• Nenhum resultado encontrado

МЕТОД ОТРИМАННЯ АМОРФНОЇ СТРУКТУРИ

N/A
N/A
Protected

Academic year: 2017

Share "МЕТОД ОТРИМАННЯ АМОРФНОЇ СТРУКТУРИ"

Copied!
6
0
0

Texto

(1)

К 536.248.2

.М. е, . . се , . . К

Ю К , , 24,

. , 36011,

 am.pavlenko@i.ua, Scopus ID: 12801813400

А

Я А

Ї

-.

,

.

-, є

.

К і с : –А –І –М

-–

.М. е , . . се , . . К

Ю К , , 24,

. , 36011,

Ч

Я А

Ы

В -

-.

,

.

,

-.

К е ые с : –А –И

М

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

В

є ,

'є ,

, є ,

-.

-,

( ).

( ) є

.

є

'є .

є

( ).

,

є

.

-,

-.

В А ЧА А

і я

я ) і і і і

і і

-, є T

L

t

,

-tp.

t0

-p S

t

,

(2)

© . М. ав е , . . Усе , . . К ш а

I ( . 1)

є

-. ,

,

. З є

.

ІІ є

T L

t

-є .

ІІІ є ,

є .

і я і я

і я )

ь

є

є .

( . 2) є

-, є

(

0

r

R

i) (RirZ ) 2

1

:

     

   

   

 

   

      

    

  

   

    

  

   

i i i

i i

i i

Z r R r

r t t r r r r t t t c

R r r

r t t r r r r t t t c

, , 1

,

0 , , 1

,

 

  

 

  

(1)

2 1

:

(r0) [1]:

0 ) , 0

(

 

r ti

, (2)

(r = Rk) IV :

  

  

,

,

,

, , ,

 

 

 

i i

i

i i i

R t R t

r R t t r

R t t

    

(3)

-- (rZ ):

 

 

 

 

 

r Z t t d

dZ Q

t

t

p

t

V

      

  

 

  

 

, ,

 

z

,

t ,

0

z

 

z0,

2.

t L , Z

 

 Ri, 12 (4)

I –

-; II –

; IІІ –

ису 1– - ису 2

(3)

:

 

 



  i i i

R

Z

r

r

t

r Ri

2 1

1 1

,

,

0

,

(5)

,

1

2

i

r

, є

,

1

2.

ІІІ є ,

-, .

-

3.

А

n i

 , in, n i c . З

(1  i 

M-1) (6) (7)

(1.1): , 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1                                  n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n

i t t

i t t t t c r t t       

 (6)

n i

 , in, n i

c

n”.

(2)

-є :

, 2 1 0 1 0 0 0 2 0 1 0 1 0 n n n n n n n n n n c r t t t t              ( 7)

є (8).

є

,

M M0

1

.

                V n M n M V n p n M n M V j n t t r t t r c t

t

(8)

V

t

– ,

– є

.

є n j

V t

t

S   .

0

S є

k1

1

1 1   

n M k j j n

V t Q c

t (9)

є r.

M 1.

0

S

є

k2

1

1 2   

n M k j V j n c Q t

t (10)

є r, M

-є 1.

я

ь

III (rZi)

-, . 3.

ису 3

-2 2 1

:

     

   

i i i i i i Z r r r t t r r r r t t t c                0 , , 1 ,      (11) 2 2 1

:

(r0)

0 ) , 0 (   r ti

, (12)

(4)

© . М. ав е , . . Усе , . . К ш а

  

,

  

,

,

i i p i i

i t t Z

r Z t

t  

  (13) :

          

i

R

i

Z

i

Z

r

r r

ti i

)

(

0

3 2 1 3 2 1 3 2

1 , ,

,

, (14)

,

1

2

3

i r   є

-,

ІІІ,

1

2

3.

-

4.

є

, є

(11)

3 2 1

   +

4.

-

(

r

Z

i):

 

 

 

 

 

r Z t t t t d dZ Q

t i i p Li i i i

i     

, ,

 

n

i i i L i

i Z t Z R

t  ,  ,0  ,1234. (15) :

 

i

i r r

t ,1234  ,1234 , i

Z r

0 , (16)

i r,1 2 3 4

    , є

-,

4 3 2 1   

     .

4 .

4- є

-.

--

4

4

4 .

А

З

t

ni

(0  i  M0-1) є (6)

(7). M0

-є (13):

, 2 2 1 1 1 0 0 0 0 0 0 0 0 0 n M n M n M n M n M n p n M n M n M n M r r t t t t t t c                   (17) К 1 0  n M

t

T L t є .

З

t

ni 0 < Т < M

-є (6) (7).

-є :

1

,

             

T L M M T L M M

L t t

r t t r c t t

n

n

n

p

n

n

T

j

n

(18)

Ш r є ,

k3

S

0

є :

.

3

1 Mn j

T k j T L j n c Q t t  

(19)

-, M = 1.

BASIC,

.

. 4-5.

,

,

,

Гr, B, P, SТ, є ,

FО Co

, , B,

P, SТ, [2-3]. .1

-. . 2

.

и 1

,

°

, К

,

/ 3

є

,

/( ·К)

К є

-,

/( ·К)

u45Ti35Zr20 1090 410 6900 513,9 175

Ni62,4Nb37,6 1169 672 7850 609 69

Fe80P13C7 985 463 6690 720 38,5

(5)

и 2 – u45Ti35Zr20

я ρ=7450 / 3

є ρ= 385 /( ·К)

К є k=340 /( ·К)

1

0-20 °

ρ = 6900 / 3

є ρ= 513,9 /( ·К)

К є k=175 /( ·К)

2 1090 °

І 0.00001

1090 °

267 500 /

0 – 20 – 0° 20°

ису 4– u45Ti35Zr20

1

0 – 20 – 0° 20°

ису 5 – u45Ti35Zr20

(6)

© . М. ав е , . . Усе , . . К ш а

В В

1.

.

2. є

-. є

є

-.

3.

( ) є

-'є ,

є. І ,

.

4.

є

-.

І Е А А

1. Pavlenko, A.M., Usenko, B.O., Koshlak, H.V. 2014. Analysis of thermal peculiarities of alloying with special properties, Metallurgical and Mining Industry, 2, 15-20. 2. Pavlenko, A.M., Usenko, B.O., Koshlak, H.V. 2015. Mathematical modeling of the casting process in Comsol 3.5a package, Metallurgical and Mining Industry, 1, 132-140.

3. Anatoliy Pavlenko, Bohdan Usenko, 2015.

Investigation thermophysical processes obtaining of massive amorphous structure, The special aspects energy and resource saving, Oradea University Press, 235-274.

10.09.2015, 18.12.2015

A. Pavlenko, B. Usenko, H. Koshlak

Poltava National Technical Yuri Kondratyuk University,36011, Poltava, Pershotravnevyi avenue, 24, Ukraine

 am.pavlenko@i.ua, Scopus ID: 12801813400

THE AMORPHOUS STRUCTURE OBTAINING METHOD

The article presents the results of research of energy-resource-saving technologies of massive amorphous structures formation. This technology differs mainly the realization internal heat removal by means of lo-cal heat sink (inoculator). The peculiarities of processes of heat and mass transfer during the formation of in the melt additional active cooling centers, local heat sink to generate internal heat removal. A mathematical model of melting inoculator in melts for optimizing the process of obtaining massive amor-phous structures, which allows to reduce time of experimental research and material resources to create massive amorphous structures. Mathematical modeling of processes heat and mass transfer inoculator in melts allows you to identify peculiarities of the technological process, and establish influence inoculator on the degree of amorphization melt.The results of physical experiments are compared with the results of the calculation. The results can be used to analyze the physical regularities and informed choice of tech-nological modes of formation of massive amorphous structures in different metals and alloys. The melt metal with the cooled particles (inoculator) is characterized by supercooling condition throughout the volume of the solid ingot. Inoculators not only remove overheating and supercooling melt.

The results provide an effective assessment of the intensity of heat transfer during the casting process, which makes it possible to estimate and predict the ability of alloys to the amorphization of the structure. Keywords: heat and mass transfer amorphous structure inoculator thermal conductivity mathe-matical model cooling melting.

REFERENCES

1. Pavlenko, A.M., Usenko, B.O., Koshlak, H.V. 2014. Analysis of thermal peculiarities of alloying with special properties, Metallurgical and Mining Industry, 2, 15-20. 2. Pavlenko, A.M., Usenko, B.O., Koshlak, H.V. 2015. Mathematical modeling of the casting process in Com-sol 3.5a package, Metallurgical and Mining Industry, 1, 132-140.

3. Anatoliy Pavlenko, Bohdan Usenko, 2015.

Investigation thermophysical processes obtaining of massive amorphous structure, The special aspects energy and resource saving, Oradea University Press, 235-274.

Referências

Documentos relacionados

Thus, the aim of this work was to study the infrared drying process, calculating heat and mass transfer coefficients and effective diffusion coefficient for different ripening stages

Among others, adding to the Fe-Cr-C alloy the alloying elements like tungsten and titanium leads to the formation of additional carbides in the structure of this cast iron, which

Performed tests have shown that application of phosphorus in form of CuP10 and AlSr10 master alloy as an inoculant gives positive results in form of refinement of primary crystals

The complex organizational and technological system that allows to reduce the negative impact of the manifestations of exogenous processes on railways and roads, consisting

Rodriguez (1998) studied the influence of particle diameter and solid particle mass flow rate on the bed-to-tube heat transfer coefficient in a shallow fluidized bed heat

In this regard, absorbed heat values by the carrot, water and black ink were used A mathematical model was proposed based on the mass and heat transfer phenomena within the

For this purpose, in the current study, an analytical approach based on the Laplace method for the mathematical model of the coupled heat and mass transfer process in

Abstract - The results of two-dimensional mathematical modeling of heat and mass transfer in a highly viscous hydrocarbon liquid by inductive and radio-frequency (RF)