• Nenhum resultado encontrado

Obtention and data management in predictive microbiology models

N/A
N/A
Protected

Academic year: 2021

Share "Obtention and data management in predictive microbiology models"

Copied!
75
0
0

Texto

(1)

OBTENTION  AND  DATA   MANAGEMENT  IN   PREDICTIVE   MICROBIOLOGY  MODELS     Cris6na  L.M.  Silva       5th  September  2012  

CBQF  –  Centro  de  Biotecnologia  e  Química  Fina,   Escola  Superior  de  Biotecnologia,  

(2)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(3)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(4)

ObjecFves  of  food  industry  

› PredicFon  of  shelf  life  

(5)

› Control/monitor  the  growth  of  microorganisms  

(6)

6   Product Design Primary Production Industrial Production Product Transport Logistics Trade Home Storage Consumption Disposal › DistribuFon  chain  

(7)

7   Product Design Primary Production Industrial Production Product Transport Logistics Trade Home Storage Consumption Disposal › DistribuFon  chain  

(8)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(9)

The  challenge  

› Microorganisms  response  depends  on:  

  - Intrinsic  factors       -­‐  Extrinsic  factors   -­‐  System  dynamics   pH   aw   others   T   pH   humidity     salt   gas  concentraFon   others  

(10)

•   microbial  interac6on  

•     natural  strains  diversity    

•     history  of  ini6al  popula6on  

•     complexity  of  food  structure  

•     interac6on  food/microorganism  

 

(11)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(12)

PredicFve  microbiology  

The use of mathematical models in the description of

(13)

›  Thermal  lethality  

         -­‐  D  and  z  values  –  Bigelow  model  

      Fc =

tp10 TcTrefm zm dt 0 ( )/

The  idea  is  not  even  recent!

 

(14)

mathematics

microbiology

statistics

predictive

(15)

Model à mathematical expression

     

 

i=1,2,...,n (number of experimental runs/observations) j=1,2,...,v k=1,2,...,p  

y

i

= f(x

ij

,

θ

k

) + ε

i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 1000 2000 3000 4000 5000 x y ymodel yexp θ* Precise ? Accurate ? Minimize differences

(16)

precise and accurate description of observations

model adequacy

quality of model parameters

(17)

"   knowledge of the process

"   process effects on product

"   control of process variables

(18)

Processes Chemical Physical Food Processes Transport Phenomena •  heat •  mass •  momentum Reaction kinetics Properties Modelling mathematical function

 

variables parameters data regression schemes   experimental design design Criterium   validation control optimization Objectives   quality safety

(19)

"

prediction / simulation

"

development of efficient

processes

contribution to

safety

aplication

(20)

sigmoidal behaviour

presence of aggregated microorganisms or sub populations more heat (or other stress factor) resistent

inactivation

0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 time(s) lo g N

(21)

0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 120 140 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 120 140 Miller (2004) 52.5 ºC Listeria innocua liquid medium 55 ºC 57.5 ºC 60 ºC 62.5 ºC 65 ºC log N time (min)

(22)

0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 120 140 52.5 ºC 55 ºC 57.5 ºC 60 ºC 62.5 ºC 65 ºC log N time (min) Miller (2004) Listeria innocua liquid medium

(23)

v  primary 0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 2.5 Time (min) Log C FU /g kinetics parameters

(24)

v  primary v  secondary 0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 2.5 Time (min) Log C FU /g parameters pH aw temperature

(25)

v  primary

v  secondary

v  terciary - integration of the previous models - software

0 1 2 3 4 5 6 7 8 0 0,5 1 1,5 2 2,5 Time (min) Log C FU /g parameters pH aw temperature

(26)

v  primary 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 logN k logN0 logNres L Time (s) empirical fundamental

N0 number of initial viable spore cells Nres number of residual spore cells k maximum inactivation rate L lag or shoulder

(27)

v  primary First order ( kt) exp N N = 0D t N log logN = 0 − ( k t) (1 F )exp( k t) exp F N N 2 1 1 1 0 = − + − − Cerf (1977) Kamau et al. (1990) ( ) ( ) ( )⎟⎟⎠ ⎞ ⎜⎜ ⎝ ⎛ + − + + = t k exp 1 F 1 2 t k exp 1 F 2 log N N log 2 1 1 1 0

D – decimal reduction time

F1 – fraction of inactivated microorganisms k1 e k2– kinetic constants biphasic 0 1 2 3 4 5 6 7 8 0 2 4 6 8 Time (min) LogC FU /g 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 Time (min) Log C F U /m l

(28)

v  primary Cole et al. (1993) ( )⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − + − + = σ w t log λ σ 4 exp 1 α w α N log 0 1 2 3 4 5 6 7 8 0 0.5 1 1.5 2 2.5 Time (min) Log C FU /g ( ) ( ) ( ) ( ) ( )( ( )) ( ) ( ) ⎟⎟⎠ ⎞ ⎜⎜ ⎝ ⎛ − + − + − + − + − + = L t k exp 1 L k exp 1 F 1 L t k exp 1 L k exp 1 F log N N log 2 2 1 1 1 1 0 Whiting & Buchanan (1992) distribution of heat sensibility of microbial populations L – lag or shoulder

(29)

v  primary Baranyi et al. (1993) ( ) ( ) (t 0) N0 N N t t k dt dN = = − = α β ‘lag’ function tail’ function 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 tempo (s) log N

(30)

v  primary Baranyi et al. (1993) ( ) ( ) (t 0) N0 N N t t k dt dN = = − = α β ‘lag’ function tail’ function 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 tempo (s) log N ( ) ( ) ( ) ( )0 exp( k t) Q 1 0 Q 1 t k exp log N N log max max 0 + − + − = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ Geeraerd et al. (2000) ( ) Q k dt dQ N Q k k dt dN max Q max − = − =

(31)

v  primary Gompertz 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 tempo (s) log N Bhaduri et al (1991) Linton et al. (1995, 1996) Xiong et al. (1999) ( ) ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎟⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜ ⎜ ⎜ ⎝ ⎛ + − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − = L t 1 N N log e k exp exp N N log logN logN res 0 res 0 0 Logistic Listeria monocytogenes ( ) (k t - L ) exp 1 c logN + = c – constant

reparameterized for inactivation based in Zwitering (1990)

(32)

v  secondary

 

Arrhenius

Davey / Arrhenius modified

“Square-root type models”

Ratkowsky et al. (1982) McMeekin et al. (1987) Adams et al. (1991) McMeekin et al. (1992) ) T b(T k = − min ) a (a ) T b(T k = − min wwmin ) pH (pH ) T b(T k = − minmin ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = RT E -exp k k 0 a lnk = lnk0RTEa 2 W 4 W 3 2 2 1 0 CT TC C a C a C lnk = + + + + ) pH (pH ) a (a ) T b(T

k = − min wwminmin

min – minimal value for growth

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ref a ref exp - ER T1 T1 k k

(33)

v  tertiary

softwares

Microbial growth Shelf life prediction    

(34)

Difficul6es  in  food  processes  modelling:  

 

"      Dynamic  processes  

"      Complexity  and  heterogeneity  of  products  

(35)

Gompertz   ( ) ) time ( d N log d ( ) (L t') 1 dt' N N log ) 1 exp( k exp exp 1 ' t L N N log ) 1 exp( k exp ) 1 exp( k N log N log t 0 res 0 res 0 0 ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ + − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ + − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − =

dynamic situation of temperature

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ref a ref exp - ER T1 T1 k k ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ref T 1 T 1 b exp a L Gill (2011)

(36)

Linear ( ) ) time ( d N log d

dynamic situation of temperature

(T Tref) z 1 ref 10 D D = − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −

=

− PT 0 Zref T T ref T dt 10 D 1 0

10

N

N

approach by Vieira et al. (2002) Cupuaçu nectar

(37)

Case  studies:

 

( ) ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ + − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − = L t 1 N N log e k exp exp N N log logN logN res 0 max res 0 0 Square-root! ! " kmax = c (T − d) Arrhenius! ! " " " ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ref a ref max k exp - ER T1 T1 k Williams-Landel-Ferry! ! " " ( ) ( )⎟⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = min min T -T b T -T a 10 L Arrhenius! " " " " ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ref T 1 T 1 b exp a L

c, d !constants! Kref !reaction rate at Tref! Ea !activation energy! a, b !constants! 1! 2! 4! 3! Gill (2011)

(38)

log N! time (s)! 0 1 2 3 4 5 6 7 8 9 0 1000 2000 3000 4000 5000 6000 7000 T=52ºC T=56ºC logN time (s) 0 1 2 3 4 5 6 7 8 9 0 100 200 T=60ºC T=64ºC T=68ºC 0 500 1000 1500 2000 2500 3000 320 325 330 335 340 345 T (K) L ( s ) 0 0,05 0,1 0,15 0,2 0,25 0,3 320 325 330 335 340 345 T (K) kma x ( s -1) 0 1 2 3 4 5 6 7 8 9 0 1000 2000 3000 4000 5000 6000 7000 time (s) log N T=52ºC T=56ºC 0 1 2 3 4 5 6 7 8 9 0 100 200 time (s) log N T=60ºC T=64ºC T=68ºC Gompertz" Two-step" L= f(T)! kmax= f(T)! One-step"

Equations 1 and 4 selected"

(39)

Tank with water + L. innocua 15 minutes Weibull model Inumeration OzonaFon  

(40)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(41)

How  to  obtain  the  data  

› Experiments  in  broth  at  various  condiFons  (pH,  T,  aw,  

[growth  inhibitors],  etc.)  

› InoculaFon  studies  in  foods  under  various  condiFons  

(42)

"   Heuris6c  sampling  

"      Experimental  design                                     Minimize  variance  of:    

"      predicted  response   "      parameter  es.mates  

Sampling:

 

(43)

"   Regression schemes "   Analysis of residuals

(

)

[

]

2 n 1 i k ij i n 1 i 2 i y f x , e SSR

= = θ − = = Least-squares method

Data  analysis:

 

(44)

Mathematical

complexity Adequate description

model parameters

(45)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(46)

Available  soMware  

à predicts  shelf-­‐life  as  well   as  growth  of  spoilage  and   pathogenic  bacteria  in   seafood  

     

à evaluates  the  effect  of   constant  or  fluctuaFng   temperature  storage   condiFons  (Dalgaard  et   al.  2002,  2003,  2008)    

(47)

à more  than  40  models  for  different  bacterial  pathogens  

à the  soMware  allows  growth  or  inacFvaFon  of  pathogens  to  be   predicted  for  different  combinaFons  of  constant  temperature,  pH,   NaCl/aw  and,  in  some  cases,  other  condiFons  such  as  organic  acid   type  and  concentraFon,  atmosphere,  or  nitrate    

(48)

à includes  more  than  40.000  curves/data  on  growth,  survival  or   inacFvaFon  of  microorganism  in  foods.    

à data  has  been  obtained  from  the  literature  or  provided  by  supporFng   insFtuFons  

à the  modelling  toolbox  within  ComBase  includes  the  Combase  Predictor   (previously  Growth  Predictor  and  Food  MicroMoodel).    

(49)

à French  decision  support  system  that  includes  (i)  a  database  with  growth   and  inacFvaFon  responses  of  microorganisms  in  foods  and  (ii)  predicFve   models  for  growth  and  inacFvaFon  of  pathogenic  bacteria  and  some   spoilage  microorganisms    

(50)

à predicts  the  effect  of  organic  acids,  temperature,  pH  and   moisture  on  growth  of  Listeria  monocytogenes  in  products      

(51)

predict  the  growth  of  

Listeria  monocytogenes  

and  Staphylococcus  

aureus  on  Ready-­‐To-­‐Eat  

meat  products  as  a   funcFon  of  pH  and   water  acFvity    

(52)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(53)

ValidaFon  studies  

› Before  market  introducFon,  valida6on  has  to  be  

carried  out  for  new  or  altered  products  

› AMer  the  concept/prototype  

 à  acceptance  tests  à  refinement  of  models  à  final   formulaFon  à  validaFons  in  challenge  test    

 

       have  to  be  performed             Milkowski (2012)

(54)

› This  is  the  main  difference  between  free  and  paied  

soMware  

› A  complete  challenge  test  takes  aproximately  3  

months  +  evaluaFon  of  process  variaFons  +  

idenFficaFon  of  acceptable  limits  for  formulaFon   limits    à  establish  a  theoreFcal  shelf  life  

› Industry  saves  costs  and  Fme  when  using  reliable    

predicFve  micro  modelling  

          Milkowski (2012)

(55)

› Industry  has  to  perform  validaFon  studies,  for  final  

verificaFon  

› The  analyFcal  values  for  pH,  water  acFvity,  moisture,  

etc    are  crucial    

› However,  predicFve  microbiology  does  not  replace    

hygiene  measure  or  Good  Manufacturing  PracFces            à  models  can  not  be  the  only  hurdle  to  pathogens  

          Milkowski (2012)

(56)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(57)

Acknowledgement  by  regulaFon    

          Milkowski (2012) › United  States:                    -­‐  U.S.  9CFR  RegulaFons  

         -­‐  2008  USDA  Supplementary  Guidance  

› European  Union:  

         -­‐  2005  &  2010  EU  regulaFon  

         

(58)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(59)

The  complexity  of  dynamic  condiFons    

(60)
(61)

›  The   greatest   modeller’s   effort   has   been   given   to   data   obtained  

under  constant  (or  staFc)  environmental  condiFons  

›  From  a  realisFc  point  of  view  this  is  somehow  restricFve,  since  the  

majority   of   thermal   processes   occur   under   Fme-­‐varying   environmental  condiFons,  and  kineFc  parameters  obtained  under   such   circumstances   may   differ   from   the   ones   esFmated   at   staFc  

(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)

OUTLINE  

› ObjecFves  of  food  industry  

› The  challenge  

› PredicFve  microbiology  

› How  to  obtain  the  data  

› Available  soMware  

› ValidaFon  studies  

› Acknowledgement  by  regulaFon  

› The  complexity  of  dynamic  condiFons  

› Conclusions  

(73)

Conclusions  

› Great  progresses  in  the  past  20  years  

› There  are  many  models  available,  each  with  its  

benefits  and  limitaFons  

› Yet  much  work  has  sFll  to  be  developed,  parFcularly  

kineFc  studies  under  dynamic  condiFons  

(74)

› ValidaFon  studies  have  to  be  carried  out  for  new  or  

altered  products,  due  to  the  complexity  of  the  systems    

› PredicFve  microbiology  is  a  powerful  tool,  but  does  

not  replace    hygiene  measures  or  Good  Manufacturing   PracFces    

(75)

Thank  you!  

 

  Teresa  Brandão   Mª  Manuel  Gil   Mª  FáFma  Miller   Elisabeth  Alexandre  

Referências

Documentos relacionados

Este documento tem como finalidade relatar e descrever as experiências vividas na prática de cuidados, as atividades desenvolvidas e os contextos em que estas

Pretendemos com este estudo aprofundar os nossos conhecimentos relativamente ao processo subjetivo associado ao uso de SPAs, nomeadamente conhecer e compreender as experiências

As empresas analisadas no estudo de caso demonstraram conhecimento das ferramentas e metodologias da qualidade, mas ainda não possuem uma visão estratégica da gestão da qualidade que

História da Doença Actual: A 23.04.2009, a criança é trazida ao Serviço de Urgências com quadro clínico de tosse, dificuldade respiratória e febre (temperatura

Influência da terapia neuromotora intensiva na motricidade e na qualidade de vida de crianças com encefalopatia crônica não progressiva da

Targets based on the within-all-schools efficient frontier reflect the A-level attainments a pupil might be expected to reach to match the best pupils of his/her innate

Para Erichsen (2010) é essencial conhecer-se as atitudes e conhecimentos dos mesmos acerca da febre pois não é raro que o grau de preocupação dos pais possa parecer inadequado

Na primeira, referente à PES, faremos uma reflexão, no contexto da prática letiva, dos desafios e da missão do que é ser hoje professor de Educação Moral e Religiosa