• Nenhum resultado encontrado

Referência: E. Hecht, óptica, Fundação Calouste Gulbekian, segunda edição portuguesa (2002);

N/A
N/A
Protected

Academic year: 2021

Share "Referência: E. Hecht, óptica, Fundação Calouste Gulbekian, segunda edição portuguesa (2002);"

Copied!
84
0
0

Texto

(1)

Aula 2

Aula 2

A matemática do movimento ondulatório

A matemática do movimento ondulatório

(2)
(3)
(4)
(5)

Muitos fenômenos físicos, aparentemente distintos, podem ser descritos matematicamente em termos de ondas.

(6)

O aspecto essencial da propagação de uma é que esta consiste numa perturbação auto-sustentada do meio através do qual se propaga.

(7)

Se há propagação, a perturbação deve ser expressa como função do espaço e do tempo:

)

,

(

x

t

f

=

ψ

(ψ lê-se psi)

A forma da perturbação em qualquer instante, obtem-se particularizando o valor da variável tempo: (por exemplo t =0)

)

(

)

0

,

(

|

)

,

(

x

t

t=0

=

f

x

=

f

x

ψ

Representa a forma (perfil) da onda

0 2 4 6 8 10 0,0 0,2 0,4 0,6 0,8 1,0 F 1 0,1010101010101

(8)

S S' vt

x'

v

S’ se desloca com o pulso com a mesma Velocidade v.

Neste sistema

ψ (psi) não é função do tempo, ψ = f(x’)

S é um sistema fixo

Considere um pulso caminhando para a direita

x

X’= X -Vt

(9)

Com base no slide anterior

)

(

)

'

(

)

,

(

x

t

=

f

x

=

f

x

vt

ψ

Esta equação representa a forma mais geral da função de onda em uma dimensão.

Basta apenas escolher a forma f(x,o) =f(x) e substituir x por (x-vt) em f(x)!

(10)

Do mesmo modo, se a onda se desloca para a esquerda:

)

(

)

,

(

x

t

=

f

x

+

vt

ψ

Com v > 0

Isto permite obter a forma geral da equação de ondas a uma dimensão:

'

'

'

x

f

x

x

x

f

x

=

=

ψ

x’= x ±vt = 1

Se x se mantiver constante, a derivada parcial de ψ(x,t) no tempo é:

'

'

'

x

f

v

t

x

x

f

t

±

=

=

ψ

±v

(11)

Combinando ambas as equações:

x

v

t

±

=

ψ

ψ

Mas como são necessárias duas constantes para especificar totalmente uma onda , a equação mais geral deve ser de segunda ordem. Calculando as segundas derivadas parciais:

segundas derivadas parciais:

2 2 2 2

'

x

f

x

=

ψ

±

=

±

=

t

f

x

v

x

f

v

t

t

2

'

'

2

ψ

(12)

Uma vez que

dt

df

dt

d

=

ψ

x

v

t

±

=

ψ

ψ

E lembrando que

x

v

t

=

±

2 ' 2 2 2 2

x

f

v

t

=

ψ

Então

(13)

Combinando estas equações, obtemos:

2

2

2

2

2

1

t

v

x

=

ψ

ψ

A equação de ondas!

Que admite soluções da forma

)

(

)

(

x

vt

Bg

x

vt

Af

+

+

=

ψ

(14)

FASE E VELOCIDADE DE FASE

FASE E VELOCIDADE DE FASE

ψ

(x,t) = A sen (kx

±ω

t +

ε

)

Fase

ϕ

= kx

±ω

t +

ε

ω

ϕ

=

Variação da fase com o tempo

Fase

ϕ

= kx

±ω

t +

ε

Constante de fase

k

v

dt

dx

dt

dx

k

dt

d

k

x

t

ω

ω

ϕ

ϕ

ω

±

=

=

=

±

=

=

=

0

Variação da fase com o tempo

Variação da fase com a posição

fase constante

(15)

VELOCIDADE DE GRUPO

VELOCIDADE DE GRUPO

Em meios dispersivos a velocidade de fase depende do comprimento de onda .

dk

d

v

g

=

ω

dk

A moduladora, ou sinal, propaga-se a uma velocidade vg , que pode ser superior, igual ou inferior à velocidade de fase da transportadora, v

dk

dv

k

v

v

kv

g

=

+

=

ω

como então

(16)

Em particular em meios não dispersivos em que v não

depende de

λ

,

dv/dk =0 e v

g

= v

Em meios dispersivos onde n = n(k) ,

ω

=kv =kc/n

v

g

pode ser escrito na forma:

v

g

pode ser escrito na forma:

 −

=

=

dk

dn

n

k

v

v

dk

dn

n

kc

n

c

v

g g

1

2

(17)

 −

=

=

dk

dn

n

k

v

v

dk

dn

n

kc

n

c

v

g g

1

2

Em meios óticos e em regimes de dispersão normal, o índice de refração aumenta com a frequência (dn/dk > 0 ), logo vg < v.

(dn/dk > 0 ), logo vg < v.

Podemos definir então um índice de refração de grupo,

(18)

A relatividade restrita não permite a propagação de sinais com velocidade superior a c.

Todavia, em certas circunstâncias a velocidade de fase pode ser maior do que c. A contradição é apenas aparente, e resulta do fato de uma onda monocromática, apesar de se poder propagar a uma velocidade superior à da luz no vácuo, c, não poder transportar informação.

Dispersão em grupos bicromáticos de ondas. O ponto vermelho move-se com velocidade de fase enquanto que o ponto verde se propaga com velocidade de grupo. Neste caso, a velocidade de fase é duas vezes a velocidade de grupo. O ponto vermelho ultrapassa dois pontos verdes.

(19)

A velocidade de grupo é frequentemente vista como a velocidade na qual a energia e a informação são transportadas na onda.

No entanto, se a onda está atravessando um meio absorverdor, isto nem sempre é verdade. Vários experimentos mostram que é possível que a velocidade de grupo de uma luz laser em certos materiais podem exceder a velocidade da luz no vácuo!

Mas a comunicação superluminal não é possível, pois a Mas a comunicação superluminal não é possível, pois a velocidade do sinal permanece menor do que a velocidade da luz. É possível também reduzir a velocidade de grupo da luz a zero, parando o pulso, ou ter uma velocidade de grupo negativa, parecendo que o pulso se propaga para trás.

Mas, em todos estes casos, os fótons continuam se propagando com a velocidade da luz no meio.

Atenção! Atenção!

(20)

REPRESENTAÇÃO COMPLEXA REPRESENTAÇÃO COMPLEXA Im(z) y

z = x + iy

Re(z) x θ

i

2

= -1

(21)

REPRESENTAÇÃO COMPLEXA REPRESENTAÇÃO COMPLEXA Im(z) y x = r cos

θ

y = r sen

θ

z = r(cos

θ

+ i sen

θ

) z r Re(z) x θ r

(22)

z = r(cos

θ

+ i sen

θ

)

dz = r(-sen

θ

+i cos

θ

) d

θ

dz =i r(isen

θ

+cos

θ

)d

θ

dz =izd

θ

diferenciando Colocando i em evidência

Re-escrevendo em termos de z

dz =izd

θ

dz/z=id

θ

lnz=i

θ

z= re

i

θ

Re-escrevendo em termos de z

(23)

z= re

i

θ

Módulo de z

|z| = r

|z| = r

Complexo conjugado

z

*

= re

-i

θ

(24)

Adição e subtração:

z

1

±

z

2

= (x

1

+ x

2

)

±

i(y

1

+ y

2

)

Multiplicação e divisão:

Z

1

.Z

2

= r

1

r

2

e

i(

θ

1

+

θ

2

)

(25)

Temos ainda:

i

i

z

z

z

z

isen

e

e

zz

z

e

e

e

=

+

=

=

=

=

+

π

π

π

π

1

cos

*

2 1 2 1 0

z

i

z

i

z

i

i

i

e

e

e

e

i

e

isen

e

e

=

=

±

=

=

+

=

=

+

±

π

π

π

π

π

π

π

2

2

2

1

cos

(26)

Z = Re(z)+i Im(z)

Re(z) = ½ (z + z*)

Im(z)= (1/2i)(z - z*)

Então, quer a parte real, quer a parte imaginária podem representar ondas harmônicas. É habitual escolher a parte real, e descrever a onda como...

(27)

(

)

[

]

(

)

ϕ

ε

ω

ε

ω

ψ

ψ

i

kx

t

i

Ae

kx

t

A

t

x

Ae

t

x

=

+

=

=

+

cos

)

,

(

Re

)

,

(

(28)

ONDAS PLANAS

ONDAS PLANAS

(29)

Para ondas planas, as superfícies de igual fase são planos, em geral perpendiculares à direção de propagação da perturbação

k

r

(x,y,z)

r

r

o

r

r

(xo ,yo ,zo )

(

r

r

r

r

o

)

(

)

=

0

r

r

o

k

r

r

r

(30)

A forma mais reduzida da equação do plano perpendincular à k é

k.r

k.r =constante = a

É possível construir um conjunto de planos para os quais ψ(rr) dependa senoidalmente das variáveis espaciais:

senoidalmente das variáveis espaciais:

r k i

Ae

r

r

k

A

r

r

k

Asen

r

r r

r

r

r

r

r

r

r

.

)

(

)

.

cos(

)

(

)

.

(

)

(

=

=

=

ψ

ψ

ψ

(31)

A natureza periódica das funções harmônicas no espaço pode ser expressa na forma:

)

ˆ

(

)

(

r

ψ

r

λ

k

ψ

r

=

r

+

λ

r

r

k

r

λ

k

k

k

ˆ

ˆ

λ

λ

=

r

(32)

(

)

π

λ

λ

ψ

ψ

π

λ

λ

λ

2

1

)

ˆ

(

)

(

2

.

ˆ

.

.

=

=

=

=

=

+

=

+

k

e

e

e

Ae

Ae

Ae

k

r

r

i

k

i

k

i

r

k

i

k

r

k

i

r

k

i

r

r

r

r

r

r

r

r

λ

π

π

λ

2

2

=

=

k

k

(33)

Para que os planos de igual fase se propaguem é necessário que ψ (rr) varie no tempo, o que se consegue introduzindo a dependência temporal :

[

]

[

.

]

)

(

.

=

±

=

=

±

φ

ω

φ

ψ

ω

const

t

r

k

Ae

r

i

k

r

t

r

r

r

r

r

fase

0

0

=

±

=

=

=

ω

φ

φ

φ

dt

dr

k

dt

d

dt

d

const

(34)

dr

dt

dr

k

dt

d

ω

ω

φ

=

±

=

0

k

v

dt

dr

fase

ω

±

=

=

(35)

(

k

x

k

y

k

z

t

)

i

x

y

z

Ae

t

z

y

x

ω

ψ

(

,

,

,

)

=

+

+

±

Uma onda plana harmônica é representada em coordenadas cartesianas, na forma:

ou

(

)

[

k

x

y

z

t

]

i

Ae

t

z

y

x

α

β

γ

ω

ψ

=

+

+

±

)

,

,

,

(

ou

(36)

Onde α,β, e γ são os co-senos diretores de kk

k

r

z

1

2 2 2 2 2 2

=

+

+

+

+

=

=

γ

β

α

z y x

k

k

k

k

k

r

k

r

x y θ ϕ Problema 2.19 (Hecht)

(37)

ONDAS ESFÉRICAS ONDAS ESFÉRICAS z θ r rr θθθθθθθθ x = r senθ cosϕ y = r senθ senϕ z = r cosθ x y ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

(38)

2 2 2 2 2 2 2 2

1

1

1

φ

θ

θ

θ

θ

θ

+

+

=

sen

r

sen

sen

r

r

r

r

r

(39)

Procura-se construir uma descrição de ondas esféricas, ou seja, ψ ( rr ) = ψ (r, θ, φ) = ψ ( r) 2 2 2 2 2 2 2 2

1

1

1

φ

θ

θ

θ

θ

θ

+

+

=

sen

r

sen

sen

r

r

r

r

r

0 0

=

r

r

r

r

ψ

ψ

2 2 2

1

(40)

Onda esférica harmônica:

)

(

cos

)

,

(

k

r

vt

r

A

t

r

±

=

ψ

(41)

ONDAS CILÍNDRICAS ONDAS CILÍNDRICAS coordenadas cilindricas z ρ ρρρρρρρρ z z

x =

ρ

cos

θ

x y θθθθθθθθ θ

z

z

sen

y

=

=

ρ

θ

(42)

ONDAS CILÍNDRICAS ONDAS CILÍNDRICAS

O Laplaciano em coordenadas cilindricas é

2

2

2

2

2

2

1

1

z

+

+





=

ψ

θ

ψ

ρ

ρ

ψ

ρ

ρ

ρ

ψ

(43)

A simetria cilíndrica traduz-se pela seguinte exigência: ψ(rr) = ψ(ρ,θ, z) =ψ (ρ)

2

2

2

2

2

2

1

1

z

+

+





=

ψ

θ

ψ

ρ

ρ

ψ

ρ

ρ

ρ

ψ

0 0

2

2

2

2

1

1

t

v

=





=

ψ

ρ

ψ

ρ

ρ

ρ

ψ

(44)

Qual deve ser a forma de ψ (rr) das soluções desta equação ?

( )

ik

(

r

vt

)

e

r

A

t

r

,

m

ψ

Esta equação representa um conjunto de cilindros coaxiais que preenchem todo o espaço e que se afastam ou se aproximam de um fonte linear de comprimento infinito situada no eixo.

(45)

ONDAS ESCALARES E ONDAS VETORIAIS ONDAS ESCALARES E ONDAS VETORIAIS

Ondas longitudinais As ondas

classificam-se em

Ondas transversais classificam-se em

Dependendo da direção ao longo do qual a perturbação ocorre e a direção de

k k

(46)
(47)
(48)
(49)

A luz é uma onda transversa e a compreensão correta da sua

natureza vetorial é de importância extrema. A polarização da luz é um fenômeno que só pode ser descrito em termos deste modelo de onda vetorial.

(50)

Emissão e absorção de ondas: Impedância

Emissão e absorção de ondas: Impedância

Vamos examinar o mecanismos pelos quais ondas são emitidas por um transmissor e refletidas quando encontram uma descontinuidade no meio.

u(t) → velocidade de saída do transmissor

Velocidade transversal da mão

Velocidade longitudinal da mão

-Velocidade de oscilação das cargas em uma antena

(51)

Z

-No caso de ondas eletromagnéticas em linhas de transmissão, ou circuitos, a velocidade das cargas do gerador é proporcional à corrente :

u(t) ∝ i(t) i(t)

Impedância caracteristíca (no caso eletromagnético) V(t)

)

(

)

(

t

i

t

V

Z =

No caso mecânico:

)

(

)

(

t

u

t

F

Z =

[Z] = Ω [Z] ≠ Ω Força impulsora

(52)

Veremos que a impedância característica depende das mesmas duas

propriedades do meio assim como a velocidade de propagação, v, ou seja, a propriedade tipo “inércia” e a propriedade tipo “força de retorno” .

A impedância característica Z, existe somente, porque o transmissor está acoplado a um meio aberto e está emitindo ondas. O meio aberto atua como uma “impedância resistiva de carga”.

Potência irradiada: Potência irradiada:

P(t) = F(t)×u(t) = Z × u(t)2 = F(t)2/Z (mecânica)

(53)

fonte x = 0 x= +

Meio aberto (Não há reflexão ) Zentrada Z fonte x = 0 Zentrada Z Zsaida = Z Casamento de impedância (Não há reflexão) Equivale à

(54)

fonte

x = 0 Zentrada

Z

Zsaida ≠ Z

sem casamento de impedância (há reflexão)

Z

Z −

=

2

1

2

1

12

Z

Z

Z

Z

R

+

=

Coeficiente de reflexão Z 1 Z2

(55)

Emissão e absorção de ondas em uma corda contínua Emissão e absorção de ondas em uma corda contínua

y y x ∆x T -T 1 y T Ttg Tsen ≈ = ∂ << θ θ θ y x T T θ(x +∆x) θ(x ) x x +∆x 2 2 2 2 2 2 0 ) , ( ) , ( ) , ( ) , ( ) , ( lim ) , ( ) , ( t t x y x x t x y x T a m F x t x y x T x t x x y t z x x y x T t x x y T t z x x y T x y T Ttg Tsen x ∂ ∂ ∆ = ∂ ∂ ∆ • ∆ = ∂ ∂ ∆ =           ∆ ∂ ∂ − ∆ + ∂ ∂ ∆ = ∂ ∂ − ∆ + ∂ ∂ ∂ ∂ = ≈ → ∆ µ θ θ

(56)

µ

θ

θ

θ

t

x

y

x

t

x

y

x

T

a

m

F

x

t

x

y

x

T

x

t

x

x

y

t

z

x

x

y

x

T

t

x

x

y

T

t

z

x

x

y

T

x

y

T

Ttg

Tsen

x

=

=

=





+

=

+

=

<<

→ ∆

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

lim

)

,

(

)

,

(

1

2 2 2 2 0

Segunda Lei de Newton Força resultante vertical

µ

µ

µ

T

v

t

t

x

y

v

x

t

x

y

t

t

x

y

T

x

t

x

y

t

t

x

y

x

x

t

x

y

x

T

=

=

=

=

0

)

,

(

1

)

,

(

0

)

,

(

)

,

(

)

,

(

)

,

(

2 2 2 2 2 2 2 2 2 2 2

Divindo por ∆x, temos:

Comparando com a Equação de onda

(57)

θ(x) y x ∆y ∆x

v

t

y

t

x

t

y

x

y

tg

=

=

=

θ

µ

µ

θ

T

v

v

T

Z

t

y

Z

v

t

y

T

Ttg

t

F

=

=

=

=

=

=

)

(

(58)

Reflexão de uma onda em um meio não casado Reflexão de uma onda em um meio não casado

Z1 u velocidade x=0 x=-∞

)

cos(

t

kx

A

y

=

ω

Pistão (força de arrasto) F = -Z2 u Z2 u

)

cos(

t

kx

A

y

incidente

=

ω

)

cos(

12

A

t

kx

R

y

refletida

=

ω

+

)

cos(

)

cos(

)

,

(

x

t

A

t

kx

R

12

A

t

kx

y

=

ω

+

ω

+

µ1 µ2 y x

(59)

Condições de contorno em x=0

A corda exerce uma força na carga dada por:

=

x

t

y

T

a

c

corda

F

(

/

arg

)

(

0

,

)

A força exercida pela carga na corda é:

 ∂

y

(

0

,

t

)

=

t

t

y

Z

corda

a

c

F

(

arg

/

)

2

(

0

,

)

Mas, de acordo com a terceira lei de Newton:

0

2

=

+

t

y

Z

z

y

T

F12 = - F21

(60)

Inserindo a função de onda na equação acima, temos:

Tksen(

ω

t)-TkR12 sen(

ω

t) – Z2

ω

sen(

ω

t)- Z2

ω

R12 sen(

ω

t)=0 Onde k=

ω

/v

Z

Z

Z

T

2

1

2

1

2

2

12

Z

Z

Z

Z

Z

v

T

Z

v

T

R

+

=

+

=

(61)

Casos limites: Casamento de impedância: Z1 = Z2 → R12 = 0 extremidade fixa Z2 =

→ R12 = -1 2 1 2 1 12

Z

Z

Z

Z

R

+

=

(62)
(63)

Ondas de som

Ondas de som

x x = 0 p = po , ρ = ρo D(t) p = po + ∆p

Velocidade do pistão = u(t) = dD(t)/dt

ψ(x,t) = ∆x(x,t) → representa o deslocamento instantâneo na direção x de uma pequena quantidade de gás (x representa a posição de equilíbrio)

(64)

o

o

P

v

Z

P

v

ρ

γ

ρ

ρ

γ

=

=

=

o

o

o

v

P

Z

=

ρ

=

γ

ρ

Zar = (1,29 × 10-3 g/cm3 ) ×(3,32 ×104 cm/s) = 42,8 g/cm2 . s

Z é a quantidade de massa por unidade de área por unidade de tempo que é varrida pela frente de onda.

(65)

Cabos coaxiais

Cabos coaxiais

(66)

=

a

b

u

L

ln

2

π

[H/m]

=

a

b

C

ln

2

πε

[F/m]

(67)
(68)

Cabo ideal

(69)

t

t

z

I

z

L

t

z

zI

R

t

z

V

=

(

,

)

(

,

)

(

,

)

t

z

V

(

,

)

t

t

z

V

z

C

t

z

zV

G

t

z

I

=

(

,

)

(

,

)

(

,

)

(70)

Dividindo por

Z e levando no limite

Z

0, encontramos as equações diferenciais

t

I

L

RI

z

V

=

V

I

t

V

C

GV

z

I

=

(71)

Diferenciando com respeito a z e t, e substituindo, as equações podem ser desacopladas e resulta em

RGV

t

V

RC

LG

t

V

LC

z

V

+

+

+

=

)

(

2 2 2 2

O cabo ideal sem perdas (R = G =0 )

2 2 2 2

t

V

LC

z

V

=

) ( 2 ) ( 1

)

(

z

V

e

i t kz

V

e

i t kz

V

=

ω −

+

ω +

(72)

LC

v

=

=

1

κ

ω

Velocidade de propagação

LC =

µε

A velocidade de propagação do sinal é

A velocidade de propagação do sinal é

freqüentemente expressa em termos de seu inverso,

o tempo de propagação por unidade de comprimento

T=

T= v

v

--1

1

=

= (LC)

(LC)

1

1//2

2

. Esta quantidade é conhecida como

o

atraso

atraso

(delay) do cabo e é tipicamente

(73)

Impedância Característica

I

V

Z

o

=

C

L

Z

o

=

(74)

R Z R Z Zs Vs

o

s

o

s

V

Z

I

V

=

+

o

o

ZI

V =

Interface z = 0

o

o

ZI

V =

Z

Z

Z

V

V

s s o

+

=

( ) i(wt kz) r kz wt i oe V e V t z V( , ) = + + − (wt kz) r i(wt kz) i o e Z V e Z V t z i( , ) = − − −

(75)

)

,

(

)

,

(

o

t

Ri

o

t

V

=

na interface z = 0 R Z R Z Zs Vs Interface z = 0

)

,

(

)

,

(

o

t

Ri

o

t

V

=

( )

( )

[

( )

i

( )

wt

]

r wt i o wt i r wt i o

V

e

V

e

Z

R

e

V

e

V

+

=

(

o

r

)

t

t

r

o

V

V

V

RI

Z

R

V

V

+

=

=

=

(76)

Z

R

Z

R

I

I

V

V

R

o r o r

+

=

=

=

12

Z

R

R

V

V

T

o t

+

=

=

2

(77)
(78)
(79)
(80)
(81)
(82)

Lista

Hecht capítulo 2 –

(83)

PURPOSE: To demonstrate the relationship between the phase velocity

and the group velocity of a wavepacket.

DESCRIPTION: Two transparencies contain a series of equally spaced

parallel lines. One transparency has a line spacing five percent smaller than the other. Place one transparency stationary onto the overhead, as

shown in the photo above at left. Place the second transparency on top of the first and tilt it to create a small angle. Observe an interfernce pattern between the two overlapping transparencies, as shown above in the middle photo. The smaller the angle between the two transparencies the better the effect.

Keeping the first transpareny stationary, slide the second transparency across the OHD projector. The group velocity is seen to move rapidly across the picture, as shown in the photo at right. The movement of the phase velocity (motion of each transparency) is much slower than the fast moving group velocity.

EQUIPMENT: Transparencies, overhead projector. SETUP NOTES: None.

To make your own transparencies, here is a jpg file of the parallel lines. To make your own demo, download this file and print it on your printer. Next, use a copy machine to make a one 1:1 transparency. Lastly, adjust the copy machine to zoom a 5% reduction, and make a second transparency. Now you have the demo! References:

Robert Katz, Group-Phase Velocity Demonstrator, AJP 21, 388-389 (1953).

Eric Mendoza, Storm at Sea - An Illustration of Group Velocity, AJP 22, 208-211 (1954). P. T. Demos, Device for the Visual Presentation of Group Velocity, AJP 25, 383-384 (1957). N. F. Barber, Phase Velocity and Group Velocity, AJP 27, 120 (1959).

J. Mawdsely, Demonstrating Phase Velocity and Group Velocity, AJP 37, 842-843 (1969).

(84)

Referências

Documentos relacionados

O livro de Crônicas esclarece o motivo para a resposta negativa: já que Davi havia passado muito tempo de sua vida em guerras, Deus queria um homem de paz para construir

O diretor da Agência Nacional de Energia Elétrica (Aneel), Edvaldo Santana, disse ontem que o atual cenário de turbulências no setor elétrico “está caminhando para

23 http://www.slideshare.net/durgarrai/empresrios-portugueses-incapazes-inteis-nocivos-e-batoteiros.. crescimento do PIB, uma redução da dívida só existirá com um mais

visando construir projetos políticos. Isso significa dizer que, mesmo sabendo que escândalos de corrupção são excelentes parideiros de reformas, estas não devem ser somente

A ira de Deus se revela contra os nossos pecados, e a Sua perfeita justiça exige a nossa condenação eterna, mas a misericórdia e longanimidade de Deus também

A indústria farmacêutica não investe em terapias naturais, uma vez que os produtos que são usados não são adequados para o patenteamento e porque as suas vendas

Ciência é Cultura 2009, Teatro Gonzaguinha, Centro de Artes Calouste Gulbenkian; Apresentação na Conferência Municipal de Saúde (Teatro Mario Lago, no Colégio Pedro II em

Ciência é Cultura 2009, Teatro Gonzaguinha, Centro de Artes Calouste Gulbenkian; Apresentação na Conferência Municipal de Saúde (Teatro Mario Lago, no Colégio Pedro II em