre Dame, Indiana 46556, USA

57Purdue University Calumet, Hammond, Indiana 46323, USA 58Iowa State University, Ames, Iowa 50011, USA 59University of Kansas, Lawrence, Kansas 66045, USA 60Kansas State University, Manhattan, Kansas 66506, USA 61Louisiana Tech University, Ruston, Louisiana 71272, USA 62University of Maryland, College Park, Maryland 20742, USA

63Boston University, Boston, Massachusetts 02215, USA 64Northeastern University, Boston, Massachusetts 02115, USA

65University of Michigan, Ann Arbor, Michigan 48109, USA 66Michigan State University, East Lansing, Michigan 48824, USA

67University of Mississippi, University, Mississippi 38677, USA 68University of Nebraska, Lincoln, Nebraska 68588, USA 69Princeton University, Princeton, New Jersey 08544, USA 70State University of New York, Buffalo, New York 14260, USA

71Columbia University, New York, New York 10027, USA 72University of Rochester, Rochester, New York 14627, USA 73State University of New York, Stony Brook, New York 11794, USA

74Brookhaven National Laboratory, Upton, New York 11973, USA 75Langston University, Langston, Oklahoma 73050, USA 76University of Oklahoma, Norman, Oklahoma 73019, USA 77Oklahoma State University, Stillwater, Oklahoma 74078, USA

78Brown University, Providence, Rhode Island 02912, USA 79University of Texas, Arlington, Texas 76019, USA 80Southern Methodist University, Dallas, Texas 75275, USA

81Rice University, Houston, Texas 77005, USA 82University of Virginia, Charlottesville, Virginia 22901, USA

83University of Washington, Seattle, Washington 98195, USA

(Received 7 August 2006; published 8 September 2006; corrected 14 September 2006) Limits are set on anomalous WW and WWZ trilinear gauge couplings using WW! e

eee, WW! e

e, and WW! events. The data set was collected by the Run II D0 detector at the Fermilab Tevatron Collider and corresponds to approximately 250 pb1 of integrated

(4)

luminosity atps 1:96 TeV. Under the assumption that the WW couplings are equal to the WWZ couplings and using a form factor scale of   2:0 TeV, the combined 95% C.L. one-dimensional coupling limits from all three channels are 0:32 <  < 0:45 and 0:29 <  < 0:30.

DOI:10.1103/PhysRevD.74.057101 PACS numbers: 14.70.Fm, 13.85.Qk

Within the standard model (SM), interactions between the bosons of the electroweak interaction are entirely de-termined by the gauge symmetry. Any deviation from the SM couplings is therefore evidence of new physics.

The most general Lorentz invariant effective Lagrangian which describes the triple gauge couplings has 14 indepen-dent coupling parameters, seven for each of the WW and WWZvertices [1]. With the assumption of electromagnetic gauge invariance and C and P conservation, the number of independent couplings is reduced to five, and the Lagrangian takes this form:

LWWV gWWV  ig V 1W y WV WyVW  iVWyWV iV M2 W Wy WV (1)

where V   or Z, W is the W field, W

 @W @W, V @V @V, and g



1  1. The overall couplings are gWW e and gWWZ e cotW.

The five remaining parameters are gZ

1, Z, , Z, and . In the SM, gZ1  Z  1 and Z  0. The

couplings gZ

1, Z, and are often written in terms of their

deviation from the SM values as gZ

1  gZ1  1, and simi-larly for Zand .

One effect of introducing anomalous coupling parame-ters into the SM Lagrangian is an increase of the cross section for the q q ! Z= ! WWprocess, particularly as parton center-of-mass energies rise to infinity. Thus, constant finite values of the anomalous couplings produce unphysically large cross sections, violating unitarity. To keep the cross section from diverging, the anomalous coupling must vanish as s ! 1. This is done by introduc-ing a dipole form factor for an arbitrary couplintroduc-ing  [gZ

1,

V, or V from Eq. (1)]:

^s  0

1  ^s=22 (2)

where the form factor scale  is set by new physics. For a

given value of , there is an upper limit on the size of the coupling, beyond which unitarity is exceeded.

Limits on the WW and WWZ anomalous couplings are set using the data, event selection, and background calcu-lations from the recent WW cross section analysis pub-lished by the D0 Collaboration [2]. The cross section analysis measures the p p ! WW cross section to be 13:84:33:8stat1:2

0:9syst  0:9lum pb, compared with a SM next-to-leading order prediction of 13:0  13:5 pb [3]. The leptonic channels WW ! ‘‘‘  e;  were used to measure the cross section, with integrated lumi-nosities of 252 pb1for the ee channel, 235 pb1 for the e channel, and 224 pb1for the  channel. Table I summarizes the predicted numbers of signal and background events and the number of observed candidate events in each channel. Details of selection cuts and effi-ciencies can be found in Ref. [2].

Four anomalous coupling relationships are considered. In the first relationship, the WW parameters are equal to the WWZ parameters:  Z and  Z. The

second relationship, the HISZ parametrization [4], imposes SU2  U1 symmetry upon the coupling parameters. For the final two relationships, either the SM WW or WWZ interaction is fixed, while the other parameters are allowed to vary. In all cases, parameters which are not constrained by the coupling relationships are set to their SM values.

Anomalous coupling limits must be set for a given coupling relationship and form factor scale. Setting limits on a pair of anomalous couplings simultaneously requires a grid of Monte Carlo (MC) events, generated specifically for that coupling relationship and form factor scale. The likelihood of getting the actual measured events is calcu-lated at each of the grid points and the limits for the couplings are then extracted from a fit to the likelihood distribution across the grid.

The leading order MC generator by Hagiwara, Woodside, and Zeppenfeld (HWZ) [1] is used to generate events for a grid in ;  space. The central area of each grid has a finer spacing of generated coupling parameters to ensure that the likelihood surface is well defined inside the area where limits are expected to be set.

The generated events for each grid point are passed through a parametrized simulation of the D0 detector that is tuned using Z boson events. The outputs for each grid point are the simulated pTspectra for the two leptons in the

event scaled to match the luminosity of the data. Eight pT

bins are used to calculate the likelihood at each grid point: three bins plus an overflow bin for each of the two leptons. Figure1shows the data for the leading lepton in the e TABLE I. Predicted numbers of signal and background events,

with statistical error, and number of candidate events for each decay channel.

Channel Signal Background Candidates

ee 3:26  0:05 2:30  0:21 6

e 10:8  0:1 3:81  0:17 15

(5)

channel with MC estimations for the SM and two sample anomalous coupling grid points.

The simulated signal from the HWZ generator and the background, taken from the cross section analysis, are compared to the pT distribution of the data by calculating a bin-by-bin likelihood. Each bin is assumed to have a Poisson distribution with a mean equal to the sum of the signal and background. The uncertainties on the signal and background distributions are accounted for by weighting with Gaussian distributions. Correlations between the sig-nal and background uncertainties for each channel are small, so they are handled separately. The uncertainty on the luminosity is 100% correlated, and so varies the same way for all channels. The likelihood, L, is calculated as

L Z GflPeeflPeflPfldfl (3) P‘‘0fl  Z Gfn Z Gfb Y Nbins i1 P Ni ‘‘0; flfnni‘‘0  flfbbi‘‘0dfndfb (4)

where P a;  is the Poisson probability of obtaining a events if the mean expected number is ; ni

‘‘0 and b i ‘‘0 are

the simulated numbers of signal and background events for the ‘‘0 channel in bin i; Ni

‘‘0 is the measured number of

events for this channel in this bin; and fl, fn, and fbare the luminosity, signal, and background weights drawn from the Gaussian distributionsGfl,Gfn, andGfb respectively.

To extract the limits, a 6th order polynomial is fitted to the grid of negative log likelihood values. The one- and two-dimensional 95% C.L. limits are determined by

inte-grating the likelihood curve or surface, respectively. In the one-dimensional case, the 95% C.L. limits represent the pair of points of equal likelihood that bound 95% of the total integrated area between the ends of the MC grid. The two-dimensional 95% C.L. contour line is the set of points of equal likelihood that bound a region containing 95% of the total integrated volume between the MC grid boundaries.

One-dimensional 95% C.L. limits are summarized in Table II, and two-dimensional 95% C.L. contours are shown in Figs. 2 and 3. Under the assumption that the TABLE II. One-dimensional limits at the 95% C.L. with vari-ous assumptions relating the WW and WWZ couplings at various values of . Parameters which are not constrained by the coupling relationships are set to their SM values.

Coupling 95% C.L. Limits  (TeV)

WW  WWZ  0:31, 0.33 1.5  0:36, 0.47 WW  WWZ  0:29, 0.30 2.0  0:32, 0.45 HISZ  0:34, 0.35 1.5  0:57, 0.75 SM WW Z 0:39, 0.39 2.0 Z 0:45, 0.55 SM WWZ  0:97, 1.04 1.0  1:05, 1.29 κ ∆ -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 λ -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 -1 DØ, 252 pb

FIG. 2. One- and two-dimensional 95% C.L. limits when WWZ couplings are equal to WW couplings, at   2:0 TeV. The bold curve is the unitarity limit, the inner curve is the two-dimensional 95% C.L. contour, and the ticks along the axes are the one-dimensional 95% C.L. limits.

(GeV) T p 0 20 40 60 80 100 120 Events / 32 GeV 0 2 4 6 8 10 12 14 16

Data (Poisson errors) Standard Model = -0.4 λ = -0.4, κ ∆ = 1.0 λ = 1.0, κ ∆ Overflow Bin -1 DØ, 252 pb

FIG. 1. Leading lepton pT distributions for data (points), SM MC (solid line), and two anomalous coupling MC scenarios (dashed lines), from the WW ! e channel, binned as used to calculate likelihood.

(6)

WW and WWZ couplings are equal and using a form factor scale of   2:0 TeV, the 95% C.L. limits obtained are 0:32 <  < 0:45 and 0:29 <  < 0:30. This sig-nificantly improves upon the previous limits from the D0 Collaboration, 0:62 <  < 0:77 and 0:53 <  < 0:56, set in Run I at the Fermilab Tevatron Collider for the same channels under the same assumption using an integrated luminosity of 100 pb1[5]. Although the com-bined anomalous coupling limits from the CERN ee Collider (LEP) collaborations are tighter [6], the hadronic collisions at the Fermilab Tevatron Collider explore a range of parton center-of-mass energies not explored at LEP.

We thank the staffs at Fermilab and collaborating insti-tutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

[1] K. Hagiwara, J. Woodside, and D. Zeppenfeld, Phys. Rev. D 41, 2113 (1990).

[2] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.

94, 151801 (2005).

[3] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).

[4] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993), the coupling relationships

used are Z 1  tan2W, gZ1 

=2cos2W, and Z .

[5] B. Abbott et al. (D0 Collaboration), Phys. Rev. D 58, 031102 (1998).

[6] LEP Collaborations ALEPH, DELPHI, L3, OPAL, and LEP TGC Working Group, Report No. LEPEWWG/TGC/ 2005-01 (2005). κ ∆ -1 -0.6 -0.2 0.2 0.6 1 λ -1 -0.6 -0.2 0.2 0.6 1 =Z γ (a) DØ, 252 pb-1 κ ∆ -1 -0.6 -0.2 0.2 0.6 1 λ -1 -0.6 -0.2 0.2 0.6 1 (b) HISZ DØ, 252 pb-1 κ ∆ -1 -0.6 -0.2 0.2 0.6 1 λ -1 -0.6 -0.2 0.2 0.6 1 γ (c) SM WW DØ, 252 pb-1 κ ∆ -2 -1.2 -0.4 0.4 1.2 2 λ -2 -1.2 -0.4 0.4 1.2 2 (d) SM WWZ DØ, 252 pb-1

FIG. 3. One- and two-dimensional 95% C.L. limits for (a) WW  WWZ at   1:5 TeV, (b) HISZ at   1:5 TeV, (c) SM WW at   2:0 TeV, and (d) SM WWZ at   1:0 TeV. The bold curve is the unitarity limit (where it fits within the plot boundaries), the inner curve is the two-dimensional 95% C.L. contour, and the ticks along the axes are the one-dimensional 95% C.L. limits.

Referências

Documentos relacionados

O Conservatório Regional de Artes do Montijo (CRAM), situado na cidade de Montijo, na rua Cidade de Évora, nº48 com o código postal 2870-137, é uma escola de ensino

Ed.FG.2) Então agora vamos ter que procurar e pagar. Ed.FG.2) Ou então fazê-la entre nós. Ed.FG.2) Isto depende do que se entende por formação qual é a tua visão de formação?

O serviço é composto por uma equipe de saúde multidisciplinar, vin- culada à clínica de geriatria do Hospital Naval Marcílio Dias (HNMD), res- ponsável pela prestação da

The tradition channels have already developed mobile banking services which enables users to access their bank accounts through mobile devices (Harma and Dubey, 2009) in order

Orientador | Drª Ana Leitão Regente | Prof. Doutor Rui Maio.. O aluno desenvolve assim, de forma gradual, uma maior autonomia e responsabilidade. Tendo em conta o objectivo,

O Projeto de Estágio anteriormente desenvolvido na Unidade Curricular Opção II (Apêndice I), subordinado ao tema A Intervenção do Enfermeiro Especialista em Enfermagem

Por isso, encontrando-me, ha dias, com um amigo, que 6 um dos ornamen- tos da nossa Escola Polytechnica, no correr da conversa, deixei escapar a se- guinte phrase: a philosophla é

escolar pouco a abordaram, talvez por constituírem-se, majoritariamente, de natureza privada .Mas a recorrência a um (Administração) ou `a outro (Gestão), ou aos dois conceitos ,