• Nenhum resultado encontrado

Extant diversity and estimated number of Gracillariidae (Lepidoptera) species yet to be discovered in the Neotropical region

N/A
N/A
Protected

Academic year: 2021

Share "Extant diversity and estimated number of Gracillariidae (Lepidoptera) species yet to be discovered in the Neotropical region"

Copied!
9
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Review

Extant

diversity

and

estimated

number

of

Gracillariidae

(Lepidoptera)

species

yet

to

be

discovered

in

the

Neotropical

region

Rosângela

Brito

a

,

Jurate

De

Prins

b

,

Willy

De

Prins

b

,

Olaf

H.H.

Mielke

c

,

Gislene

L.

Gonc¸

alves

d,e

,

Gilson

R.P.

Moreira

f,∗

aUniversidadeFederaldoParaná,ProgramadePós-Graduac¸ãoemEntomologia,Curitiba,PR,Brazil bRoyalBelgianInstituteofNaturalSciences,Brussels,Belgium

cUniversidadeFederaldoParaná,DepartamentodeZoologia,Curitiba,PR,Brazil

dUniversidadeFederaldoRioGrandedoSul,InstitutodeBiociências,DepartamentodeGenética,PortoAlegre,RS,Brazil eUniversidaddeTarapacá,InstitutodeAltaInvestigación,Antofagasta,Arica,Chile

fUniversidadeFederaldoRioGrandedoSul,DepartamentodeZoologia,PortoAlegre,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received28April2016 Accepted9June2016 Availableonline28June2016 AssociateEditor:RodrigoFeitosa Keywords:

Leafminermoths Microlepidoptera Speciesrichness

Phylogeneticdiversification

a

b

s

t

r

a

c

t

Gracillariidae(Lepidoptera)arecommonlyknownbytheleafminerhabitfoundinthelarvalstageof mostspecies.Byusingworldwide,publicdatabasesonspeciesdiversityandDNAsequencesavailablefor extantgracillariidspecies,wedeterminedchangesintherateoftaxonomicspeciesdescriptionsthrough time,mappedtheirspatialdistributions,examinedtheirphylogeneticdiversification,andestimatedthe numberofspeciesyettobedescribedforthefamilyintheNeotropics.Werecovered185species,a numberthatissmallerthanthatfoundinanyotherbiogeographicregion.However,itwasestimatedthat atleast3875additionalspeciesremaintobedescribedintheregion.Phylogeneticdiversificationshowed apatternofexpandingdiversity.Afewentomologistshavebeeninvolvedwithgracillariidtaxonomyin theNeotropics,having39%ofthespeciesbeendescribedbyasingletaxonomist.Inmostofsuchcases, descriptionswerebasedontheadultsonly.Afewspecieshavebeendescribedfrombiomesknownto havesomeofthegreatestdiversityonearth,suchastheAtlanticForest.Thus,suchascenarioresultsfrom lowsamplingandscarcetaxonomicactivitythathasprevailedforthisfamilyofmothsintheNeotropics. Itmayalsobeassociatedwiththeirsmallbodysizeandtothefactthatgracillariidsdonotseemtobe attractedtolighttrapsasmuchasothermoths,whichmaketheircollectionandidentificationbynon expertsdifficult.Wealsosuggestedscientificandpoliticalactionsthatcouldbeadoptedtoovercome suchanunfavorablescenario.

©2016SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Sincethepioneer,comprehensiveinventoriesthathavebeen conductedonthediversityofterrestrialarthropodsingeneral,it becameevidentthattheLepidopteraareamongthemostdiverse group of insects existing in tropical rainforests, including the Neotropicalregion(Erwin,1982;Lawtonetal.,1998;Bassetetal., 2012).Thesestudiesalsoledtothepredictionthatthediversityof Lepidopterainsuchareasismuchgreaterinnumbersthanwhat wereally know,andthus manyeitherremaintobediscovered and/orneedtobetaxonomicallydescribed.Infact,severalsurveys carriedoutaposterioriinsuchregionsfocusingonLepidoptera havegivensupporttosuchaprediction(e.g.Brehmetal.,2005;

∗ Correspondingauthor.

E-mail:gilson.moreira@ufrgs.br(G.R.P.Moreira).

Janzenetal.,2005;Linaresetal.,2009;Leesetal.,2014;Zenker

etal.,2016).Thesestudies,however,withtheexceptionofLees

etal.(2014),havebeenconductedwithprimaryattentionon

samp-lingofthemacrolepidoptera.Thisartificialgroupthatincludesthe Papilionoideabutterfliesandtheothermorederivedmoth super-families,accountsforca.107,475species(68.27%),andthusca.2/3 ofthetotal(=154,424species)extantLepidoptera(vanNieukerken etal.,2011).However,itincludesonly34familiesintheOrder;that is,25.56%ofthetotal(=133families).Fromaspeciesrank perspec-tive,thiswouldsuggestphylogeneticdiversification(sensuMorlon, 2014)ofyoungerlineageshasbeenproportionallygreaterin Lep-idoptera,whichissupportedbytheexistenceofasimilartrendat thegenericlevel;thatis,fromthetotalof14,655generalistedby

vanNieukerkenetal.(2011),9713(=66.28%)aremacrolepidoptera,

andtheremaining4942(=33.72%)microlepidoptera.However,one cannot rejecta priori thealternativehypothesis thatthis trend resultsatleastin partfrombias,associatedtolower collection http://dx.doi.org/10.1016/j.rbe.2016.06.002

0085-5626/©2016SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

effortsoftheolder,microlepidopteralineages,whichisexplored hereinfortheGracillariidae,asacasestudy.

Gracillariidae(Figs. 1–8)is consideredone themostdiverse microlepidopterafamilieshavinganendophagousfeedinghabitat, accountingfor105generaandmorethan1950speciesthatare distributedworldwide,exceptAntarctica(DePrinsandDePrins,

2016a).Althoughlarvaeofmostspeciesareleaf-miners,somemine

eitherstemsorfruits,andothersareflower/fruitborers,leafrollers, orgallinducers(e.g.Davis,1987;Guillénetal.,2001;Vargasand

Landry,2005;Huetal.,2011;Hansonetal.,2014;Kawakitaand

Kato,2016).ThefamilywasproposedbyStainton(1854)toascribe

atthat timethegenera GracilariaZeller,1839,CorisciumZeller,

1839,andOrnixKollar,1832.Theformerisnowasynonymof Gracil-lariaHaworth,1828,thetypegenusofthefamily.Thelattertwo aresynonymsofCaloptiliaHübner,1825,atthepresenttimealso withinGracillariidae.CaloptiliidaeFletcher,EucestidaeHampson, LithocolletidaeStaintonandOrnichidaeStaintonarenow consid-eredsynonyms ofGracillariidae(DePrinsand DePrins,2016b). Threesubfamiliesarecommonlyacceptedforthefamily: Gracil-lariinae,LithocolletinaeandPhyllocnistinae(DavisandRobinson, 1998).However,othershavebeenproposed,suchas Oecophyllem-biinae(RéalandBalachowsky,1966;Kumata,1998),Ornichinae

(Kuznetzov and Stekolnikov,1987)and Ornixolinae (Kuznetzov

andBaryshnikova,2001).Recently,themonophylyofGracillariidae

Figs.1–8.Leafmines(left)andadults(right)fromputativespeciesofNeotropicalgracillariids:(1,2)SpinivalvagauchaMoreira&Vargas(Gracillariinae)onPassifloraactinia Hook(Passifloraceae);(3,4)PorphyroselaminutaClarke(Lithocolletinae)onTrifoliumrepensLinnaeus(Fabaceae);(5,6)AngelabellatecomaeVargas&Parra (Oecophyllem-biinae)onTecomafulva(Cav.)G.Don(Bignoniaceae);(7,8)Phyllocnistissp.(Phyllocnistinae)onBaccharisanomalaDC.(Asteraceae).Scalebars=10,1,10,1,5,1,5,1mm, respectively.

(3)

wassupported by analysesbased onmolecular data,including foursubfamilies,whichareadoptedinthepresentstudy: Gracil-lariinae, Lithocolletinae, Phyllocnistinae and Oecophyllembiinae

(Kawaharaetal.,2011).Hypermetamorphosis,adramaticchangein

morphologyduringlarvalonthogeny,fromsap-drinkingto tissue-feedingand/orspinning(seeKumata,1978),hasbeenproposedas anapomorphyforGracillariidae(Davis,1987).However,recently

Britoetal.(2013)demonstratedthatthegracillariineSpinivalva

gauchaMoreira&Vargas,describedfromSouthernBrazildoesnot havesap-feedinglarvalinstars.Ontheotherhand,Kuznetzovand

Stekolnikov(1987)suggestedGracillariidaeareuniquewithin

Lep-idopterabyhavingmalegenitaliawithonlyfourpairsofmuscles andwithoutagnathos,andfemalegenitalia,withashort,laterally flattenedovipositor,whichshouldbefurtherexplored.Although ithasbeenacceptedthattherearemanyspeciesofGracillariidae stilltobedescribedintheNeotropicalregion(DavisandWagner,

2011;Britoetal.,2012;Leesetal.,2014), asfarasweare

con-cernednodataavailablesupportingsuchapredictionhasbeenever comparativelyexplored.

Byusing dataexistingin theliteratureandpublicdatabases availableaselectronicpublicationsintheWorldWideWeb,we hereinretrievedtaxonomicdataonNeotropicalgracillariids, list-ingthevalidspeciesbyauthorandyearofdescription,andmap thedistributionoftypesaccordingtocorrespondingbiogeographic regionsandpoliticalborders.Then,weadjustedtheannual vari-ationofthedescribedspeciestoalogisticmodel,predictingthe numberofgracillariidspeciesstilltobedescribedinthe Neotrop-ics,aswellasthetimeneededtoachievethatgoalgiventhepresent timerateofspeciesdescriptionsintheregion.Also,byusingDNA sequencesavailableinpublicdatabasesweestimatedthe phyloge-neticdiversificationofGracillariidaeintheNeotropicsthroughout time.Theseandadditionalfindingssuchasonhost–plantuseare discussedincomparisontootherbiogeographicregions.By review-ingthestatusoftheknowndiversity,evaluatingtheirphylogenetic diversificationandpredictingthenumberofgracillariidspeciesyet tobedescribedintheNeotropics,weaimtoestablisha correspond-ingbasis forfuture taxonomicstudiesintheregion,suggesting researchprioritiesandscientificactions,aswellastheexistenceof potentialdifficultiestobesurpassedregardingtaxonomic impedi-ment,ifany.Wehopeourfindingswillstimulatefurtherscientific interestinNeotropicalgracillariids,notonlyfromataxonomic per-spectivebutalsotheiruseasmodelsonevolutionaryecologybased studies,particularlythosefocusingonhost-plantinteraction,and alsoonconservationbiology.

Materialandmethods

Dataonspeciesdiversitywerecompiledfromthecatalogon NeotropicalGracillariidaeprovidedbyDavisandMiller(1984)and thepublicdatabaseonWorldGracillariidaemaintainedbyDePrins

andDePrins(2016a).TheglobaldatabaseofGracillariidae

(Lepi-doptera)waslaunchedin2006asanonlinesearchablecatalogof allknownGracillariidaespecies.Theemphasisisfocusedonthe followingaspects:i)completeness(taxonomicinformationonall 1956species,413synonymsofspeciesnames,8subspeciesand 309unavailable species-group names, 105 generaand 42 syn-onyms of genus-group names and 17 family-group names are foundin asearchableformat), ii)regularupdates,i.e. twiceper year,iii)presentationofcross-referencedverifieddata(dataon gracillariidtaxonomy,9054distributionrecords,7641hostplants recordsand4199parasitoidrecordsarepresentedonlinelinked withthepublicationreferenceandcitationpage),iv)generation ofdatawithuser-targetedmulti-searchablefunction(e.g.regional or country catalogs, detailed species checklists in association withtheirhostplantspecies/genera/families;v)documentationof

tri-trophic interactions of host(s)–gracillariidmoth species and theirparasitoid(s);vi)arobustgalleryof2188imageswiththeaim todocumentvisuallyeverygracillariidspeciesincludinginternal diagnosticcharactersofthelastabdominalsegments,morphology ofpre-imaginalstages,speciesbiotopes,aswellasbiologicaland ecological characteristics; vii)automatically generated country-linkedspeciesdistributionmaps;viii)typespecimens andtheir depository;ix)robustreferencelistof4806publications;x) fos-silspeciesandspeciesoriginallydescribedasgracillariidsbutlater transferredtootherfamilies.

To map the gracillariid species diversity, we adopted the regionalizationoftheNeotropicalregionasproposedbyMorrone

(2014),usingthecorrespondingshapefilethatwasprovidedby

Löwenberg-Neto(2014)toplotthedata.Theseauthorsadopteda

restrictivedefinitionoftheNeotropicalregion,excludingthe south-ernportionoftheAndeanareaandalsonorthernMexico.Toconceal thiswiththedatabaseprovidedbyDePrinsandDePrins(2016a), whoadoptedabroaderview,theseareaswerehereinincludedin theanalyses,andthustreatedinconjunctionwiththeremaining subregions(sensuCox,2001).Theideawastohaverepresentative subdivisionsfromabiogeographicperspective,withoutnecessarily takingintoaccounttheranksproposedbyMorrone(2014).

Weestimatethepotentialnumberofgracillariidspeciesstillto bedescribedintheNeotropicalregionbyadjustingthecumulative numberofdescribedspeciesthroughtime toathree-parameter logisticmodel(Ratkowsky,1990),byusingthesoftwareSigmaPlot 11.0(SystatSoftware,Inc.).Thus,weassumedthereisafinite num-berofspeciesexistingonearth.Also,thatasthenumberofrecorded speciesnearsthetotalnumberofspeciesinexistenceforagiven areaitbecomes increasinglydifficulttodiscovernewspeciesin

thatarea(Diamond,1985;Cabrero-Sa ˜nudoandLobo,2003).This

modelshowedasatisfactoryfitwhenusedrecentlybyCardosoetal.

(2015)topredictthenumberofstillundescribedmayflyspecies

existinginBrazil.Astheseauthors,thefunctionwasadjustedherein byusingtheQuasi-Newtonmethodandcriterionofconvergence 0.0001.Also,thesamedefaultvaluesadoptedbythemwereused: thatis,startingvalueof0.1andsept-widthof0.5,forallparameters. Theadjustmentwasbasedon200interactions,usingthenumber of173speciesconsideredasvalidatpresenttime,1867astheyear ofthefirstspeciesdescription,and2013,asthelastone.

We calculate the expectation for the number of lineages of Neotropicalgracillariidsinareconstructedphylogenyusing171 extantoperationaltaxonomicunits(OTUs),byconditioningonthe ageofthetreeaswellaswithassumingauniformpriorfortheage ofthetree.Weusedthebarcodeindexnumber(BIN),asystemthat clustersbarcodesequencesalgorithmically,asaproxyoflineages, sinceclustersshowhighconcordancewithspecies.Weemployed thisapproachtodocumentthediversityintheabsenceof taxo-nomicinformationformostoftheavailabledata.Sequencesofthe CytochromeoxidaseI(COI)gene(i.e.,barcodes)wereusedto recon-structthetaxonomicpositionofspeciesandgenera,mainlyfrom theBOLDand GenBank databases,but alsoincorporating novel OTUssequencedbyourresearchgroup(Tab.S1).Bucculatrixwas usedtorootthetree(basedonKawaharaetal.,2011;Wahlberg etal.,2013).SequenceswerealignedusingClustalXinMEGAv6

(Tamuraetal.,2013),accordingtodefaultparameters.Thebestfit

modelofsequenceevolution (GTR)wasimplementedaccording totheAkaikeInformationCriterionscoresforsubstitution mod-elsevaluatedusingjModeltestv.0.1.1(Darribaetal.,2012).BEAST v.2.1.3(Bouckaertet al.,2014)wasusedtoestimatethe diver-gencetimeunderaBayesianapproach(Drummondetal.,2006).An uncorrelatedlognormalmodelofratechangewasimplemented.To testwhetherthediversificationrateshavechangedovertime(i.e. increasedlineagespeciation)wecontrastedthelikelihoodvalues ofthedata(branchingtimesderivedfromthetrees)undertwo modelsofconstantspeciationrate().Twoindependentanalyses

(4)

usingastreepriorapurebirthmodelwitha=0andextinction rate=0(theYuleprocess),andabirth-deathmodelwith>0and >0,wererunusing100milliongenerationssampledevery10,000 generations.Convergencewasconfirmedbyeffectivesamplesizes over200forallparametersinTracer1.6(Rambautetal.,2014).The resultingtreesanddivergencetimesestimatedunderdifferenttree priorsweresimilar.BayesFactoranalysiswasperformedunderthe smoothedmarginallikelihoodestimateandwith1000bootstrap replicatescomputedinTracerv.1.6,butitdidnotprovidestrong supportforselectinganyofthepriors(BF<2).Wechosetousethe treesreconstructedunderthebirth–deathprocesstreepriorasit accountsforbothspeciationandextinction(Gernhard,2008).The timecalibration(inmillionsofyears[Ma])wascalculatedusing asecondorderdateforthegroupGracillariidae+Bucculatricidae, proposedbyWahlbergetal.(2013).Weappliedanormal distribu-tionforthepriorwithameanof115.34Ma(108.34–122.34;99% CI).Toexamine(visually)thetemporalpatternoflineage diversi-fication,meansemi-logarithmiclineagethroughtime(LTT)plots wereconstructedusingTracerv1.6with95%confidenceintervals generatedonthefinalBEASTtrees.

Results

Atotalof185GracillariidaespeciesfortheNeotropicalregion (Fig. S1)were recovered,belonging tofour subfamiliesand 26 genera(Tab. S2).The Gracillariinae werethe mostrepresented (145species),followedbytheLithocolletinae(21), Phyllocnisti-nae(17)andOecophyllembiinae(02)(Fig.S2).Correspondingtype

Fig.10.Annualvariationinnumberofgracillariidspeciesdescribedforthe Neotrop-icalregion.

localitiesarescattereddistributedinspace,varyinginnumberfrom zerospeciesintheSouth-easternAmazoniandominionto42inthe Pacificdominion(Fig.9).MostNeotropicalcountriesholdatleast onetypelocality;Brazilaccountedforthegreatestnumberoftypes, followedbyEcuadorandPeru(Fig.S3).

Speciesdescription-throughtimeplotshowedanerratic pat-tern(Fig.10), starting in 1867withthe firstdescribed species, and reachinga peak between1911 and 1920when 69 species weredescribed. A total of 24 authorsaccounted for the corre-sponding descriptions. The British taxonomist Edward Meyrick producedthegreatestnumberofcontributionsinthisregard(78 species;Fig.11).Typesweredesignatedintheoriginal descrip-tionformostcases.Theyweredepositedamong16museumsthat arelocatedmostlyabroad,mainlyintheNaturalHistoryMuseum,

Fig.9. Diversityofextantgracillariidspecies(Arabicnumbers)intheNeotropics,accordingtobiogeographicalregionalizationproposedbyMorrone(2014).Asterisksindicate areasnotcontemplatedinhisrestricteddefinitionoftheNeotropicalregion(seetextforfurtherdescription).

(5)

Fig.11.NumericalcontributionsbyauthorondescriptionofgracillaridspeciesfortheNeotropicalregion.Numbersabovebarsrepresentpercentagesinrelationtothetotal numberofspecies(n=175).

Fig.12.Relativerepresentationoftypespecimensforgracillariidspeciesinthe Neotropicalregion.Numbersabovebarsrepresentpercentagesinrelationtototal numberofextantspecies(n=175).

London(UK)andtheNationalMuseumofNaturalHistory– Smith-sonianInstitution (USA)(Figs. 12 and 13).Originaldescriptions werebasedprimarilyontheadultstage,particularlyonwing vena-tion and color pattern. Data onthe genitaliaof either male or

Fig.13.Variationinnumberoftypespecimensavailableamongmuseumcollections forNeotropicalgracillarids.Numbersabovebarsrepresentpercentagesinrelation tototalnumberofspecies(n=175).SeeTabS3fordescriptionofmuseumacronyms.

femalewereprovidedforonly46(25%)intheoriginaldescriptions ofspecies.Descriptionoftheimmaturestages (eitheregg,larva orpupa)arepresented in11%ofthearticlescontainingspecies descriptionsand, regarding moleculardata(DNAsequences), in only4%(Fig.14).Host–plantspecieswererecordedin29familiesof angiosperms,Fabaceaebeingthemostcommonlyused(TableS3,

Fig.15).

Cumulativespeciesdescription-throughtimedataadjustedwell (p<0.05)totheLogisticequation(Fig.16).Annualrateofspecies description was 1.18per year. The model predicted the exist-ence of 4048 species in the Neotropicalregion. Corresponding standarderrorwas91,004(t=44.487,p<0.001).Descriptionofthe remaining3875 speciesstill to bedescribed inthe Neotropical regionwouldbecompletedintheyear2174.

Phylogeneticdiversification revealedby theLTT plotfor the GracillariidaeintheNeotropicalregionsuggestsapatternofeven speciation rates, withexpanding diversity throughout the evo-lutionary time, with progressive, exponential accumulation of lineagesuntilthelast25Mya,and anearlyconstant,linearrate fromthattothepresenttime(Fig.17).

Fig.14.Variationinnumberofarticlesregardingoriginaldescriptionson Neotropi-calgracillariidsthatwerebasedonadultsbutthatincludedalsodataeitherongross morphologyofimmaturestagesorDNAsequences.

(6)

Fig.15.VariationinnumberofrecordsforangiospermfamiliesusedashostsforgracillariidspeciesintheNeotropicalregion.Numbersabovebarsrepresentpercentagesin relationtototalnumberofplantfamilies.

Fig.16. PredictivefuturecumulativespeciesdescriptioncurvefortheGracillariidae intheNeotropicalregion,basedontheLogisticmodel.

Fig.17.Lineage-Through-Time(LTT)plotofNeotropicalGracillariidae.LTTwas plottedusing1000treesfromtheCOIdatasetanalyses.Thenumberoflineages (yaxis)isplottedagainsttime(xaxis)insuchwaythateachincreaseonthenumber oflineagesrepresentsacladogenesis(anode)inoneofthe1000phylogenetictrees. 2.Dashedredandbluelinesrepresent95%-confidenceintervalsfortimeofstarting diversificationandLLTplot,respectively.

Discussionandconclusions

Findingsinthepresentstudyprovidedstrongevidencethatthe smallnumberofknownGracillariidaefortheNeotropicalregion resultsfromundersampling,associatedwithlowtaxonomic activ-ityonthefamilythroughouthistoryintheregion.Itcallsattention tothefact thatsucha numberis thesmallest(8%ofthetotal)

foundforanyotherbiogeographicregionintheworld(Fig.S1). Thisisnotexpectedgiventhesizeanddiversityofplantsknown toexistintheNeotropicalregion.Inotherwords,thistrenddoes notfindsupportonwhatisobservedforotherLepidoptera fam-ilieswhoseworldwidediversityisbetterknown.Forexample,if weconsiderGeometridae,PyralidaeandNymphalidae,this rela-tioninspeciesdiversitydoesnotsustain;tothecontrary,forthese families diversity is greater in theNeotropics compared tothe PalaearcticandNearctic(FigS5),thetwogreatestbiogeographic regionsintermsofareaonearth.Itisimportanttomentionthatthe larvalstageofmanymacrolepidopteranfamiliesareexternal feed-ers,andmanyareeitheroligophagousorpolyphagous.Asalready mentioned,larvaeofgracillariidsingeneralareinternalfeeders, havinga specializedfeedingapparatusand thusarehighly spe-cificintermsofhost–plantuse,manybeingmonophagous(Davis, 1987).Thus,foragivenarea,comparativelytosuchlepidopteran families, one would expectthe diversity of Gracillariidaetobe moreinfluencedbythatofplants,andinconsequenceshouldbe greater.Thistrendwouldnotbeexpectedonlyincaseof differ-encesinageandvariation ofhistorical diversificationrates due toanyreason,whichremains tobetestedfor these macrolepi-dopteranfamiliesin theNeotropics.However,Gracillariidaeare knowntobemucholderthanthesefamilies(DavisandRobinson, 1998),andweprovidedevidencehereinthatitsdiversificationin theNeotropicshasprogressivelyexpandedatanexponentialrate until25Mya,andataconstantratethereafteruntilthepresent. Thispatternofspeciationrateovertimehasoftenbeeninterpreted asadiversity-dependenteffectresultingfromasaturationofniche spacefollowingadaptiveradiations(PhillimoreandPrice,2008;

RaboskyandLovette,2008;EtienneandHaegeman,2012).In

addi-tion,LTTplotresultsaresensitivetoincompletetaxonsampling

(Neeetal.,1994;Ricklefs,2007),whichlikelyaffectedtheestimates

inthecaseofgracillariids.Inspiteofthis,asafirstphylogenetic diversificationanalysisongracillariids,we wereabletorecover evenratesofspeciationthroughouttheevolution,indicatingthat Neotropicallineageshave been thetargetof thediversification processfor alongtime inevolutionaryhistory. Thus,we found noindicationandhencerefutethehypothesisforoccurrenceofa greaterrateofdiversificationearlyinthegracillariidphylogeny.In otherwords,thereisnoindicationfortheexistenceofanegative balancebetweenspeciationandextinctionratesthatwouldlead totheexistenceoflowdiversityofgracillariidsintheNeotropical region.

(7)

Infactourdatashowsthatthenumberofgracillariidspecies describeduptonowfromtheNeotropicalregionisfarfrom real-istic.Forexample,theParanádominion,withinwhichtheAtlantic forestislocated,accountedonlyfor7species.TheAtlanticforest isknownasoneoftheareaswiththegreatestdiversityofplants andanimalsonearth,beingextremely richinendemics(Myers

etal., 2000;Carnavalet al.,2009;Freitas etal.,2011).

Approx-imately50%ofalmostseventhousandspeciesofplantsexisting intheareaareendemics(Stemannetal.,2009).Asalready men-tioned,leaf-minermothsarehighlyhost–plantspecific,andbased onthis,Britoetal.(2012,2013)predictedthathundredsof unde-scribed,endemicgracillariidspeciesshouldexistin theAtlantic forest.Indeed,severalgracillariidspeciesrearedfromleaves col-lectedinthesouthernpartoftheAtlanticforest,mostbelonging toangiospermfamiliesnotrecoveredashostplantofgracillariids inthepresentsurveyfortheNeotropics,awaitfordescriptionin ourlaboratory.OtherareasinBrazil,suchasthecentraland north-easternportionsoftheChacoandominion(CerradoandCaatinga biomes),andtheoccidentalAmazonareahavebeentraditionally misrepresentedinLepidopteracollectionsingeneral,duetolow samplingeffortsappliedfortheseinsectsinsuchareas(Santosetal.,

2008a,b).Recently,inasurveycarriedoutinsmallareasofFrench

GuianaandEcuador,Leesetal.(2014)estimatethecorresponding gracillariidrichnesstobe240species,fromwhichapproximately 85%arebelievedtorepresentnewspeciestoscience.While sur-veyinggracillariidsassignedtothegenusPhyllocnistisZellerina localizedareainCostaRica,DavisandWagner(2011)cametothe conclusionthattherichnessforthisgenusaloneshouldaccountfor hundredsofspeciesintheNeotropicalregion.Thistrendmaywell beextendedtothetemperateportionsoftheNeotropicalregion. ThegracillariidfaunaoftheSouthernConeof SouthAmericain particularis largelyunexplored,andthis regionaccountsforat least18,139speciesofplants,amongwhichca.43%areendemics

(ZuloagaandBelgrano,2015).

Thus,itisnotsurprisingthatthepredictionmadeinthisstudy suggeststhatthenumberofgracillariidspeciesinthe Neotrop-icalregioniscirca20timesgreater.Itisalsoimportanttonote thatthetaxonomicdescriptionsofsuchunknownspecieswould becompletedonlyabouttwocenturiesfromnow.Thisestimate, however,wasbasedonthelowcollectionintensityandscarce tax-onomyactivityongracillariidsthathavehistoricallyprevailedin theregion,asalreadymentioned.Thus,suchtimemaybealtered substantiallyinthefuture,dependinguponchangesinpriorities andtheinvestmentinfieldandlaboratoryresearch.Intensive sur-veysforgracillariidspecieswhencarriedoutinrichbiomes(e.g.

Leesetal.,2014)wouldsubstantiallyspeedupthecurve,reducing thetimetoreachsuchaplateau.Thiswouldbeparticularlytrue ifmodernmolecularbiologytechniques,suchasDNAbarcoding (sensuHebertetal.,2003)areusedinconjunctionwithtraditional alphataxonomicmethods.UseofDNAsequencesinthiscasewould facilitatenotonlytheidentificationofadultspecimensthatmaybe collectedbyusinganykindoftrap,butparticularly,inthe associa-tionwiththeirimmaturestagescollecteddirectlyfromhost–plants, andviceversa.

Ourdatashowedclearlythattheunderlyingcausesforpaucity intheknowledgeofgracillariiddiversityintheNeotropicsfitinto thetypicalissuesinvolvedinwhattaxonomistscalledlatelythe “taxonomicimpediment”(fordiscussion,seeLipscombetal.,2003;

Scotlandetal.,2003;Wheeler,2004;Carvalhoetal.,2007).Inother

words,whathasobstructedprogressofgracillariidtaxonomyin theNeotropics is primarily thescarce activityof specialists on suchafaunathroughouthistory.Correspondingspecies descrip-tionshavebeenlowanderraticintime,andwereprovidedina superiornumberbyforeigntaxonomiststhateventuallyworked withNeotropicalgracillariids,mostlyin thefirsthalfofthelast century.Consequently,correspondingtypesweredepositedmostly

abroad,andmoreimportantly,nomajor,wellcuratedcollection ofgracillariidshaseverbeencompiledfortheregion.Therewas no indication in this study that such a situation varies much amongNeotropicalcountries.Justtogiveoneexample,theSerra Bonitacollection(Camacãn,Bahia,Brazil),oneofthegreatest col-lectionsonmicrolepidoptera existingin theNeotropicalregion, hascirca1200pinned-driedpreservedadultsofgracillariidsthat are placed into one drawer (V.O. Becker, pers.comm.). In our opinion,however,additionalissues inherenttotheseleafminer mothsinparticularhavecontributedtothemaintenanceofapoor knowledge about theirtaxonomy in theregion, and should be takenintoaccountwhenestablishingpoliciesneededtoovercome such an undesirable scenario.First, as typical microlepidopter-ans, gracillariids are not easy to workwith due to theirsmall size,requiringextraabilityfromtaxonomiststomountthem,and especiallyduringdissectionsneededfortaxonomicdescriptions, asforexampletheirgenitalia.Thus,theexistenceofappropriate equipment,suchashighresolutionlightstereomicroscopesand scanningelectronmicroscopefacilities,andcorresponding train-ing,areimportant inthiscase. Second,theydonot seemtobe much attracted to light (Vári, 1961), and thus theuse of light trapsmaybelessefficienttocapturethemasadultscomparedto nocturnalmacrolepidopterans.Thismeansthatothermethodsof capture,includingrearingtheadultsfromhost–plantmines,are desirable,leading tobetterresultsinmany cases.Searchingfor mines,however,isatimeconsumingactivity,andsometimesthe larvaeoccurunderlowdensitiesandaredifficulttoaccess,asfor exampleinthecanopy.Third,recentstudieshaveindicatedthat forsomegracillariidlineages,asforexampleinthegenus Phyl-locnistisZeller,specificvariationisgreaterintheimmaturestages comparedtotheadults(DavisandWagner,2011;Britoetal.,2012). Andthus,locationofhost–plantsandrearingofthesestagesarenot onlydesirablebutrequiredforanaccurateidentificationinsuch cases.

Correspondingknowledgeaboutgracillariidbiologyingeneral isalsoattheinfancylevel intheNeotropics,exceptforspecies ofeconomicimportance,asforexamplethosewiththepotential foruseasbiologicalcontrolagentsofinvasiveplants(e.g.Davis

etal.,1991;McKayetal.,2012).PhyllocnistiscitrellaStainton,a

cos-mopolitangracillariidspeciesrecentlyintroducedintotheregion, becominganimportantpestofCitrusorchardsinmanyNeotropical countries,hasbeenthefocusofseveralstudies(e.g.Vargasetal.,

1998;ChagasandParra,2000;Jahnkeetal.,2005;Santosetal.,

2008a,b).ThebiologyoftheleafminerPorphyroselaminutaClarke,

whichcausesdamageonTrifoliumrepensinUruguaywasexplored

byBentancourtandScatoni(2007).Additionalstudiesthatdonot

focusontaxonomicdescriptionsareuncommonfor Neotropical gracillariidspecieswithoutanyapparenteconomicinterest(but

seeStorey-Palmaetal.,2012,2014;Maita-Maitaetal.,2015).On

theotherhand,theseleafminermothshavebeenstudiedabroad fromseveralbiologicalperspectives,andtheyhavebeensuggested tobeusedasmodelsinstudiesinvolvingtheevolutionofinsect host–plantinteractions. Thisisparticularlyduetothedramatic changesinlarvamorphology(hypermetamorphosis)foundinmost lineages(seeDavis,1987)thatareassociatedwithveryspecialized endophagousfeedinghabits(Wagneretal.,2000;Bodyetal.,2015). Theexistenceofhostshiftshasbeenreported,withstrongevidence fortheexistenceofco-speciationwithhost–plantsinsomecases

(OhshimaandYoshizawa,2006;Ohshima,2008).Also,some

gracil-lariidspecieshaveamutualisticassociationwithplantsbyacting aspollinatorsintheadultstageandfeedingaslarvaeonthe repro-ductivestructuresofsuchplants(Kawakitaetal.,2004;Kawakita

andKato,2006;Zhangetal.,2012).Allthesepervasiveavenues

inresearch,whichmustbeprecededbyasolidtaxonomic back-ground,remaintobeexploredfortheNeotropicalgracillariidfauna ingeneral.

(8)

In summary, it was herein clearly demonstrated that the diversityand biology of Neotropicalgracillariids remainlargely unknown,whichisattributedparticularlytotheexistenceofa tax-onomicimpediment,prevailingthroughouttheregion.Thus,the establishmentofscientificpoliciesbygovernmentsofallcountries isurgentinordertospeedupgracillariidtaxonomyandthusto overcomesuchanundesirablescenariointheNeotropics(foran exampleofsuchpolicies,seeAguiaretal.,2009).Finally,itisalso importanttomentionthatasfarasweareconcerned,no Neotropi-calgracillariidspecieshasbeentakenintoaccountuptonowfrom aconservationbiologyperspective.Asalreadymentioned, there aremany speciesinthisfamilythroughoutdifferentgeographic dominionsintheNeotropicalregionthatarespecialistsonrare and/orendemicplants(e.g.Davis,1994;VargasandLandry,2005;

VargasandParra,2005;Mundacaetal.,2013;Britoetal.,2013).By

beingdependentonendemichostplantsataregionalscale,these speciesinparticularareundercomparativelygreaterthreat,since suchplantsareusuallylocalizedindistribution(Lewinsohnetal., 2005).Touncoverfurthersuchkindsofhiddendiversityof gracil-lariidspecies,andthustosetthebasisfortheirconservationbefore extinction,wesuggestendemicplantsinparticularshouldbe prior-itizedonhost-focusedinventoriesfortheirassociatedleafminers intheNeotropics.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WearegratefultoCarlosLopezVaamonde(INRA)forallowingus toaccessbarcodedataintheBOLDSystemGracillariidaeprojects. Thanksarealsoduetwoanonymousreviewersforimportant sug-gestionsmadetothefinalversionofthemanuscript.R.Britoand G.L.Gonc¸alvesweresupported,respectivelybyaCNPqDoctoral ScholarshipandaPostdoctoralCAPESFellowship(PNPD),andO. H.H.MielkeandG.R.P.MoreirabygrantsfromCNPq.Thisarticleis dedicatedtoHéctorA.Vargas(UTA)whoearlyinthisdecadekindly introducedG.R.P.MoreiraandR.BritotothestudyofNeotropical gracillariids.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.rbe.2016.06.002.

References

Aguiar,A.P.,Santos,B.F.,Couri,M.S.,Rafael,J.A.,Costa,C.,Ide,S.,Duarte,M.,Grazia, J.,Schwertner,C.F.,Freitas,A.V.,Azevedo,C.O.,2009.Insecta.In:Rocha,R.M., Boeger,W.A.(orgs),EstadodaarteeperspectivasparaaZoologianoBrasil. EditoraUFPR,Curitiba,pp.131–155.

Basset,Y.,Cizek,L.,Cuénoud,P.,Didham,R.K.,Guilhaumon,F.,Missa,M.,Novotny, V.,Ødegaard,F.,Roslin,T.,Schmidl,J.,Tishechkin,A.K.,Winchester,N.N.,Roubik, D.W.,Aberlenc,H.P.,Bail,J.,Barrios,H.,Bridle,J.R.,Casta ˜no-Meneses,G.,Corbara, B.,Curletti,G.,Rocha,D.W.,Bakker,D.,Delabie,J.H.,Dejean,A.,Fagan,L.L.,Floren, A.,Kitching,R.L.,Medianero,E.,Miller,S.E.,Oliveira,G.E.,Orivel,J.,Pollet,M., Rapp,M.,Ribeiro,S.P.,Rosin,Y.,Schmidt,J.B.,Sørensen,L.,Leponce,M.,2012. Arthropoddiversityinatropicalforest.Science338,1481–1484.

Bentancourt,C.M.,Scatoni,I.B.,2007.MorphologyofbiologyofPorphyroselaminuta Clarke1953(Lepidoptera:Gracillariidae,Lithocolletinae)inUruguay.Neotrop. Entomol.36,514–519.

Body,M.,Burlat,V.,Giron,D.,2015.Hypermetamorphoisinaleaf-minerallows insectstocopewithaconfinednutritionalspace.Arth.-PlantInt.9,75–84. Bouckaert,R.,Heled,J.,Kuhnert,D.,Vaughan,T.,Wu,C.-H.,Xie,D.,Suchard,M.A.,

Rambaut,A.,Drummond,A.J.,2014.BEAST:2asoftwareplatformforBayesian evolutionaryanalysis.PLoSComput.Biol.10(4),e1003537.

Brehm,G.,Pitkin,L.M.,Hilt,N.,Fiedler,K.,2005.MontaneAndeanrainforestsarea globaldiversityhotspotofgeometridmoths.J.Biogeogr.32,1621–1627.

Brito,R.,Gonc¸alves,G.L.,Vargas,H.A.,Moreira,G.R.P.,2012.Anewspeciesof Phylloc-nistisZeller(Lepidoptera:Gracillariidae)fromsouthernBrazil,withlife-history descriptionandgeneticcomparisontocongenericspecies.Zootaxa3582,1–16. Brito,R.,Gonc¸alves,G.L.,Vargas,H.A.,Moreira,G.R.P.,2013.AnewBrazilian Pas-sifloraleafminer:Spinivalvagaucha,gen.n.,sp.n.(Lepidoptera,Gracillariidae, Gracillariinae),thefirstgracillariidwithoutasap-feedinginstar.ZooKeys291, 1–26.

Cabrero-Sa ˜nudo,F.J.,Lobo,J.M.,2003.Estimatingthenumberofspeciesnotyet describedandtheircharacteristics:thecaseofWesternPalaearcticdungbeetles species(Coleoptera,Scarabaeoidea).Biodiv.Conserv.12,147–166.

Cardoso,M.N.,Shimano,Y.,Nabout,J.C.,Juen,L.,2015.Anestimateofthepotential numberofmayflyspecies(Ephemeroptera,Insecta)stilltobedescribedinBrazil. Rev.Brasil.Entomol.59,147–153.

Carnaval,A.C.,Hickerson,M.J.,Haddad,C.F.B.,Rodrigues,M.T.,Moritz,C.,2009. Sta-bilitypredictsgeneticdiversityintheBrazilianAtlanticforesthotspot.Science 323,785–789.

Carvalho,M.R.,Bockmann,F.A.,Amorim,D.S.,Brandão,C.R.F.,Vivo,M.,Figueiredo, J.L.,Britski,H.A.,Pinna,M.C.C.,Menezes,N.A.,Marques,F.P.L.,Papavero,N., Can-cello,E.M.,Crisci,J.V.,McEachran,J.D.,Schelly,R.C.,Lundberg,J.G.,Gill,A.C., Britz,R.,Wheeler,Q.D.,Stiassny,M.L.J.,Parenti,L.R.,Page,L.M.,Wheeler,W.C., Faivovich,J.,Vari,R.P.,Grande,L.,Humphries,C.J.,DeSalle,R.,Ebach,M.C.,Nelson, G.J.,2007.Taxonomicimpedimentorimpedimenttotaxonomy?Acommentary onsystematicandtheCybertoxonomic-Automationparadigm.Evol.Biol.3/4, 140–143.

Chagas,M.C.M.,Parra,J.R.P.,2000.PhyllocnistiscitrellaStainton(Lepidoptera: Gracil-lariidae):técnicadecriac¸ãoebiologiaemdiferentestemperaturas.An.Soc. Entomol.Brasil29,227–235.

Cox,C.C.,2001.Thebiogeographicregionsreconsidered.J.Biogeogr.28,511–523. Darriba,D.,Taboada,G.L.,Doallo,R.,Posada,D.,2012.jModelTest2:moremodels,

newheuristicsandparallelcomputing.Nat.Methods9,772.

Davis,D.R., 1987.Gracillariidae.In:Stehr,F.W.(Ed.),ImmatureInsects,vol. I. Kendall/HuntPublishingCompany,Dubuque,pp.372–374.

Davis,D.R.,1994.NeotropicalMicrolepidopteraXXV.Newleaf-miningmothsfrom Chile,withremarksonthehistoryandcompositionofPyllocnistinae.Trop.Lep. 5,65–75.

Davis,D.R.,Miller,S.E.,1984.Gracillariidae.In:Heppner,J.B.(Ed.),Atlasof Neotropi-calLepidoptera,Checklist:Part1.Dr.W.JunkPublishers,TheHague,pp.25–27. Davis,D.R.,Robinson,G.S.,1998.TheTineoideaandGracillarioidea.In:Kristensen, N.P.(Ed.),Lepidoptera,MothsandButterflies,vol.1:Evolution,Systematicand Biogeography.HandbookofZoology,vol.4,Part35.DeGruyter,Berlin,pp. 91–117.

Davis,D.R.,Wagner,D.L.,2011.BiologyandsystematicsoftheNewWorld Phylloc-nistisZellerleafminersoftheavocadogenusPersea(Lepidoptera,Gracillariidae). ZooKeys97,39–73.

Davis,D.R.,Kassulke,R.C.,Harley,K.L.S.,Gillett,J.D.,1991.Systematics, morphol-ogy,biology,andhostspecificityofNeurostrotagunniella(Busck)(Lepidoptera: Gracillariidae),anagentforthebiologicalcontrolofMimosapigraL.Proc. Ento-mol.Soc.Wash.93,16–44.

De Prins, J., De Prins, W., 2016a. Global Taxonomic Database of Gracil-lariidae (Lepidoptera), World Wide Web electronic publication (http://www.gracillariidae.net)(accessedMarch,2016).

De Prins, J., De Prins, W., 2016b. Afromoths, online database of Afrotropi-cal moth species (Lepidoptera), World Wide Web electronic publication (http://www.afromoths.net)(accessedMarch,2016).

Diamond,J.M.,1985.Taxonomy:howmanyunknownspeciesareyettobe discov-ered?Nature315,538–539.

Drummond,A.J.,Ho,S.Y.,Phillips,M.J.,Rambaut,A.,2006.Relaxedphylogenetics anddatingwithconfidence.PLoSBiol4,e88.

Erwin,T.L.,1982.Tropicalforests:theirrichnessinColeopteraandotherarthropod species.Coleopt.Bull.36,74–75.

Etienne,R.S.,Haegeman,B.,2012.Aconceptualandstatisticalframeworkfor adap-tiveradiationswithakeyrolefordiversitydependence.Am.Nat.180,E75–E89. Freitas,A.V.L.,Mielke,O.H.H.,Moser,A.,Silva-Brandão,K.L.,Iserhard,C.A.,2011.A newgenusandspeciesofEuptychiina(Lepidoptera:Nymphalidae:Satyrinae) fromSouthernBrazil.Neotrop.Entomol.40,231–237.

Gernhard,T.,2008.Theconditionedreconstructedprocess.J.Theoret.Biol.253, 769–778.

Guillén,M.,Davis, D.R.,Heraty, J.M.,2001.Systematics andbiologyofanew, polyphagousspeciesofMarmara(Lepidoptera:Gracillariidae)infesting grape-fruitintheSouthwesternUnitedStates.Proc.Entomol.Soc.Wash.103,636–654. Hanson,P.,Nishida,K.,Gómez-Laurito,J.,2014.InsectgallofCostaRicaandtheir parasitoids.In:Fernandes,G.W.,Santos,J.C.(Eds.),NeotropicalInsectGalls. Springer,NewYork,pp.497–518.

Hebert,P.D.N.,Cywinska,A.,Ball,S.L.,deWaard,J.R.,2003.Biologicalidentifications throughDNAbarcodes.Proc.R.Soc.B270,313–321.

Hu,B.,Wang, S.,Zhang,J.,Li,H., 2011. Taxonomyand biologyoftwo seed-parasiticgracillariidmoths(Lepidoptera,Gracillariidae),withdescriptionofa newspecies.Zookeys83,43–56.

Jahnke,S.M.,Redaelli,L.R.,Diefenbach,L.M.G.,2005.Complexodeparasitóidesde Phyllocnistiscitrella(Lepidoptera,Gracillariidae)emdoispomaresdecitrosem Montenegro,RS,Brasil.IheringiaSer.Zool.95,359–363.

Janzen,D.H.,Hajibabaei,M.,Burns,J.M.,Hallwacs,W.,Remigio,E.,Hebert,P.D.N., 2005.WeddingbiodiversityofalargeandcomplexLepidopterafaunawithDNA barcoding.Phil.Trans.R.Soc.B360,1835–1846.

Kawahara,A.Y.,Ohshima,I.,Kawakita,A.,Regier,J.C.,Mitter,C.,Cummings,M.P., Davis,D.R.,Wagner,D.L.,DePrins,J.,Lopez-Vaamonde,C.,2011.Increasedgene

(9)

samplingstrengthenssupportforhigher-levelgroupswithinleaf-miningmoths andrelatives(Lepidoptera:Gracillariidae).BMCEvol.Biol.11,182.

Kawakita,A.,Kato,M.,2006.Assessmentofthediversityandspeciesdiversityofthe mutualisticassociationbetweenEpicephalamothsandGlochidiontrees.Mol. Ecol.15,3567–3581.

Kawakita,A.,Kato,M.,2016.RevisionoftheJapanesespeciesofEpicephalaMeyrick withdescriptionsofsevennewspecies(Lepidoptera,Gracillariidae).Zookeys 568,87–118.

Kawakita,A.,Takimura,A.,Terachi,T.,Sota,T.,Kato,M.,2004.Coespeciationanalysis ofanobligatepollinationmutualism:haveGlochidiontrees(Euphobiaceae)and pollinatingEpicephalamoths(Gracillariidae)diversifiedinparallel?Evolution 58,2201–2214.

Kumata,T.,1978.Anewstem-minerofalderinJapanwithareviewofthe lar-valtransformationintheGracillariidae(Lepidoptera).InsectaMatsumurana13, 1–27.

Kumata,T.,1998.JapanesespeciesofthesubfamilyOecophyllembiinaeRéalet Bal-achowsky(Lepidoptera:Gracillariidae),withdescriptionsofanewgenusand eightnewspecies.InsectaMatsumurana54,77–131.

Kuznetzov,V.I.,Baryshnikova,S.V.,2001.ReviewofPalaearcticgeneraof gracil-lariidmoths(Lepidoptera,Gracillariidae),withdescriptionofanewsubfamily OrnixolinaeKuznetzovetBrushnikova,subfam.n.Entomol.Oboz.80,96–120. Kuznetzov,V.I.,Stekolnikov,A.A.,1987.Functionalmorphologyofthemalegenitalia

andnotesontheclassificationandphylogeneticrelationshipsofminingmoths ofsuperfamilyGracillarioidea(Lepidoptera).Entomol.Oboz.66,52–65. Lawton,J.H.,Bignell,D.E.,Bolton,B.,Bloemers,G.F.,Eggleton,P.,Hammond,P.M.,

Hodda,M.,Holt,R.D.,Larsen,B.T.,Mawdsley,N.A.,Stork,N.E.,Srivastava,D.S., Watt,A.D.,1998.Biodiversityinventories,indicatortaxaandeffectsofhabitat modificationintropicalforest.Nature391,72–76.

Lees,D.C.,Kawahara,A.Y.,Rougerie,R.,Ohshima,I.,Kawakita,A.,Bouteleux,O.,De Prins,J.,Lopez-Vaamonde,C.,2014.DNAbarcodingrevealsalargelyunknown faunaofGracillariidaeleaf-miningmothsintheNeotropics.Mol.Ecol.Resour. 14,286–296.

Lewinsohn, T.M., Freitas, A.V.L., Prado, P.I., 2005. Conservation of terrestrial invertebratesandtheirhabitatsinBrazil.Conserv.Biol.19,640–645. Linares,M.C.,Soto-Calderón,I.D.,Lees,D.C.,Anthony,N.M.,2009.Highmitochondrial

diversityingeographicallywidespreadbutterfliesofMadagascar:atestofthe DNAbarcodingapproach.Mol.Phylogenet.Evol.50,485–495.

Lipscomb,D.,Platnick,N.,Wheeler,Q.D.,2003.Theintellectualcontentoftaxonomy: acommentonDNAtaxonomy.TrendsEcol.Evol.18,65–66.

Löwenberg-Neto,P.,2014.Neotropicalregion:ashapefileofMorrone’s biogeo-graphicalregionalization.Zootaxa3802,300.

Maita-Maita,J.,Huanca-Mamani,W.,Vargas,H.A.,2015.Firstremarksongenetic variationofthelittleknownleafminerAngelabellatecomaeVargas&Parra (Gracillariidae)intheAtacamadesertofNorthernChile.J. Lepid.Soc.69, 192–196.

McKay,F.,Oleiro,M.,Vitorino,M.D.,Wheeler,G.,2012.TheleafminingLeurocephala schinusae(Lepidoptera:Gracillariidae):notsuitableforthebiologicalcontrolof Schinusterebinthifolius(Sapindales:Anacardiaceae)incontinentalUSA. Biocon-trolSci.Technol.22,477–489.

Morlon,H.,2014.Phylogeneticapproachesforstudyingdiversification.Ecol.Lett. 17,508–525.

Morrone, J.J., 2014. Biogeographical regionalizationof theNeotropical region. Zootaxa3782,1–100.

Mundaca,E.A.,Parra,L.E.,Vargas,H.A.,2013.Anewgenusandspeciesofleafminer (Lepidoptera,Gracillariidae)forChileassociatedtothenativetreeLithraea caus-tica.Rev.Bras.Entomol.57,157–164.

Myers,N.,Mittermeier,R.A.,Mittermeier,C.G.,Fonseca,G.A.B.,Kent,J.,2000. Biodi-versityhotspotsforconservationpriorities.Nature403,853–858.

Nee,S.,May,R.M.,Harvey,P.H.,1994.Thereconstructedevolutionaryprocess.Phil Trans.R.Soc.Lond.B344,305–311.

vanNieukerken,E.J.,Kaila,L.,Kitching,I.J.,Kristensen,N.P.,Lees,D.C.,Minet,J., Mit-ter,C.,Mutanen,M.,Regier,J.C.,Simonsen,T.J.,Wahlberg,N.,Yen,S.-H.,Zahiri, R.,Adamski,D.,Baixeras,J.,Bartsch,D.,Bengtsson,B.Å.,Brown,J.W.,Bucheli,S.R., Davis,D.R.,DePrins,J.,DePrins,W.,Epstein,M.E.,Gentili-Poole,P.,Gielis,C., Hät-tenschwiler,P.,Hausmann,A.,Holloway,J.D.,Kallies,A.,Karsholt,O.,Kawahara, A.Y.,Koster,S.(J.C.),Kozlov,M.V.,Lafontaine,J.D.,Lamas,G.,Landry,J.-F.,Lee,S., Nuss,M.,Park,K.-T.,Penz,C.,Rota,J.,Schintlmeister,A.,Schmidt,B.C.,Sohn,J.-C., Solis,M.A.,Tarmann,G.M.,Warren,A.D.,Weller,S.,Yakovle,R.V.,Zolotuhin,V.V., Zwick,A.,2011.OrderLepidopteraLinnaeus,1758.In:Zhang,Z.-Q.(Ed.),Animal biodiversity:anoutlineofhigher-levelclassificationandsurveyoftaxonomic richness.Zootaxa3148,212–221.

Ohshima,I.,2008.Hostraceformationintheleaf-miningmothAcrocercopstransecta (LepidopteraGracillariidae).Biol.J.LinneanSoc.93,135–145.

Ohshima,I.,Yoshizawa,K.,2006.Multiplehostshiftsbetweendistantlyrelated plants,JuglandaceaeandEricaceae,intheleaf-miningmothAcrocercops leu-cophaea complex (Lepidoptera: Gracillariidae). Mol. Phylogenet. Evol. 38, 231–240.

Phillimore,A.B.,Price,T.D.,2008.Density-dependentcladogenesisinbirds.PLoSBiol. 6,e71.

Rabosky,D.L.,Lovette,I.J.,2008.Explosiveevolutionaryradiations:decreasing spe-ciationorincreasingextinctionthroughtime?Evolution62,1866–1875. Rambaut,A.,Suchard,M.A.,Xie,D.,Drummond,A.J.,2014.Tracerv1.6,Available

fromhttp://beast.bio.ed.ac.uk/Tracer.

Ratkowsky,D.A.,1990.HandbookofNonlinearRegressionModels.MarcelDekker, NewYork,pp.241.

Réal,P.,Balachowsky,A.S.,1966.FamilledesGracillariidae(=Lithocolletidae).In: Bal-achowsky,A.S.(Ed.),Entomologieappliquéàl ´agriculture.Tome2.Lépidoptères. MassonetCieéditeurs,Paris,pp.309–335.

Ricklefs,R.E.,2007.Estimatingdiversificationratesfromphylogeneticinformation. TrendsEcol.Evol.22,601–610.

Santos,E.C.,Mielke,O.H.H.,Casagrande,M.M.,2008a.Inventáriosdeborboletasno Brasil:estadodaarteemodelodeáreasprioritáriasparapesquisacomvistasà conservac¸ão.Nat.Conserv.6,68–90.

Santos,J.P.,Redaelli,L.R., Dal Soglio,F.K., 2008b. Plantashospedeiras de lep-idópterosminadoresempomardecitrosemMontenegro-RS.Rev.Bras.Frutic. 30,255–258.

Scotland,R.,Hughes,C.,Bailey,D.,Wortley,A.,2003.TheBigMachineandthe much-malignedtaxonomist.Syst.Biodivers.1,139–143.

Stainton,H.T.,1854.Lepidoptera:Tineina.InsectaBritannica,vol.3.LovellReeve, London,pp.193.

Stemann,J.R.,Forzza,R.C.,Salino,A.,Sobral,M.,Costa,D.P.,Kamino,L.H.Y.,2009. PlantasdaFlorestaAtlântica.InstitutodePesquisasJardimBotânicodoRiode Janeiro,RiodeJaneiro.

Storey-Palma, J., Benítez, H., Parra, L.E., Vargas, H.A., 2012. Identification of sap-feederinstarsinAngelabellatecomaeVargas&Parra(Lepidoptera, Gracil-lariidae)feedingonTecomafulvafulva(Bignoniaceae).Rev.Bras.Entomol.56, 508–510.

Storey-Palma,J.,Benítez,H.,Mundaca,E.A.,Vargas,H.A.,2014.Egglayingsite selec-tionbyahostplantspecialistleafminermothattwointra-plantlevelsinthe northernChileanAtacamaDesert.Rev.Bras.Entomol.58,280–284.

Tamura,K.,Stecher,G.,Peterson,D.,Filipski,A.,Kumar,S.,2013.MEGA6:Molecular EvolutionaryGeneticsAnalysisversion6.0.Mol.Biol.Evol.30,2725–2729. Vargas,H.A.,Bobalilla,D.E.,Jiménez,M.R.,Vargas,H.E.,1998.Algunas

characterísti-casbiológicasdelminadorfoliardeloscítricos,Phyllocnistiscitrella(Lepidoptera: Gracillariidae:Phyllocnistinae)observadasenelValledeAzapa,IRegión,Chile. Idesia14,65–75.

Vargas,H.A.,Landry,B.,2005.AnewgenusandspeciesofGracillariidae (Lepi-doptera)feedingonflowersofAcaciamacracanthaWilld.(Mimosaceae)inChile. ActaEnt.Chilena29,47–57.

Vargas,H.A.,Parra,L.E.,2005.Unnuevogêneroyumanovaespéciede Oecophyllem-biinae(Lepidoptera:Gracillariidae)deChile.Neotrop.Entomol.34,227–233. Vári,L.,1961.SouthAfricanLepidoptera.VolumeI.Lithocolletidae.Trans.Mus.Mem.

12,1–238.

Wagner,D.L.,Loose,J.L.,Fitzgerald,T.D.,Benedictis,J.A.,Davis,D.R.,2000.Ahidden past:thehypermetamorphicdevelopmentofMarmaraarbutiella(Lepidoptera: Gracillariidae).Ann.Entomol.Soc.Am.93,59–64.

Wahlberg, N.,Wheat,C.W., Pe ˜na,C.,2013.Timing andPatterns inthe Taxo-nomicDiversificationofLepidoptera(ButterfliesandMoths).PLoSONE8(11), e80875.

Wheeler,Q.D.,2004.Taxonomictriageandthepovertyofphylogeny.Philos.Trans. R.Soc.Lond.B359,571–583.

Zenker,M.M.,Rougerie, R.,Teston,J.A.,Laguerre, M.,Pie, M.R., Freitas,A.V.L., 2016. Fast census ofmoth diversity in the Neotropics: a comparisonof field-assignedmorphospeciesandDNAbarcodinginTigermoths.PLoSONE, http://dx.doi.org/10.1371/journal.pone.0148423.

Zhang,J.,Wang,S.,Li,H.,Hu,B.,Yang,X.,Wang,Z.,2012.Diffusecoevolutionbetween twoEpicephalaspecies(Gracillariidae)andtwoBreyniaspecies(Phyllanthaceae). PLoSONE7,e41657.

Zuloaga,F.O.,Belgrano,M.J.,2015.ThecatalogueofvascularplantsoftheSouther ConeandthefloraofArgentina:theircontributiontotheworldflora.Rodriguesia 66,989–1024.

Referências

Documentos relacionados

- Organismos realizam fotossíntese = processo pelo qual a energia luminosa é convertida em energia química tanto para síntese de ATP e redução de coenzimas.. - Apenas alguns tipos

subnitida did not adapt to greenhouse mini watermelon cultivation under the experimental conditions and should not to be used for pollination purposes in this environment;

Esta dissertação estimou os impactos ambientais gerados pelo descarte de sacolas plásticas nos resíduos sólidos urbanos, considerando a produção destes resíduos

Uma possível solução para este problema seria o conceito de comunicação entre o smarphone do professor e a TV Pen Drive de sala de aula, tornando assim a aula dinâmica e

Portanto, a proposta deste trabalho é voltada para a prevenção de acidentes de trabalho em obras da construção Civil que utilizam perfis metálicos, bem como a

A presente pesquisa pretende contribuir para o trabalho daqueles que gerem a Administração Pública, no sentido de destacar os objectivos da instituição e as

Assim sendo, as relações no contexto social de uma IESC envolvem diversos atores como: governos municipais, estadual e federal nas esferas do executivo,

(independentemente se o FIA é extra ou U.E.). Para efeito da aplicabilidade da Directiva é irrelevante se os FIAs são de tipo aberto ou fechado, a legislação sob o qual