• Nenhum resultado encontrado

A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour

N/A
N/A
Protected

Academic year: 2021

Share "A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour"

Copied!
9
0
0

Texto

(1)

h tt p:/ / w w w . b j m i c r o b i o l . c o m . b r /

Industrial

Microbiology

A

new

alkalophilic

isolate

of

Bacillus

as

a

producer

of

cyclodextrin

glycosyltransferase

using

cassava

flour

Sheila

Lorena

de

Araújo

Coelho,

Valter

Cruz

Magalhães,

Phellippe

Arthur

Santos

Marbach,

Marcia

Luciana

Cazetta

CentrodeCiênciasAgrárias,AmbientaiseBiológicas,UniversidadeFederaldoRecôncavodaBahia,CruzdasAlmas,Bahia,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24November2014

Accepted9September2015

AssociateEditor:JorgeGonzalo

FariasAvendano Keywords: Microbialenzyme Fermentation Agro-industrialsubstrates

a

b

s

t

r

a

c

t

Cyclodextringlycosyltransferase (CGTase)catalyzes the conversion ofstarch into

non-reducingcyclicsugars,cyclodextrins,whichhaveseveralindustrialapplications.Thisstudy

aimedtoestablishoptimalcultureconditionsfor␤-CGTaseproductionbyBacillussp.SM-02,

isolatedfromsoilofcassavaindustrieswastewaterlake.Theoptimizationwasperformed

byCentralCompositeDesign(CCD)2,usingcassavaflourandcornsteepliquorassubstrates.

Themaximumproductionof1087.9UmL−1wasobtainedwith25.0gL−1ofcassavaflourand

3.5gL−1ofcornsteepafter72hbysubmergedfermentation.Theenzymeshowedoptimum

activityatpH5.0andtemperature55◦C,andmaintainedthermalstabilityat55◦Cfor3h.

TheenzymaticactivitywasstimulatedinthepresenceofMg+2,Ca+2,EDTA,K+,Ba+2andNa+

andinhibitedinthepresenceofHg+2,Cu+2,Fe+2andZn+2.TheresultsshowedthatBacillus

sp.SM-02havegoodpotentialfor␤-CGTaseproduction.

©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Global market for the enzymes ofmicrobial origin having

environmentaland industrial applicationshas significantly

developedduring the last decades.Ithas elicited asearch

fornewmicroorganismswithbiotechnologicalpotentialfor

enzymatic production.Braziliantropicalsoilsare bestowed

with amicrobiota that exhibitsan exceptional capacity of

Correspondingauthor.

E-mail:malulz@yahoo.com.br(M.L.Cazetta).

enzyme productions; unfortunately, to a large extent the

majority of these microbial communities are unknown.1–3

Several strains ofbacteria producing cyclodextrin

glycosyl-transferase(CGTase;EC:2.4.1.19)havealreadybeenisolated

fromdifferentenvironmentsindifferentpartsoftheworld,

including Brazil.4–8 There are a few studies exploring the

soils from the State of Bahia, Brazil, for the isolation of

microorganismswithbiotechnologicalpotentialforthe

pro-duction ofthis enzyme.CGTaseisanextracellularenzyme

http://dx.doi.org/10.1016/j.bjm.2015.11.018

1517-8382/©2015SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

that catalyzes the hydrolysis of ␣-1,4-glycoside bonds and

subsequentintramolecular (cyclization) and intermolecular

transglycosylation(disproportionationandcoupling)reaction

of␣-1,4-glucane.9,10 Thisenzymebeingamylolyticinnature

istheonlyonecapableofconvertingstarchintoamixtureof

non-reducingsugarsdesignatedascyclodextrins,besides

lin-earsugarsanddextrins.11Cyclodextrins,themainproducts

oftheCGTasecatalysisreaction,are cyclicoligosaccharides

madeupbyd-(+)-glucopyranoseunitslinkedby␣-1,4linkages.

Thesecompoundshavewideindustrial applicationsdueto

their capability to form water-solubleinclusion complexes

with several substances; this property modifies

physico-chemical proprieties of encapsulated host-molecules.12,13

Theculturemediarequiredfortheproductionofthisenzyme

usually includes carbon and nitrogen sources obtained by

expensiveprocesses.Therefore,approachesinpursuitoflow

costsubstrates,especiallyfromagro-industrialorigins,have

beendevelopedwithanobjectivetodecreaseproductioncosts

ofCGTaseatcommercialscales.14–18Inthisscenario,theuse

ofcassavaflour(ManihotesculentaCrantz)asacarbonsource

infermentationprocessesforCGTaseproduction,hasgained

anintenseinterest.Cassavaflour,anagro-industrialproduct

containing60–80%starch,canbeobtainedbyasimplelow

costprocess.19InBrazil,itisawidespreadagronomicproduct

specificallyoftheNorthandNortheastregions.20,21Itsquality

isdirectlyrelatedtothephysicalandchemicalcharacteristics

ofthecassavaroots,plantgenotypeandage,favorable

envi-ronmental conditions, harvest period, soil characteristics,

geneticvariability,andtheprocessingmethod.22,23

Regardingthenitrogensource,corn steepliquoris

com-monly used in fermentation processes. It contains large

quantitiesofnitrogenalongwithproteins,amino-acidsand

vitamins.Itisalsoalowcostbyproductoriginatingfromcorn

processing.24Thisstudy aimedtoestablishidealconditions

forCGTaseproductionfromBacillus sp.SM-02bymeans of

experimentalmethodsbased onCentral CompositeDesign

(CCD),usingagro-industrialsubstrates,cassavaflourandcorn

steep liquorasalternative sourcesof carbonand nitrogen,

respectively.

Materials

and

methods

Bacterialstrain

Bacillussp.SM-02wasisolatedfromsoilsamplescontaining

cassavawastewaterfromacassavaflourfactoryinCruzdas

Almascounty,Bahia,Brazil.Thebacterialisolateswere

pre-servedincryotubescontaining2mLof20%glycerolandstored

at−80◦C.

Molecularidentification

Apairofuniversalprimers,8F(5AGAGTTTGATCCTGGCTCAG

3)and1492R(5ACGGCTACCTTGTTACGACTT3)wasusedto

amplifythe16SrRNA.Thesequencingwascarriedout

com-merciallybyMacrogenCo.(Korea). The16S rRNAsequence

wasusedasqueryinBLASTN25searchagainstNational

Cen-terforBiotechnologyInformation(NCBI)database.MEGA5.05

software26wasusedtoconstructanevolutionarymodeland

to generate the maximum likelihood tree. The 16S rRNA

sequences usedinthephylogenetic analysiswere retrieved

from the siteofList ofProkaryotic Standing Names(LPSN)

duringAugust,2014.27

PreliminarytestsforCGTaseproduction

Theabilityfor␤-CGTaseproductionbyBacillussp.SM-02was

evaluatedbythe degradationofstarchformingahalozone

insolidmediacontainingphenolphthalein.28Inthecenterof

Petridishescontainingsolidmedia,holesof0.5cmdiameter

wereprepared.Theseholeswerefilledwith50␮Lofculture

containing3×108cells.Petridisheswereincubatedat37C

for72hbeforemeasuringthehalozone.

Fermentationassay

Inordertore-activatethemicroorganism,sub-cultureswere

preparedfromthestockcultureinsolidmediadevelopedby

NakamuraandHorikoshi,29containing(gL−1):solublestarch,

10; peptone, 5; yeast extract, 5; MgSO4·7H2O, 0.2; K2HPO4,

1;bacteriologicalagar,1.5;Na2CO3,10 (separatelysterilized

andaddedtotheculturemediaat60◦Ctemperature)atpH

9.8.Theinoculumwaspreparedafter72hofculturegrowth

bytransferring,withthe helpofaloop,oftheculturetoa

125-mL Erlenmeyerflask containing 50mL ofliquid media

supplementedwithcassavaflourandcornsteepliquorforcell

adaptationtothefermentationmediaatpH9.8.Afterthe

incu-bationperiodof24h,analiquotof1mLoftheinoculumwas

standardized(OD600=0.1)andthefinalvolumeforeachassay

wasmadeto30mLbyusingoftheculturemedium,replacing

solublestarchofthebasalmediabycassavaflourandpeptone

andyeastextractbycornsteepliquor(Sigma®).Thecultures

wereincubatedinshakerat150rpmand35◦C.After72hof

fermentation,thesampleswerecentrifugedat5000rpmand

4◦Cfor30min.Thecell-freesupernatantwasusedto

deter-minetheenzymaticactivity;andtheprecipitatedcellmass

wasusedforbiomassdetermination.

CGTaseproductionusingtheexperimentaldesign

Concentrationoptimizationofcassavaflourasacarbonsource

and cornsteep liquorasanitrogensourcewascarriedout

using the response surface methodology (RSM). ␤-CGTase

activity(UmL−1)wasconsideredasdependentvariable and

substrate concentrationsasindependentvariables.A

facto-rialplanningmatrix22wasperformedbyemployingCentral

CompositeDesign(CCD)resultingin11runs.30Twolevelswere

selected,asuperior(+1)andaninferior(−1),besidesa

cen-tral point(0)(theonlyoneperformedwiththreereplicates

todeterminemethodologicalstrength)andtwoaxialpoints

(+1.41and−1.41).Thismodelisrepresentedbyasecondorder

polynomialregressiontogenerateresponsesurface,Eq.(1):

y=b0+b1X1+b2X2+b12X1X2+b11X21+b22X22 (1)

whereyisthepredictedresponseofCGTaseactivity;X1and

X2arethecodifiedforms(cassavaflourandcornsteepliquor,

respectively);b0referstotheinsertionpoint;b1andb2are

(3)

b11andb22arequadraticcoefficients.Theresultsobtainedby

thisexperimentalmethodwereevaluatedusingtheSoftware

Release7.1,Stat.Soft.Inc.,USA.

Enzymaticassay

Enzymaticactivitywas determinedbycolorimetric method

ofthecyclodextrin-phenolphthaleincomplex(CD-PHE).31The

mixturecontaining5mLofthecrudeenzymaticsolutionand

5mLofthesolublestarchsolutionat1%wasincubatedina

thermostatedreactorat55◦C.Aliquotsof0.5mLfromthe

reac-tionmixtureweretakenat0,3,6,9and12minandinactivated

inaboilingwaterbathfor5min.Toeachinactivatedaliquot,

2.5mLofaphenolphthaleinalcoholicsolution(3mM),diluted

in600mMNa2CO3bufferatpH10.5,wasadded.Absorbance

ofthesampleswasrecordedat=550nm.

Cellgrowth

After fermentation, the biomass was separated from the

supernatantbycentrifugationat5000rpmfor30minat4◦C.

Thebiomasswasre-suspendedin5mLdistilledwaterand

centrifugedagainforcellwashing.Afterremovingthe

super-natant,30mLofdistilledwaterwasaddedandtheprecipitate

was re-suspended. Then, optical density was measured at

600nmandbiomasswasquantifiedbycomparingwiththe

standardizedcurvebasedindrymass×opticaldensity.

Totalreducingsugarsdetermination

Determinationofreducingsugarswasperformedtrough

3,5-dinitrosalicylicacid (DNS)method ofMiller.32 Thesamples

weresubjectedtoanacidhydrolysisin2MHCl.Afterboiling

for20min,sampleswereneutralizedwith2MNaOH.

Totalproteindetermination

TotalproteinconcentrationwasdeterminedbytheBradford

method,33 byadding0.2mLtothecrudeenzymeextractto

2mL ofthe Bradfordreagent. Absorbance was recorded at

=595nm.

Crudeenzymepartialcharacterization

To evaluatethe effect of pH on ␤-CGTase activity the

fol-lowing buffers (50mM) were used: glycine–HCl, pH 2.0–3.0;

sodiumcitrate,pH 3.0–6.0;phosphate, pH6.0–8.0;Tris–HCl,

pH8.0–9.0;andglycine–NaOH,pH9.0–10.0.Theinfluenceof

metallicionsonCGTaseactivitywasdeterminedbyusing

fol-lowing solutions(50mM): CaCl2,FeCl3, NaCl,ZnSO4,EDTA,

KCl,MnCl2,CuSO4,BaCl2,HgCl2,andMgCl2.Optimal

tempera-tureofthereactionwasdeterminedbyincubatingtheenzyme

at50–70◦C.Thermalstabilitywasaccessedbyincubatingthe

enzymeat50–65◦C,for5hatpH5.0.Theexperimentswere

performed according to the standardizationsof enzymatic

activityaccordingtotheCD-PHEcomplexationmethod.31

Results

MolecularidentificationofstrainSM-02

TheBLASTNsearchattheNCBIdatabaseindicatedthatthe

16SrRNAsequenceofbacterialstrainSM-02is98–99%

iden-ticalto16SrRNAsequencesofBacillusspeciesindicatingthat

the strainSM-02belongstothisbacterialgenus. Therefore,

weperformedaphylogeneticanalysistounderstandthe

evo-lutionaryrelationship ofBacillus sp.SM-02to other Bacillus

speciesusing16SrRNAsequencesofallBacillusspecies

avail-ableattheLPSNsite.Theanalysisshowedthatthe Bacillus

sp.SM-02 isphylogeneticallyrelatedtoBacillus trypoxylicola

(Fig.1),axylanase-producingbacteriumfirstisolatedfromthe

gutofJapanesehornedbeetlelarva.34

CGTaseproductionusingCentralCompositeDesign(CCD)

Through the obtainedresults of CCD 2,2 influencesof the

studiedvariables(X1:carbonsourceandX2:nitrogensource)

over CGTaseproductionbyBacillus sp.SM-02 were verified.

Observedandpredictedvaluesbytheexperimentalmodelare

showninTable1.

Agradual increasewasobservedfrom648.5UmL−1(run

8)upto1087.9UmL−1(meanofthecentralpoints),achieving

themaximumproductionofCGTaseat25.0gL−1 ofcassava

flourand3.5gL−1ofcornsteepliquor.Underthesamecarbon

sourceconcentrations,therewasanexpressivenegative

influ-enceofcornsteepliquorovertheenzymeproduction,witha

decreaseofalmost60%,whencomparingvaluesofthehigher

axiallevel(run8)withthevaluesofthecentralpointruns(run

9,10and11).Thiscanbeconfirmedbytheestimatedeffects

(Table2),wherethequadratictermsoftheconcentrationof

cassavaflourandcornsteepliquorwerestatistically

signif-icant at95% significance(p<0.05),showingnegativeeffects

overCGTaseproduction.Itmeanstheincreasein

concentra-tion ofthesevariables causedareductionintheenzymatic

production.Theadjustedmathematicalmodelthatdescribes

CGTaseproductionwithinthestudiedrangecanbeexpressed

byequationEq.(2):

y=1087.9+77.9X1−13.4X2+17.4X1X2−124.9X21−174.3X22

(2)

Table 3 shows the results evaluated by the analysis of

variance.TheF-valueof14.9indicatesthatthemodelwas

sig-nificantattheconfidencelevelapplied(5%probability)witha

goodcorrelationbetweentheexperimentalandpredicted

val-ues(Table1).Therefore,consideringthep-valuescalculated

bytheanalysisofvariance,themostsignificantvariablewas

cornsteepliquorinlinearterms,followedbycassavaflourin

quadraticandlinearterms,respectively.

AccordingtoANOVAavariationcoefficient(R2)of0.8646

showsthat86.46%oftheresponsevariabilitycanbeexplained

bythe model. Consideringthe resultsshown, the effectof

the independent variables over the enzymatic production

responsewasevaluatedfromaresponsesurface(Fig.2).The

optimizationarearepresentsthebestresponseforthe

(4)

Bacillus okhensis - DQ026060 Bacillus wakoensis - AB043851.1

Bacillus akibal - 302486182 Bacillus alkalisediminis NR_114912.1 Bacillus hemicellulosilyticus AB043846.1 Bacillus bogoriensis - AY376312.1

Bacillus alcalophilus - 631251525 Bacillus pseudalcalophilus - X76449.1

Bacillus trypoxylicola - AB434284

Bacillus sp. SM - 02

Bacillus nanhaiisediminis - GQ292773.1 Bacillus ligniniphilus - JQ044788.1 Bacillus macyae - AY032601.1 Bacillus halodurans - AJ302709.1 Bacillus okuhidensis - AB047684.1

Clostridium perfrindens - 659364527 Sarcina ventricull - 5852402 100 100 58 70 62 100 100 73 52 57 100 0.1

Fig.1–Thesubcladeofamaximumlikelihoodtreebasedon16SrRNAsequencesshowingthephylogeneticrelationshipof

strainSM-02withthespeciesofBacillusgenus.Thetreewasgeneratedwith16SrRNAsequencesfromspeciesofthegenus

availableattheLPSNsite(ListofProkaryoticNameswithStandinginNomenclature–www.bacterio.net/index.html)ason

August,2014.ThephylogeneticanalysiswasperformedusingMEGA5.1softwareandemployingtheK2+G+Imodel.

Numbersabovethebranchesindicatebootstrapsupport;andthetreewasrootedwith16SrRNAsequencesofClostridium

perfringensATCC13124andSarcinaventriculi.Thebarrepresentsthenumberofexpectedsubstitutionpersitesunder

K2+G+Imodel.

lowestCGTaseproductionwasobservedattheinferior(−1.41

and−1)andsuperior(+1and+1.41)levels,wherethelowest

andhighestconcentrationsofcarbonandcornsteepliquor

arefound,respectively.

Besides, Fig. 2shows that near the optimization point,

there is a range of concentrations of the carbon and

nitrogen sources that showed optimal production of the

enzyme,between 22.5gL−1 and 27.5gL−1 and 3.0gL−1 and

4.0gL−1,respectively.Thus,any concentrationfoundinside

this optimalrange may beused forenzymatic production,

withoutinfluencingtheprocesswithintheoptimized

condi-tion.

Table1–CentralCompositeDesignmatrixforenzymeandbiomassproduction.

Runs Codedlevels Reallevels(gL−1) Enzymaticactivity(UmL−1) Biomass(gL−1)

X1 X2 Cassavaflour CSL Observedvalues Predictedvalues Observedvalues Predictedvalues

1 −1 −1 20.0 2.5 797.3 741.7 1.6 1.6 2 +1 −1 30.0 2.5 930.8 862.6 2.0 1.9 3 −1 +1 20.0 4.5 743.9 680.0 2.2 2.1 4 +1 +1 30.0 4.5 947.1 870.6 2.6 2.4 5 −1.41 0 17.9 3.5 670.9 728.0 1.6 1.6 6 +1.41 0 32.0 3.5 873.3 948.3 1.9 2.1 7 0 −1.41 25.0 2.1 698.1 758.2 1.8 1.8 8 0 +1.41 25.0 4.9 648.5 720.4 2.0 2.0 9 0 0 25.0 3.5 1045.2 1087.9 2.0 2.0 10 0 0 25.0 3.5 1141.2 1087.9 2.0 2.0 11 0 0 25.0 3.5 1077.2 1087.9 2.0 2.0

(5)

Table2–Estimatedeffectsforthecyclodextringlycosyltransferaseproduction.

Factors Effects Standarderror t(5) p-Value

Mean 1087.9a 51.7 21.0 0.000004 Cassavaflour(gL−1)L 155.6 63.3 2.5 0.057300 Cassavaflour(gL−1)Q −249.6a 75.4 −3.3 0.021175 CSL(gL−1)L −26.8 63.3 −0.4 0.690033 CSL(gL−1)Q −348.6a 75.4 −4.6 0.005716 Cassavaflour×CSL×2L 34.8 89.6 0.4 0.713325 a significantat5%probability.

Table3–Analysisofvariancefortheregressionmodelobtainedfromresponsesurfaceexperiment.

Factors df Someofsquares(SS) Meansquares(MS) F-value

Regression 3 256,212.8 85,404.3 14.9* Residual 7 40,120.0 5731.4 Total 10 296,332.8 ∗ significantat5%probability. 17.9 2.1 2.5 3.5 4.5 4.9 20.0 1000 800 600 400 200 0 –200 25.0 Cassava flour (g.L–1) Cor n steep liquor (g.L –1 ) 30.0 32.0

Fig.2–ContourplotfromthemodelequationforCGTase

productionofBacillussp.SM-02whileusingcassavaflour

andcornsteepliquor.

Partialcharacterizationofthecrudeenzyme

Thecrudeenzymaticextractshowedoptimaltemperatureof

55◦C,butretainedupto70%activityintemperaturesbetween

50and60◦C.Relativeactivitiesat50◦Cand70◦Cwere72%and

40%,respectively(Fig.3).

TheeffectofpHonCGTaseactivitywasevaluatedwithin

therangeofpH2.0–10.0(Fig.3).Theenzymeshowedabove

70%activitywithintherangeofpH3.0–9.0,with100%activity

atpH5.0.

EnzymaticactivitywasenhancedinthepresenceofMg+2,

Ca+2,EDTA,K+,Ba+2andNa+,withamaximumobservedfor

Mg+2. Theenzymatic activity was slightly inhibited in the

presenceofHg+2, Fe+2,Cu+2 andZn+2, withretention ofat

least83%activity.Theenzymaticactivity ofcyclizationhad

noinhibitorysignificanceinthepresenceofMn+2(Table4).

Thethermalstability oftheenzymewas evaluatedina

temperaturerangeof45–60◦C,pH5.0,inthepresenceofMg+2.

Theenzymepreserveditscyclizationactivityabove50%for

3hat45,50,and55◦C(Fig.4),andtheactivitywassteeplylost

uponincubationat60◦C. 2 0 20 40 60 80 100 120 Glycine-HClCitrate Phosphate Tris-HCl Glycine-NaOH 40 50 60 80 70 90 100 3 4 5 6 7 pH 50 55 60 65 70 Temperature (ºC) Relativ e activity (%) Relativ e activity (%) 8 9 10 11

Fig.3–EffectoftemperatureandpHonCGTaseactivityofBacillussp.SM-02grownoncassavaflour25.0gL−1andCSL

(6)

Table4–EffectsofmetalliciononCGTaseactivityof Bacillussp.SM-02.

Ion Relativeactivity(%)

Control 100.0 CaCl2 114.9 BaCl2 112.8 CuSO4 94.3 FeCl3 90.9 ZnSO4 88.9 HgCl2 83.2 NaCl 113.0 EDTA 107.7 KCl 114.1 MgCl2 130.4 MnCl2 99.0 Minutes Enzymatic activity (U .mL –1 ) 0 0 15 30 45 60 75 90 105 60 120 180 240 300 45ºC 50ºC 55ºC 60ºC 360

Fig.4–EffectoftemperatureonthermalstabilityofCGTase producedbyBacillussp.SM-02grownoncassavaflour 25.0gL−1andCSL3.5gL−1.

Table5–Production,yieldandproductivityofCGTaseby Bacillussp.SM-02incassavaflourandcornstepliquor.

Parameters Results

Specificgrowthrate(h−1) 0.03

Yx/s(gg−1) 0.14

Yp/s(UmL−1g−1) 67.07

Yp/x(UmL−1h−1) 474.67

Qp(UmL−1h−1) 8.56

Specificactivity(Umg−1) 21.37

In ordertovalidatethe responsesobtainedthrough the DCCR,thebehaviorofthestrainwasevaluatedbysubmerged fermentationusing25.0gL−1ofcassavaflourand3.5gL−1of cornsteepliquorat35◦C,150rpm,for120h.Theenzymatic activity profilecoincided with the cellular growth and the enzymaticsynthesiswashigherduringtheexponentialstage ofthegrowth,attainingthemaximumactivity after72hof thebeginningoffermentation(Fig.5).Then,anabrupt

reduc-tion inthe enzymatic productionwasobserved, coinciding

withtheonsetofthedeclinephase.Thesubstratewasalmost

completelyconsumedafter120hoffermentation.Thespecific

growthrate(u)was0.03h−1andthebiomassyieldasa

func-tion ofthesubstrate wasof0.14gg−1.Theenzymaticyield

asafunctionofthesubstrate(Yp/s)was67.07UmL−1g−1and

theproductivitywas8.56UmL−1h−1,withaspecificactivity

of21.37Umg−1(Table5).

Discussion

Based on statistical fundamentals,the method offactorial

planning allied to the surface response analysis has been

designatedtostudytheoptimizationofparametersinvolved

in industrial processes with the aim of minimizing costs

and time, maximizing yield, productivity, and quality of

production.30,35Inthepresentstudy,theuseoffactorial

plan-ningshowedthatBacillussp.SM-02hasapotentialasCGTase

Time (hours) Enzymatic activity (U .mL –1 ) Biomass (g.L –1 ) T otal protein (g.L –1 ) T

otal reducing sugars (g.L

–1 ) 0 0 200 400 600 800 1000 1200 5 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 4 8 16 12 20 24 4 3 2 1 0 20 40 60 80 100 120

Fig.5–Fermentationtime-courseforBacillussp.SM-02incassavaflour25.0gL−1andCSL3.5gL−1,for120h,35◦Cand

(7)

producer,exhibitingtopcyclizationactivitycorrespondingto

1087.9UmL−1,rarelyfoundinotherreportedbacterialstrains.

Pintoetal.36reportedhighenzymaticactivityfromthecrude

extractproducedbyBacilluscirculansATCC21783insubmerged

culturessupplementedwithfibrousindustrialresidueofsoy.

UsingoptimizedconditionsofpH,temperature,andaeration,

the authors achieved 1155UmL−1 activity, with maximum

yieldof 32.8UmL−1g−1. Inthe present study,the variance

analysis(ANOVA)indicatedinfluenceofcassavaflouralong

withcornsteepliquoroverCGTaseproductioninBacillussp.

SM-02,showingthathighconcentrationsofthecarbonand

nitrogensourcesnegatively influenced enzymeproduction.

Similarresultshavebeenreportedindifferencestudies,where

maximumproductionofCGTasewasobtainedatlowsubstrate

concentrations. Rosso et al.37 optimized production media

forCGTase from B. circulansDF 9R,by employingdifferent

sourcesandconfirmedthat1.5%ofcassavastarchincreased

theenzymaticactivity.Zainetal.17performedoptimization

studies of the production media of CGTase by Bacillus sp.

TS1−1with3.3%oftapiocastarchand0.13%ofyeastextract

achievingmaximumproductionof78.1UmL−1.Pintoetal.36

studiedenzyme productionfrom B. circulans ATCC using a

solublestarchconcentrationfive-timeslower thanthe

con-centrationusedbyMakelaetal.,38andobtained21-timeshigh

enzymeproduction.Parketal.39explainedthattheexcessof

substrateincreasesviscosityoftheculturemedia,which

inter-fereswithoxygenabsorptionbythemicroorganism.Glucose

andmaltosemayaccumulateintheculturemediaduetohigh

concentrationsofstarchandexertacatabolicrepressoreffect,

influencingCGTasesynthesis,asobservedbyGawandeand

Patkar.40

Alreadypublishedresultssuggestthatthenatureand

con-centrationofthecarbonandnitrogensourcesused,andthe

microorganismstrains,directlyinterfereCGTaseproduction.

Gawande et al.41 affirmed that concentration of the

car-bonsourceisimportantduringenzymeproductionbymany

organisms,especiallywhenthissourceisessentialforenzyme

induction.Onthebasisoftheseobservations,theDCCR

sta-tisticalmethodologyappliedinthecurrentstudytargeteda

maximumenzymeactivity,andconsequentlyleadingtoan

experimentalsetuptooptimizethe associatedparameters.

DifferentpropertieshavebeenobservedforCGTaseobtained

fromdifferentbacterialstrains.Thestudiesestablishingthe

enzymeprofiling ofthe CGTase producing microorganisms

revealedthatdifferentbiochemicalcharacteristics,regarding

the optimal temperature and pH, thermal stability, molar

massandcapacityofcyclodextrinformation,vary

depend-ingonthemicroorganism.Thestabilityofbiologicalcatalysts

isalimitingfactor whileselectingthem forindustrial

pur-poses dueto high temperaturesand extremevariations in

pHused inthe industrial processes.42 Theenzymes might

rapidly get inactivated. Therefore, in biotechnology,

ther-mostability of microbial enzymes has major importance

in bio-processes,43 especially, when considering storage of

enzymesandenzyme-formulatedproductsthatrequire

ade-quatetemperatureconditions.Bacillussp.SM-02showedhigh

stabilityat55◦Cduringa3-hour incubationperiod,a

tem-peraturepreviouslyreportedforvariousspeciesofBacillus,44

Bacillusstearothermophilus,45Bacilluslentus,46Bacillusfirmus,47

besidesthe species Paenibacillus campinasensis H69-3.48 The

vast majority ofCGtaseproducing microorganisms

investi-gated so far showed stability at temperatures between 40

and 60◦C.48–53 However, fewbacterial strains possess

ther-mostableenzymeswithoptimalperformancebetween75◦C

and85◦C.54,55 Tachibanaetal.56reportedCGTaseproducing

species ofThermococcus showingfunctionality at90–100◦C.

OptimalcyclizationtemperatureofCGTasefromBacillussp.

SM-02was55◦C.Thesametemperaturewasalreadyreported

forBacillussp.G1,50BacillusagaradhaerensLS-3C,51Bacillussp.

G-825-653 and P. campinasensis H69-3.48 In general,optimal

reactiontemperatureofCGTasefromalkalophilic

microorgan-ismshasbeenreportedamong45–60◦C.18Somerarestrains

asThermoanaerobacterkivui.57haveconsiderableactivityunder

extremetemperaturesstartingat80◦C.

CGTasefromBacillussp.SM-02showedanoptimalrange

ofpHvaryingbetween3.0and9.0forthecyclizationreaction.

TheseresultsaresimilartothosereportedforBacillus

ohben-sisC-1400,50B.firmusNCIM5119,50Bacillussp.7–12,58Bacillus

sp.G-825-6,53andT.kivui.57Moreover,theenzymeexhibited

activity above70% inapHrange of3.0–4.0,rarelyreported

exceptthatbyMoraetal.,59 whoobservedenzymeactivity

above70%withinthesamepHrangeforBacillussp.CGTase

fromBacillussp.SM-02wasstimulatedbyavarietyof

metal-lic ions,specially Mg+2, whichshowed anenhancementof

about30%comparedtountreatedcontrols.Atanasovaetal.42

observedthatactivityofBacilluspseudalcaliphilus20Renzyme

wasstronglyinfluencedbyMg+2 at15mM.Theimplication

ofstudyingtheinfluenceofmetallicionsoverabiocatalyst’s

performanceisrelatedtothefactthatthesesubstancesare

abletomodifyenzymereactionratesbyinhibitingor

activat-ingenzymes;therefore,thisinformationisimportantwhile

choosingsubstratesthatwillbeusedinthefermentation

pro-cess.

Conclusion

In the present study, we were able to establish optimized

conditions, i.e.,thebest concentrationofcassavaflourand

corn steep liquor that resulted in high CGTase production

rates, whileusingthe factorialplanning and response

sur-facemethodology.Thereportedproductivity,alliedtothefact

thataneasyavailableandlowcostagro-industrialsubstrate

wastested,supportsuseofcassavaflourandcornsteepliquor

inbioprocessesrelatedtothecyclodextrinproduction.

Bacil-lussp.SM-02appearstohaveanexcellent biotechnological

potentialforCGTaseproduction,underoptimizedconditions.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorsaregratefultoCoordenac¸ãodeAperfeic¸oamento

PessoaldeNívelSuperior(CAPES)andFundac¸ãodeAmparoà

(8)

r

e

f

e

r

e

n

c

e

s

1.DeAzeredoLAI,DeLimaMB,CoelhoRRR,FreireDMG.A

low-costfermentationmediumforthermophilicprotease

productionbyStreptomycessp.594usingfeathermealand

cornsteepliquor.CurrMicrobiol.2006;53:335–339.

2.deSouzaRF,CoelhoRRR,MacraeA,etal.Streptomyces

lunalinharesiisp.nov.,achitinolyticstreptomyceteisolated

fromcerradosoilinBrazil.IntJSystEvolMicrobiol.2008;58(Pt

12):2774–2778.

3.NascimentoRP,JuniorNA,PereiraNJr,BonEP,CoelhoRRR.

Brewer’sspentgrainandcornsteepliquorassubstratesfor

cellulolyticenzymesproductionbyStreptomycesmalaysiensis.

LettApplMicrobiol.2009;48:529–535.

4.FerrarottiSA,RossoAM,MaréchalMA,KrymkiewiczN,

MaréchalLR.Isolationoftwostrains(S-Rtype)ofBacillus

circulansandpurificationofa

cyclomaltodextrin-glucanotransferase.CellMolBiol

(Noisy-le-grand).1996;42:653–657.

5.KhairizalM(Masterthesis)CyclodextrinGlucanotransferase

fromAlkalophilicBacillussp.TS1bacterium.Universiti

TeknologiMalaysia;2002.

6.Alves-PradoHF,GomesE,DaSilvaR.Evaluationofsolidand

submergedfermentationsfortheproductionofcyclodextrin

glycosyltransferasebyPaenibacilluscampinasensisH69-3and

characterizationofcrudeenzyme.ApplBiochemBiotechnol.

2006;129–132:234–246.

7.MoriwakiC,CostaGL,PazzettoR,etal.Productionand

characterizationofanewcyclodextringlycosyltransferase

fromBacillusfirmusisolatedfromBraziliansoil.Process Biochem.2007;42:1384–1390.

8.MenocciV,GoulartAJ,AdalbertoPR,etal.Cyclodextrin

glycosyltransferaseproductionbynewBacillussp.strains

isolatedfromBraziliansoil.BrazJMicrobiol.2008;39:682–688.

9.TeradaY,YanaseM,TakataH,TakahaT,OkadaS.

Cyclodextrinsarenotthemajorcyclicalpha-1,4-glucans

producedbytheinitialactionofcyclodextrin

glucanotransferaseonamylose.JBiolChem.

1997;272:15729–15733.

10.TonkovaA.Bacterialcyclodextringlucanotransferase.

EnzymeMicrobTechnol.1998;22:678–686.

11.GastónJAR,CostaH,RossiAL,KrymkiewiczN,FerrarottiAS.

Maltooligosaccharidesproductioncatalysedbycyclodextrin

glycosyltransferasefromBacilluscirculansDF9Rinbatchand

continuousoperation.ProcessBiochem.2012;47:2562–2565.

12.DenterU,BuschmannHJ,KnittelD,SchollmeyerE.

Modifizierungvonfaseroberflächendurchdiepermanente

fixierungsupramolekularerkomponenten,Teil2:

cyclodextrin.AngewMakromolChem.1997;248:165.

13.AstrayG,Gonzalez-BarreiroC,MejutoJC,Rial-OteroR,

Simal-GándaraJ.Areviewontheuseofcyclodextrinsin

foods.FoodHydrocoll.2009;23:1631–1640.

14.KimTJ,KimBC,LeeHS.Productionofcyclodextrinusingraw

cornstarchwithoutapretreatment.EnzymeMicrobTechnol.

1997;20:506–509.

15.MahatMK,IlliasRM,RahmanRA,etal.Productionof

cyclodextringlucanotransferase(CGTase)fromalkalophilic

Bacillussp.TS1-1:mediaoptimizationusingexperimental

design.EnzymeMicrobTechnol.2004;35:467–473.

16.IbrahimHM,YusoffWMW,HamidAA,IlliasRM,HassanO,

OmarO.Optimizationofmediumfortheproductionof

␤-cyclodextringlucanotransferaseusingCentralComposite

Design(CCD).ProcessBiochem.2005;40:753–758.

17.ZainWSWM,IlliasRM,SallehMM,HassanO,RahmanRA,

HamidAA.Productionofcyclodextringlucanotransferase

fromalkalophilicBacillussp.TS1-1:optimizationofcarbon

andnitrogenconcentrationinthefeedmediumusing

centralcompositedesign.BiochemEngJ.2007;33:26–33.

18.Ai-NoiS,Abd-AzizS,AlitheenN,HassanO,KarimMIA.

Optimizationofcyclodextringlycosyltranferaseproduction

byresponsesurfacemethodologyapproach.Biotechnology.

2008;7:10–18.

19.BobbioPA,BobbioFO.Químicadoprocessamentodealimentos.

SãoPaulo,SP:Varela;2001.

20.DiasLT,LeonelM.Caracterizac¸ãofísico-químicadefarinha

demandiocadediferenteslocalidadesdoBrasil.Cienc

Agrotec.2006;30:692–700.

21.ChistéRC,CohenKO.Influênciadafermentac¸ãona

qualidadedafarinhademandiocadogrupod’água.Acta

Amaz.2011;41:279–284.

22.LorenziJOM.BoletimTécnico.Campinas,SP:CATI;2003:45.

23.SouzaJML,NegreirosJRS,ÁlvaresVS,etal.Variabilidade

físico-químicadafarinhademandioca.CiencTecnolAliment.

2008;28:907–912.

24.AmarteyA,LeungJ.Cornsteepliquorasasourceof

nutrientsforethanologicfermentationbyBacillus

stearothermophilusT-13.BullChemTechnol.2000;19:65–71.

25.AltschulSF,GishW,MillerW,MyersEW,LipmanDJ.Basic

localalignmentsearchtool.JMolBiol.1990;215:403–410.

26.TamuraK,PetersonD,PetersonN,StecherG,NeiM,Kumar

S.MEGA5:molecularevolutionarygeneticsanalysisusing

maximumlikelihood,evolutionarydistance,andmaximum

parsimonymethods.MolBiolEvol.2011;28:2731–2739.

27.EuzébyJP.Listofbacterialnameswithstandingin

nomenclature:afolderavailableontheInternet.IntJSyst

Bacteriol.1997;47:590–592.

28.ParkCS,ParkKH,KimSH.Arapidscreeningmethodfor

alkaline␤-cyclodextringlycosyltransferaseusing

phenolphthalein-methylorange-containing-solidmedium.

AgricBiolChem.1989;53:1167–1169.

29.NakamuraN,HorikoshiK.Purificationandpropertiesof

neutral-cyclodextringlycosyltransferaseofanalkalophilic

Bacillussp.AgricBiolChem.1976;40:1785–1791.

30.RodriguesMI,IemmaAF.Planejamentodeexperimentose

otimizac¸ãodeprocessos.Campinas,SP:EditoraCasadoPão; 2009.

31.HamonV,MoraesFF.Etudepreliminareal’immobilisationde

l’enzimeCGTaseWACKER.In:Researchreport,Laboratoirede

TecnologieEnzymatique.Compiègne,France:Universtéde

TechnologiedeCompiègne;1990.

32.MillerGL.Useofdinitrosalicylicacidreagentfor

determinationofreducingsugars.AnalChem.

1959;31:426–428.

33.BradfordMM.Arapidandsensitivemethodforthe

quantitationofmicrogramquantitiesofproteinutilizingthe

principleofprotein-dyebinding.AnalBiochem.

1976;72:248–254.

34.AizawaT,UraiM,IwabuchiN,NakajimaM,SunairiM.

Bacillustrypoxylicolasp.nov.,xylanase-producingalkaliphilic

bacteriaisolatedfromthegutsofJapanesehornedbeetle

larvae(Trypoxylusdichotomusseptentrionalis).IntJSystEvol

Microbiol.2010;60(Pt1):61–66.

35.BoxGEP,HunterWG,HunterJS.StatisticsforExperimenters:An

IntroductiontoDesigns,DataAnalysisandModelBuilding.New

York:Wiley;1978.

36.PintoFST,FlôresSH,AyubMA,HertzPF.Productionof

cyclodextringlycosyltransferasebyalkaliphilicBacillus

circulansinsubmergedandsolid-statecultivation.Bioprocess BiosystEng.2007;30:377–382.

37.RossoAM,FerrarottiSA,KrymkiewiczN,NudelBC.

Optimizationofbatchcultureconditionsforcyclodextrin

glucanotransferaseproductionformBacilluscirculansDF9R.

(9)

38.MäkeläMJ,PaavilainenSK,KorpelaTK.Growthdynamicsof

cyclomaltodextringlucanotransferaseproducingB.circulans

var.alkalophilus.CanJMicrobiol.1990;36:176–182.

39.ParkYS,DohjimaT,OkabeM.Enhanced␣-amylase

productioninrecombinantBacillusbrevisbyfed-batch

culturewithaminoacidcontrol.BiotechnolBioeng.

1996;49:36–44.

40.GawabdeB,PatkarA.Alpha-cyclodextrinproductionusing

cyclodextringlycosyltransferasefromKlebsiella

pneumoniaeAS-22.Starch.2001;53:75–83.

41.GawandeBN,SonawaneAM,JogdandVV,PatkarAY.

Optimizationofcyclodextringlycosyltransferaseproduction

fromKlebsiellapneumoniaeAS-22inbatch,fed-batch,and

continuouscultures.BiotechnolProg.2003;19:

1697–1702.

42.AtanasovaN,KitayskaT,BojadjievaI,YankovD,TonkovaA.

Anovelcyclodextringlucanotransferasefromalkaliphilic

Bacilluspseudalcaliphilus20RF:purificationandproperties.

ProcessBiochem.2011;46:116–122.

43.GomesE,GuezMAU,MartinN,SilvaR.Enzimas

termoestáveis:fonte,produc¸ãoeaplicac¸ãoindustrial.Quim

Nova.2007;30:136–145.

44.KanekoT,YoshidaM,YamamotoM,NakamuraN,Horikoshi

K.Productionofcyclodextrinsbysimultaneousactionsof

twoCGTasesfromthreestrainsofBacillus.Starch.

1990;42:277–281.

45.FujiwaraS,KakiharaH,SakaguchiK,ImanakaT.Analysisof

mutationsincyclodextringlucanotransferasefromBacillus

stearothermophiluswhichaffectcyclizationcharacteristics

andthermostability.JBacteriol.1992;174:

7478–7481.

46.SabioniJG,ParkYK.Cyclodextringlycosyltransferase

productionbyalkalophilicBacilluslentus.RevMicrobiol.

1992;23:128–132.

47.YimDG,SatoYH,ParkYK.Productionofcyclodextrinfrom

starchbycyclodexringlycosyltransferasefromBacillusfirmus

andcharacterizationofpurifiedenzyme.JIndMicrobiol

Biotechnol.1997;18:402–405.

48.Alves-PradoHF,GomesE,DaSilvaR.Purificationand

characterizationofacyclomaltodextringlucanotransferase

fromPaenibacilluscampinasensisH69-3.AppBiochemBiotechnol.

2007;136–140:41–55.

49.FujitaY,TsubouchiH,InagiY,TomitaK,OzakiA,Nakanishi

K.Purificationandpropertiesofcyclodextrin

glycosyltransferasefromBacillussp.AL-6.JFermentBioeng.

1990;70:150–154.

50.SinK,NakamuraA,KobayashiK,MasakiH,UozumiT.

Cloningandsequencingofacyclodextringlucanotransferase

genefromBacillusohbensisanditsexpressioninEscherichia coli.ApplMicrobiolBiotechnol.1991;35:600–605.

51.MartinsRF,Hatti-KaulR.Anewcyclodextrin

glycosyltransferasefromanalkalophilicBacillus

agaradhaerensisolate:purificationandcharacterization.

EnzymeMicrobTechnol.2002;30:116–124.

52.SianHK,SaidM,HassanO,etal.Purificationand

characterizationofcyclodextringlucanotransferasefrom

alkalophilicBacillussp.G1.ProcessBiochem.

2005;40:1101–1111.

53.HiranoK,IshiharaT,OgasawaraS,etal.Molecularcloning

andcharacterizationofanovel␥-CGTasefromalkalophilic

Bacillussp.ApplMicrobiolBiotechnol.2006;70:193–201.

54.LeginE,LadratC,GodfroyA,BarbierG,DuchironF.

Thermostableamylolyticenzymesofthermophilic

microorganismsfromdeep-seahydrothermalvents.Compt

RendAcadSci.1997;320:893.

55.Alves-PradoHF,GomesE,HilárioE,SilvaR.Selec¸ãode

microrganismosprodutoresdeciclodextrina

glicosiltransferase(CGTase):produc¸ãoecaracterizac¸ãoda

enzima.BrazJFoodTechnol.2002;5:189–196.

56.TachibanaY,KuramuraA,ShirasakaN,etal.Purificationand

characterizationofanextremelythermostable

cyclomaltodextringlucanotransferasefromanewlyisolated

hyperthermophilicarchaeon,aThermococcussp.ApplEnviron

Microbiol.1999;65:1991–1997.

57.AvciA,DönmezS.Anovelthermophilicanaerobicbacteria

producingcyclodextringlycosyltransferase.ProcessBiochem.

2009;44:36–42.

58.CaoX,JinZ,WangX,ChenF.Anovelcyclodextringlycosyl

transferasefromanalkalophilicBacillusspecies:purification

andcharacterization.FoodResInt.2005;38:309–314.

59.MoraMMM,SánchezKH,SantanaRV,RojasAP,RamírezHL,

Torres-LabandeiraJJ.Partialpurificationandpropertiesof

cyclodextringlycosiltransferase(CGTase)fromalkalophilic

Referências

Documentos relacionados

Desse modo, todo conhecimento para ele, começa nos sentidos, princípio esse que foi retomado por Locke (1632-1704) no século XVII, ao afirmar que o espírito seria uma

Especificamente, pretendeu-se alcançar os seguintes objetivos: i Distinguir o conceito de assédio moral na literatura especializada; ii Levantar ocorrências de assédio moral no

De acordo com a lei em comento, a sanção administrativa obsta a licitação/contratação com a Administração, a qual é definida, nos termos do artigo 6º, inciso XII, da referida

As main results, genotype CHIP 300 prolonged the developmental period from egg to adult (~10 days) and BRS Estilo, Arcelina 4, IPR Garça, Tybatã, CHIP 300, IPR Eldorado,

Através do estudo realizado no Programa de Saúde da Família do módulo Parque Prazeres, em Campos dos Goytacazes, pode-se observar que dentre os pacientes avaliados,

A Baía de Camamu (Bahia, Brasil) é uma Área de Proteção Ambiental com manguezais de importância econômica e ecológica, que vem sendo afetada por pressões

número de cinco e com sede em Brasília TRF 1ª Região, Rio de Janeiro TRF 2ª Região, São Paulo TRF 3ª Região, Porto Alegre TRF 4ª Região e Recife TRF 5ª Região, enquanto que