• Nenhum resultado encontrado

Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro

N/A
N/A
Protected

Academic year: 2021

Share "Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro"

Copied!
6
0
0

Texto

(1)

Original

article

Effects

of

titanium

dioxide

nanoparticles

in

human

gastric

epithelial

cells

in

vitro

Monica

Catarina

Botelho

a,b,

*

,

Carla

Costa

c

,

Susana

Silva

a

,

Solange

Costa

a

,

Alok

Dhawan

d,e

,

Paula

A.

Oliveira

b,f

,

Joa˜o

P.

Teixeira

a

a

INSANationalInstituteofHealth,DepartmentofHealthPromotion,Porto,Portugal

b

CECACentrefortheStudyofAnimalScience,ICETA,PortoUniversity,Porto,Portugal

c

ISPUPInstituteofPublicHealth-UniversityofPorto,Porto,Portugal

dNanomaterialToxicologyGroup,IndianInstituteofToxicologyResearch,Lucknow,India

e

InstituteofLifeSciences,SchoolofScienceandTechnology,AhmedabadUniversity,Gujarat,India

f

UTADDepartmentofPathology,UniversityofTra´s-os-MonteseAltoDouro,VilaReal,Portugal

1. Introduction

Nanotechnologyis oneof thefastestgrowing sectors of the high-techeconomy.Therearemorethan200separateconsumer products aloneusing nanomaterials withpersonal,commercial, medical,andmilitaryuses[1,2].Engineerednanomaterialswith dimension of 100nm orless provide usa widerange of novel applicationsintheelectronics,healthcare,cosmetics,technologies andengineeringindustries.Theexploitationofpropertiesinherent tomaterialsatthenanoscalehasinitiatedinnovativeapproaches totechnologieswhichshapeourworld.Lackoftoxicologicaldata onnanomaterialsmakesitdifficulttodetermineifthereisarisk associatedwithnanomaterialsexposure.Thus,thereisanurgent needtodeveloprapid,accurateandefficienttestingstrategiesto assesshealtheffectoftheseemergingmaterials[3].

Nano-sizedorultrafineTiO2(<100nm)isusedincreasinglyin other industrial products, such as toothpastes, sunscreens,

cosmetics, pharmaceuticals, and food products [4]. Human exposure may occur during both manufacturing and use.Such widespreaduseanditspotentialentryinthebodythroughdermal, ingestion,and inhalationroutessuggest thatTiO2nanoparticles pose a potential exposure risk to humans, livestock, and the ecosystem[4–9].

However, it hasbeen difficult toestablish a comprehensive mechanism of nanoparticlecytotoxicitybased on previous, and rather inconsistent, observations. For instance, some reports indicatedthatexposureofcellstoTiO2leadstolipidperoxidation, DNAdamage,caspaseactivationfollowedbymicronuclei forma-tion, chromatin condensation and eventual cell death via apoptosis.However,otherinvestigatorshavereportedthat TiO2 nanoparticleexposureinsteadcausesplasmamembranedamage anddecrementsinmitochondrialfunction.Thereareevenreports thatTiO2exposuredoesnotleadtomembranedamage,caspase activationorcelldeath[10].

These conflicting results are likely caused by variations in experimental procedures. Further differences such as protein adsorptionpriortocellexposureandparticle dispersion/agglom-eration havealsobeenrecentlyshown toplay importantroles. These input variables are likely related to varied toxicological outputs.Itisofparamountimportancetoidentifythemechanistic

ARTICLE INFO Articlehistory: Received24July2013 Accepted10August2013 Keywords: TiO2nanoparticles

Gastricepithelialcells

Proliferation Apoptosis

Oxidativestress

Genotoxicity

ABSTRACT

Manufacturingorusingnanomaterialsmayresultinexposureofworkerstonanoparticles.Potential

routesofexposureincludeskin,lungandgastrointestinaltract.Thelackofhealth-basedstandardsfor

nanomaterials combined with their increasing use in many different workplaces and products

emphasizetheneedforareliabletemporaryriskassessmenttool.Therefore,theaimofthisworkwasto

exploretheeffectsofdifferentdosesoftitaniumdioxidenanoparticlesonhumangastricepithelialcells

invitro.WeanalyzedproliferationbyMTTassay,apoptosisbyTunel,migrationbyinjuryassay,oxidative

stressbydeterminingGSH/GSSGratioandDNAdamagebyCometassayonnanoparticle-treatedAGS

human gastricepithelialcell linein comparisontocontrols. We showand discussthetumor-like

phenotypes of nanoparticles-exposed AGS cells in vitro, as increased proliferation and decreased

apoptosis.Ourresultsdemonstrateforthefirsttimethatnanoparticlesinducetumor-likephenotypesin

humangastricepithelialcells.

ß2013ElsevierMassonSAS.Allrightsreserved.

* Correspondingauthor.HealthPromotion Department,NationalInstituteof

Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal. Tel.:+351

223401185;fax:+351223401149.

E-mailaddresses:monicabotelho@hotmail.com,

monica.botelho@insa.min-saude.pt(M.C.Botelho).

Available

online

at

www.sciencedirect.com

0753-3322/$–seefrontmatterß2013ElsevierMassonSAS.Allrightsreserved.

(2)

responseofexposure-pronecellstonanomaterialsastheyarenot onlypotentialenvironmentalexposurehazards,butare continu-ously employed in biomedical applications in many different tissuesandcompartmentsinsidethebody[10].

We have therefore carried out a comparative study on the cytotoxiceffectsof common,widelyusedTiO2nanoparticleson gastricepithelialcells. Twodispersionmediawereusedforthis purpose:oneproteinrichandtheotherwithonetypeofprotein alone.Weevaluatedproliferation,apoptosis,oxidativestressand genotoxicityofexposedcells.Tothebestofourknowledge,thisis thefirstreportaddressingcytotoxicityofnanomaterialsongastric epithelialcells.

2. Materialsandmethods 2.1. Nanoparticles

TiO2 nanoparticles (commercial grade, Aeroxide TiO2 P-25, primary size 21nm, 80/20 anatase/rutile) were obtained from DegussaCorp. (Parsippany,NJ).TiO2 nanopowder 637254 (tita-nium(IV) oxideanatase,<25nm)werepurchased from Sigma-Aldrich(St.Louis,MO).

2.2. Particlepreparationandcharacterization

TiO2 NPsweresuspendedintwodifferentdispersionmedia: Milli-QwaterandRPMIsupplementedwith10%FBSor2%BSAin phosphate-bufferedsaline(PBS)andprobesonicatedat30Wfor 5min(1.5minpulseonand1minpulseofffortwotimesanda finalpulseof2min).

The average hydrodynamic size, size distribution and zeta potentialofTiO2NPsinwaterweredeterminedbydynamiclight scattering(DLS)and phase analysislightscatteringrespectively usingaZetasizerNano-ZSequippedwith4.0mW,633nmlaser (ModelZEN3600,MalvernInstrumentsLtd.,Malvern,UK).

Beforeuse,TiO2NPsstocksuspension(150

m

g/mL)inmedium wasseriallydilutedtodesiredconcentrationsinfreshsuspension medium.Allsampleswerepreparedundersterileconditions. 2.3. Particletreatment

The treatment experimental design consisted of serial con-centrationsofTiO2NPssuspendedintwodifferentmedia:RPMI supplemented with 10% FBS or 2% BSA in phosphate-buffered saline(PBS),appliedtocells froma singlepassagetominimize confoundingof comparisonsby passage-to-passagevariation of the cultured cells. Each multiwell cell culture plate included negativecontrols.

2.4. Celllineandcellculture

AGS (gastric epithelial cancer) cells were cultured and maintainedat378Cina5%CO2humidifiedatmosphereinRPMI medium (Sigma) with 10% FBS (Sigma) and 1% penicillin/ streptomycin(Sigma). Cellswerepassaged every5days. Before treatments with nanoparticles suspended in BSA, cells were allowedtoreach80%confluencebeforeserum-starvedfor16h. 2.5. Trypanblueexclusionassay

The trypan blue exclusion method was used to assess cell viability. AGS cells were plated and incubated until 80% confluency.ThecellsweretreatedwithTiO2-nanoparticles.After treatment,thecellswereharvestedbytrypsinizationandcounted undermicroscopeaftertrypanbluestaining.Three independent

experimentswerecarriedoutbasedonthefollowingformula:cell viabilitypercentage=number of cells in drugtreatment group/ numberofcellsincontrolgroup100%.

2.6. Proliferationassay

The CellTiter 96 AQ nonradioactive cell-proliferation assay (Promega)wasusedtoassesscellviability.Theassayiscomposed of the tetrazolium compound MTS and an electron coupling reagent,PMS.MTSisreducedbyviablecellstoformazan,which can be measured witha spectrophotometer by the amount of 490nmabsorbance.Formazanproductionistime-dependentand proportionaltothenumberofviablecells.AGScellswerecultured in0.1mLRPMImediain96-wellflat-bottomedplates. Cultures wereseededat1104cells/wellandallowedtoattachovernight. After the indicated time of incubation with the appropriate medium, 20

m

L reagent was added per well, and cells were incubated 1h before measuring absorbance at 490nm. Back-groundabsorbancefromthecontrolwellswassubtracted.Studies wereperformedintriplicateforeachexperimentalcondition. 2.7. Apoptosis

Apoptosis in cellcultures wasassessed withthein situ cell death detection kit, fluorescein (TUNEL technology) (Roche), analyzed by fluorescence microscopy. TUNEL assay (Terminal deoxynucleotidyl transferase-mediated deoxyuridine tripho-sphate nick endlabeling) was performed according to the manufacturer’s instructions. Nuclei were counter-stained with DAPI(Roche Diagnostics,Basel,Switzerland).Thepercentage of TUNEL-stained nuclei wasevaluated in relationtoevery DAPI-stained nuclei observed. Immunofluorescence was visualized under a fluorescence microscope (Olympus, BH-2, UK). The percentageof stainedcells wasevaluatedbycountingthecells stainedwithTUNELdividedbythetotalnumberofnucleistained withDAPIatamagnification200field.Onethousandnucleiwere evaluated.Threeindependentexperimentswereperformed. 2.8. Oxidativestressassay

OxidativestresswasanalysedbyevaluationofGSHt,GSHand GSSG levelsThe intracellular levelsof GSHand GSSGin TiO2 -nanoparticle-treatedAGScellswereevaluatedbytheDTNB-GSSG reductaserecyclingassay,aspreviouslydescribed[11].Aftera3-h treatment with150

m

g/mLTiO2 nanoparticles,thetreated cells werelysedand proteinswereprecipitatedwith5%HClO4.After centrifugation(16,000g,10min,488C),thesupernatantobtained was used for the determination of GSHt, GSH and GSSG by spectrophotometryat412nm.

2.9. Cometassay

Aftertreatment,cellswerewashedtwicewithprechilledPBS (Mg2+ and Ca2+-free), centrifuged at 78g for 5min and resuspended inPBS. Cell viabilitywasover 85%forthe tested doseinthisstudyasassessedusingtrypanblue dye-exclusion staining.Thealkalineversionofthecometassaywasperformedas describedby[12]withminormodifications.Briefly,cellscollected bycentrifugation(9000rpmfor3min)andsuspendedin60

m

Lof 0.6% low-melting-point agarose (LMA) in PBS (pH 7.4) were droppedontoafrostedslideprecoatedwithalayerof1%normal meltingpointagarose.Slideswereplacedonicefor4minand allowedtosolidify.Coverslipswerethenremovedandslideswere immersed in freshly prepared lysing solution (2.5M NaCl, 100mMNa2EDTA,10mMTrisBase,0.25MNaOH,pH10)for1h at48C,inthedark.Afterlysis,slideswereplacedonahorizontal

(3)

electrophoresis tank in an ice bath. The tank was filled with freshlymadealkalineelectrophoresissolution(1mMNa2EDTA, 300mMNaOH,pH13)tocovertheslides,andtheywereleftfor 20mininthedarktoallowDNAunwindingandalkali-labilesite expression.

Electrophoresiswascarriedoutfor20minat30Vand300mA (1.2V/cm).Theslideswerethenwashedfor10minwith1mLof neutralizingsolution(0.4MTrisBase,pH7.5).Afterneutralization, gels were stained with 100

m

L of ethidium bromide solution (20

m

g/mL)andcoveredwithcoverslipsfor20min.Afterstaining, theslideswerewashedtwice withice-coldbidistilledwaterfor 20min.

Slides werecoded and examined bya ‘blind’ scorerusing a magnificationof400.Onehundredrandomlyselectedcells(50 perreplicate)wereexamined foreach dose.Imagecapture and analysiswereperformedwithCometAssayIVsoftware(Perceptive Instruments);percentageoftailDNA(%T)wastheDNAdamage parameterevaluatedaccordingtowhathasbeenrecommendedby Kumaraveletal.[13].ThepercentageDNAinthetailisthefraction of DNA in the tail divided by the amount of DNA in the cell multipliedby100.

2.10. Statisticalanalysis

DatawereexpressedasmeanSD.t-testwasusedtoassessthe statistical significance of differences. P<0.05 was considered statisticallysignificant.

3. Results

3.1. Nanoparticlescharacterization

ThemeanhydrodynamicdiameterofSigmaTiO2NPsinMilliQ waterasmeasuredbyDLSwas420.7nmandthezetapotential was 9.96mV.ResultsofsizeandzetapotentialofDegussaTiO2 NPswererespectively,160.5nmand–27.8mV.

3.2. FBSimpairstheeffectsofTiO2nanoparticlesoncellproliferation Generally,serumisaddedtothecellculturemediumsuchas RPMIbecausetheserumcomponentisimportantfornormalcell growth. Therefore, we used RPMI supplemented with FBS for nanoparticlessuspension.Thegrowthlevelsshowthatnoeffectis observedbythistreatmentwithincreasingconcentrationsofTiO2 -nanoparticles(Fig.1AandB).

3.3. TiO2nanoparticlesincreasedtheproliferationofepithelialcellsin vitro

Weused a simple ‘‘FBS mimic’’ proteincocktail containing similarconcentrationsofBSAandPBSfornanoparticle suspen-sion[14].TobegininvestigatingtheeffectofTiO2nanoparticles oncellviabilityandproliferation,AGScellswereseededon 96-wellplates,starvedovernight,treatedwithincreasing concen-trationsofTiO2nanoparticlesfor3h,6hand24h,cultivatedfor 24hoursandthen analyzedby MTSassay(Fig. 2AandB).The growthlevels showthattreated cellsproliferatedsignificantly fasterandmorethancontrolcells.Weconfirmedtheincreasein cell viability using the concentration of 150

m

g/mL of TiO2 nanoparticles for 3h. This concentration and time were confirmed by trypan blue assay and used forthe subsequent assays.Ourresultssuggestthattheincreaseofbothproliferation and overall survival in AGS cells is a consequence of nanoparticletreatment.Theexperimentsweredoneintriplicate (P<0.01).

3.4. TiO2nanoparticlesdecreasedtheapoptosisofgastricepithelial cellsinvitro

Toanalyzeapoptosis,AGScellswereseededon96-wellplates, starvedo.n.,treatedwith150

m

g/mLofTiO2nanoparticles(Sigma)

A

B

0 20 40 60 80 100 120 140 150 120 100 80 60 40 20 c

Percentage of proliferang cells

Treatments Cell Proliferaon 3h 6h 24h 0 20 40 60 80 100 120 140 160 150 120 100 80 60 40 20 c

Perecentage of proliferang cells

Treatments Cell Proliferaon

3h 6h 24h

Fig.1.CellproliferationassayofAGS cells treated with TiO2nanoparticles suspension in

RPMIsupplementedwithFBS.Thegrowthlevelsshownodifferencesbetweencontrol

andtreatedAGScells.A.AGScellswereseededon96-wellplates,starvedo.n.,treated

withincreasingconcentrationsofTiO2nanoparticles(Sigma)suspension,for3,6and

24h.B.AGScellswereseededon96-wellplates,starvedo.n.,treatedwithincreasing

concentrationsofTiO2nanoparticles(Degussa)suspension,for3,6and24h.

A

B

0 50 100 150 200 250 300 350 150 120 100 80 60 40 20 c

Percentage of proliferang cells

Treatments Cell Proliferaon 3h 6h 24h 3h+24h 6h+24h 0 50 100 150 200 250 300 350 400 450 500 150 120 100 80 60 40 20 c

Percentage of proliferang cells

Treatments Cell Proliferaon 3h 6h 24h 3h+24h 6h+24h

Fig.2.CellproliferationassayofAGSTiO2nanoparticlessuspensioninBSAwithPBS.

Thegrowthlevelsshowthattreatedcellsproliferatedsignificantlyfasterandmore

thancontrolcells(P<0.01;controlvs.150mg/mL).A.AGScellswereseededon

96-well plates, starved o. n., treated with increasing concentrations of TiO2

nanoparticles(Sigma)suspension,for3,6and24h,cultivatedfor24handthen

analyzedbyMTSassay.B.AGScellswereseededon96-wellplates,starvedo.n.,

treatedwithincreasingconcentrationsofTiO2nanoparticles(Degussa)suspension,

(4)

for3handthenanalyzedbyTUNELassay.Apoptoticlevelsshow thattreatedcellsmarkedlydecreasedapoptosisincomparisonto controlcells.Theexperimentsweredoneintriplicate(P<0.01). AGScellsshowedanincreasingnumberofapoptoticcellsperfield inthecontrol(Fig.3A)comparedtocellstreatedwith150

m

g/mL ofTiO2nanoparticles(Fig.3B).Cellcountsshowthattreatedcells markedly decreased apoptosis in comparison to control cells (Fig.3C).

3.5. TiO2nanoparticlesincreasedoxidativestressofgastricepithelial cellsinvitro

Oxidative stress was determined by measuring oxidized glutathione(GSSG).AGScellsshowanincreaseinGSSGlevelsin thecellstreatedwith150

m

g/mLofTiO2nanoparticlescompared

tocontrols.InFig.4,thelevelsofGSSGinAGS cellsaftera3-h incubationperiodwithTiO2nanoparticlesandincontrolcellscan beobserved.AsignificantdifferencecanbeobservedinGSSGlevels when compared with controlgroup, as shown in Fig. 4. These resultsshowthatTiO2nanoparticlestreatmentwithwasableto elicitthealterationsinglutathionestatusobserved.

3.6. InducedgenotoxicityofgastricepithelialcellsinvitrobyTiO2 nanoparticles

GenotoxicitywasdetectedbyCometassay.AGScellsshowan increase in tail intensity in 150

m

g/mL of TiO2 nanoparticles (Sigma)-treated cells compared tocontrol. AGS cells showless damaged nuclei in the control compared to cells treated with 150

m

g/mLof TiO2 nanoparticles(Fig.5A and B). In thecomet assay,therewasa1.88-foldsignificant(P<0.05)increasein%Tail DNAwhenthecellsweretreatedwithTiO2nanoparticlesatadose of 150

m

g/mL for 3h exposure, i.e. 47.349% for treatedcells versus25.195%foruntreatedcells(Fig.5C).

4. Discussion

Thepurposeofthisstudywastoexaminegastricepithelialcell responsestoTiO2nanoparticles.Toourknowledge,thisisthefirst study addressing these effects in a gastric epithelial cell line. Nanoparticleswereevaluatedovera rangeofconcentrations.In thepresentstudy,wecharacterizedtheeffectofTiO2nanoparticles inhumangastriccellsusingcellbiologicalapproachesnormally used in carcinogenesis studies, like proliferation, apoptosis, oxidativestressandgenotoxicity.

Fig.3.ApoptosisofTiO2nanoparticles-treatedcellsanalysedbyTUNEL.Theexperimentsweredoneintriplicate(A)microphotographsofapoptoticcellsofcontrolsand(B)

TiO2nanoparticles-treatedcells.Bothpanelshavethesamemagnification.AGScells,showinganincreasingnumberofapoptoticcellsperfieldinthecontrolcomparedtocells

treatedwith150mg/mLofTiO2nanoparticles(Sigma).C.Thegrowthcurveshowsthattreatedcellsmarkedlydecreasedapoptosisincomparisontocontrolcells(P<0.01;

controlvs.150mg/mL). 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 TiO2 D TiO2 S Control mM GSSG Oxidave stress

Fig.4.Oxidativestresswasdeterminedbymeasuringoxidizedglutathione(GSSG).

AGScellsshowanincreaseinGSSGlevelsintreatedcellswith150mg/mLofTiO2

nanoparticlescomparedtocontrolcells.Asignificantdifferencecanbeobservedin

(5)

First,weusedRPMIsupplementedwithFBSforthesuspension ofTiO2nanoparticles.Thistreatmentcausednoalterationoncell proliferation. These results are explained by the effect of the protein adsorption ability of metal oxide nanoparticles on the cytotoxicity.First,theadsorptionofthecomponentsoftheculture mediaonto themetal oxide nanoparticlesinduces a starvation state and subsequent enervation of cells in vitro. Therefore, a correcttoxicityassessment maybeimpairedbythis adsorption effect.Second,thecoatingofthemetaloxidenanoparticleswith proteins may change their biological activities. Generally, the prepared cell culture mediacontain proteins from the supple-mentedFBS.Theadsorptionofmediumcomponentsbyultrafine metaloxideparticles,especiallyproteinadsorption,affectsthecell growthandmetabolism;therefore,theadsorptionabilityaffects anaccuratecytotoxicityassessment[14].

In this investigation, TiO2 nanoparticles were selected as a modelnanoparticleandbovineserumalbumin(BSA)wasselected asamodelproteinforstudyingtheeffectofTiO2nanoparticleina gastricepithelialcellline.Fetalbovineserum(FBS)isaneffective dispersingagentforTiO2nanoparticlesduetosynergisticeffectsof itsmultiple proteincomponents[14]. Jiet al. [14]successfully reproduced FBS using a simple ‘‘FBS mimic’’ protein cocktail containingsimilarconcentrationsofBSAandPBSthatweincluded inthepresentstudy[14].Withthisnanoparticlesuspensionwe observedincreasedproliferationofgastricepithelialcells.Wehave no references so far in the literature to compare our results concerningnanoparticlesandgastricepithelialcellproliferation. Nevertheless, Knaapen et al. [15] found that TiO2-nano drive deregulatedcellproliferationandanchorage-independentgrowth inlungepithelialcells[15].

Apoptotic cell loss in carcinogenesis has been examined by TUNELmethod[16].Weusedthismethodtoanalyzeapoptosisin thepresentworkandfounditdramaticallydecreasedinthecells aftertreatmentwithTiO2nanoparticles.Inagreement,alterationsin thebalancebetweencellproliferationandapoptosismayreflectan important mechanism of carcinogenesis [17]. Our findings are furthersupportedbymicroarraygeneexpressionprofilesindicating rolesofTiO2nanoparticlesinmodulatingnumerousgene expres-sionsinvolvedincellcycleandapoptosis[18],indicatingthatTiO2 nanoparticlescanmodulateintracellularphysiologicalprocesses.

One of the most discussed mechanisms behind the health effectsinducedbyambientparticlesistheabilityofparticlesto causeoxidativestress.Thismechanismisbelievedtobeimportant for thetoxicity ofmanufactured nanoparticlesaswell. In vitro studieshavegenerallysupportedthepathophysiologicalresponses foundinanimalmodels,includingincreasedgenerationofROSin cellsexposedtovariousnanomaterials.Manyinvitrostudieshave identified increased ROS generation as an initiating factor of toxicityinnanoparticleexposedcells.Theinteractionsofparticles withcellmembranesresultinthegenerationofreactiveoxygen species (ROS), and the generated oxidative stress maycause a breakdown of membrane lipids, an imbalance of intracellular calciumhomeostasis,andDNAbreakage[19–21].In thepresent study,wefoundincreasedoxidativestressinTiO2 -nanoparticles-treated cells. In accordance, previous studies have shown that nano-TiO2inducesoxidativestress-mediatedtoxicityinmanycell types[22–24]andthatnano-TiO2exposureinducesROStocause DNAlesions[4,23,25,26].

TheDNAdamageresponseistriggeredbythedetectionofDNA lesions.This responseconsistsofan orderlysequence ofsignal

Fig.5.EffectofTiO2nanoparticlesongenotoxicityofAGScellsanalyzedbyCometassay.(A)microphotographsofcometsofcontrolsand(B)TiO2nanoparticles-treatedcells.

Bothpanelshavethesamemagnification.NotetheincreasedtailofcometsinTiO2nanoparticles-treatedcells.C.TiO2nanoparticlesinducedgenotoxicityoftreatedcells5

(6)

transductioneventsthatcaninducetheaccumulationofgenetic errors,thatplayacriticalroleinrespondingtovariousstressesthat cause DNA damage, especially ROS [27]. We confirmed the genotoxic effects of nano-TiO2 on gastric epithelial cells using alkalinesingle-cellgelelectrophoresis(Comet). Kangetal. [28]

foundthesameeffectsonlymphocytes.

Studying thegenotoxic molecular mechanism of TiO2 nano-particleshashelpedelucidatepathwaysrelatedtoits tumourigen-esis.Thecentralhypothesisbasedonourstudiesisthatgenotoxic events and sustained signaling pathway stimulation drive deregulatedcellproliferationandanchorage-independentgrowth, the processes both required for mutations and progression towards neoplastic lesions play a role in TiO2 nanoparticles-inducedmutagenesisandcarcinogenicity.Thewell-known biolo-gicalmechanisms,suchasthealterationofcell-signalingpathways and induction of DNA damage, play a vital role in neoplasia induction. The initiation stage of carcinogenesis is mainly characterized by genotoxic processes, which may lead to irreversiblechangesinthestructureofcellulargeneticmaterials. AlthoughDNArepairpathwaysexistforDNArestoration,however, erroneousrepairandextensiveDNAdamagemaycausemutations andultimatelyleadtocelltransformation[29].Furthermore,since there is a link between DNA damage, mutations, and cancer, particlesthatarepotentincausingDNAdamagecanberegardedas morelikelytohaveaneffectoncancerdevelopment.Inagreement, Knaapenetal.[15]suggestedthatROSgenerationinducedbyTiO2 nanoparticlesmightdirectlyorindirectlydamageDNA tocause genotoxicity and impact on cellular signaling pathways to modulatecellproliferation,resultingirreversiblecell transforma-tion[15]. Inaddition, theInternationalAgencyforResearch on Cancer(IARC)recentlyclassifiedTiO2 asaGroup2Bcarcinogen (possibly carcinogenic to humans) based on mechanistic and animalstudies[30].

Taken together, the effects observed in TiO2 -nanoparticles-treatedcellsseemtobeinterconnected.Althoughwedonotyetfully understandthephysiologicalfunctionsofnanoparticles,thepresent studyrevealednovelaspectsingastricepithelial,onthepotential routes of exposure to nanoparticles. Through its effects in cell biology,TiO2nanoparticlesarelikelytoparticipateinanumberof carcinogenesis-mediatedprocesses,suchas increasedcell prolif-eration, decreased apoptosis, increased oxidative stress and increasedgenotoxicity,allofwhichareprocessesneededforcancer cellsurvival. Theeffects of nanoparticles on the cellcyclemay contributetothehighproliferationrateandaccumulationofgenetic changes.Oxidativestressmaybethereasonfortheuncontrolled proliferationseeninTiO2nanoparticles-treatedcellsandcouldbe involvedincancer-associatedpathways.Additionalworkneedsto beundertakentounderstandthemechanismsofdamage. Disclosureofinterest

The authors declare that they have no conflicts of interest concerningthisarticle.

Acknowledgements

WewouldliketoshowourdeepestappreciationtoPr.Victor Costaforthecollaborationandvaluableinsightonoxidativestress. WewouldalsoliketoacknowledgeNanoLINENnetworkproject fundingforthiswork.

References

[1]BrumfielG.Consumerproductsleapaboardthenanobandwagon.Nature 2006;440:262.

[2]GriffittRJ,WeilR,HyndmanKA,DenslowND,PowersK,TaylorD,BarberDS. Exposuretocoppernanoparticlescausesgillinjuryandacutelethalityin zebrafish(Daniorerio).EnvironSciTechnol2007;41:8178–86.

[3]HuX,CookS,WangP,HwangHM.Invitroevaluationofcytotoxicity of engineeredmetaloxidenanoparticles.SciTotalEnviron2009;407:3070–2.

[4]WangJJ,SandersonBJ,WangH.Cyto-andgenotoxicityofultrafine TiO2

particlesinculturedhumanlymphoblastoidcells.MutatRes2007;628:99– 106.

[5]Oberdo¨rsterG,MaynardA,DonaldsonK,CastranovaV,FitzpatrickJ,AusmanK, CarterJ,KarnB,KreylingW,LaiD,OlinS,Monteiro-RiviereN,WarheitD,Yang H. Principlesfor characterizing thepotential human health effectsfrom exposuretonanomaterials:elementsofascreeningstrategy.PartFibreToxicol 2005;2:8.

[6]LongMS,KeatingCD.Nanoparticleconjugationincreasesproteinpartitioning inaqueoustwo-phasesystems.AnalChem2006;78:379–86.

[7]JinCY,ZhuBS,WangXF,LuQH.Cytotoxicityoftitaniumdioxidenanoparticles inmousefibroblastcells.ChemResToxicol2008;21:1871–7.

[8]ZhaoJ,BowmanL,ZhangX,VallyathanV,YoungSH,CastranovaV,DingM. Titanium dioxide(TiO2) nanoparticlesinduce JB6 cellapoptosis through

activationofthecaspase-8/Bidandmitochondrialpathways.JToxicolEnviron HealthA2009;72:1141–9.

[9]LiuS,XuL,ZhangT,RenG,YangZ.Oxidativestressandapoptosisinducedby nanosizedtitaniumdioxideinPC12cells.Toxicology2010;267:172–7.

[10]SohaebuddinSK,ThevenotPT, BakerD, Eaton JW,TangL. Nanomaterial cytotoxicityiscomposition,size,andcelltypedependent.PartFibreToxicol 2010;7:22.

[11]CostaV,QuintanilhaA,Moradas-FerreiraP.Proteinoxidation,repair mecha-nismsandproteolysisinSaccharomycescerevisiae.IUBMBLife2007;59:293– 8.

[12]SinghNP,McCoyMT,TiceRR,SchneiderEL.Asimpletechniquefor quantifi-cation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184–91.

[13]KumaravelT,Vilhar B, FauxSP, Jha AN. CometAssay measurements:a perspective.CellBiolToxicol2009;25:53–64.

[14]JiZ,JinX,GeorgeS,XiaT,MengH,WangX,SuarezE,ZhangH,HoekEM, GodwinH,NelAE,Zink JI.Dispersionand stabilityoptimizationof TiO2

nanoparticlesincellculturemedia.EnvironSciTechnol2010;44:7309–14.

[15]KnaapenAM,BormPJ,AlbrechtC,SchinsRP.Inhaledparticlesandlungcancer. PartA:mechanisms.IntJCancer2004;109:799–809.

[16]TakabaK,SaekiK,SuzukiK,WanibuchiH,FukushimaS.Significant over-expressionofmetallothioneinandcyclinD1andapoptosisintheearlyprocess ofraturinarybladdercarcinogenesisinducedbytreatmentwith N-butyl-N-(4-hydroxybutyl)nitrosamine or sodium L-ascorbate. Carcinogenesis 2000;21:691–700.

[17]OtoriK,YanoY,TakadaN,LeeCC,HayashiS,OtaniS,FukushimaS. Reversibili-tyandapoptosisinraturinarybladderpapillomatosis inducedbyuracil. Carcinogenesis1997;18:1485–9.

[18]ChenHW,SuSF,ChienCT,LinWH,YuSL,ChouCC,ChenJJ,YangPC.Titanium dioxidenanoparticlesinduceemphysema-likelunginjuryinmice.FASEBJ 2006;20:2393–5.

[19]PetruskaJM,LeslieKO,MossmanBT.Enhancedlipidperoxidationinlung lavageofratsafterinhalationofasbestos.FreeRadicBiolMed1991;11:425– 32.

[20]CluttonS.The importanceofoxidative stress inapoptosis. Br Med Bull 1997;53:662–8.

[21]ShuklaRK,KumarA,Pandey AK,SinghSS,DhawanA. Titaniumdioxide nanoparticlesinduceoxidativestress-mediatedapoptosisinhuman kerati-nocytecells.JBiomedNanotechnol2011;7:100–1.

[22]RamiresPA,RomitoA,CosentinoF,MilellaE.Theinfluenceof titania/hydroxy-apatitecompositecoatingsoninvitroosteoblastsbehaviour.Biomaterials 2001;22:1467–74.

[23]GurrJR,WangAS,ChenCH,JanKY.Ultrafinetitaniumdioxideparticlesinthe absenceofphotoactivationcaninduceoxidativedamagetohumanbronchial epithelialcells.Toxicology2005;213:66–73.

[24]HussainSM,HessKL,GearhartJM,GeissKT,SchlagerJJ.Invitrotoxicityof nanoparticlesinBRL3Aratlivercells.ToxicolInVitro2005;19:975–83.

[25]DunfordR,SalinaroA,CaiL,SerponeN,HorikoshiS,HidakaH,KnowlandJ. ChemicaloxidationandDNAdamagecatalysedbyinorganicsunscreen ingre-dients.FEBSLett1997;418:87–90.

[26]RahmanQ,LohaniM,DoppE,PemselH,JonasL,WeissDG,SchiffmannD. Evidencethatultrafinetitaniumdioxideinducesmicronucleiandapoptosisin Syrianhamsterembryofibroblasts.EnvironHealthPerspect2002;110:797– 800.

[27]Mate´sJM,Sa´nchez-Jime´nezFM.Roleofreactiveoxygenspeciesinapoptosis: implicationsforcancertherapy.IntJBiochemCellBiol2000;32:157–70.

[28]KangSJ,KimBM,LeeYJ,ChungHW.Titaniumdioxidenanoparticlestrigger p53-mediateddamageresponseinperipheralbloodlymphocytes.Environ MolMutagen2008;49:399–405.

[29]HuangS,ChuehPJ,LinYW,ShihTS,ChuangSM.Disturbedmitoticprogression andgenomesegregationareinvolved incelltransformationmediatedby nano-TiO2long-termexposure.ToxicolApplPharmacol2009;241:182–94.

[30]IARCmonographsontheevaluationofcarcinogenicriskstohumans:carbon

Imagem

Fig. 2. Cell proliferation assay of AGS TiO 2 nanoparticles suspension in BSA with PBS.
Fig. 3. Apoptosis of TiO 2 nanoparticles-treated cells analysed by TUNEL. The experiments were done in triplicate (A) microphotographs of apoptotic cells of controls and (B) TiO 2 nanoparticles-treated cells

Referências

Documentos relacionados

Diallyl disulfide (DADS) inhibits growth and induces cell cycle G 2 /M arrest in human gastric cancer MGC803 cells.. In

This Eutopia, which generically represents a condition – original or final – of ontic perfection and happiness, touched by either the Classical matrix, or by the

Es así, como conocedor del deporte desde sus entrañas, es decir, desde las dinámicas propias de su práctica y a partir del estudio de sus configuraciones

Num contexto de educação permanente, a formação profissional dos professores não pode ser entendida numa única etapa (formação inicial, uma qualificação profissional),

Immunohistochemical characterization of a human skin model reconstructed in vitro based on analysis of the cytokeratins present in epithelial cells.. (A) Human skin reconstructed

Desse modo, refl etir sobre as propriedades do plano de texto do gênero artigo científi co no ensino superior, promove, nos alunos, o desenvolvimento de competências necessárias

Escolhemos o tema, “A Música tradicional Portuguesa na disciplina de Classes de Conjunto / Coro no Ensino Vocacional da Música - 1º e 2º graus” com o intuito de enriquecer a

 Para a vibração devido à libertação de vórtices correspondente a velocidades do vento próximas da velocidade crítica correspondente ao primeiro modo de vibração